最新人教版八年级数学下册单元测试题全套及答案 (A)

合集下载

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)063050

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)063050

2022-2023学年全国初中八年级下数学人教版单元测试考试总分:99 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )1. 下列函数:①②③④⑤⑥是一次函数的有( )A.个B.个C.个D.个2. 如图,当时,自变量的范围是( )A.B.C.D.3. 一支蜡烛长,若点燃后每小时燃烧,则燃烧剩余的长度与燃烧时间(时)之间的函数关系的图象大致为( )A.B.y =x y =x 4y =4x y =2x+1y =+x+1x 2y =+1x −√2345y >0x x <1x ≤0x >1x ≥020cm 5cm h(cm)tC. D.4. 若是负整数,且一次函数的图象不经过第二象限,则可能是( )A.B.C.D.5. ,两地相距,甲乙两人沿同一条路线从地到地.如图,反映的是两人行进路程与行进时间之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了个小时到达目的地;③乙比甲迟出发小时;④甲在出发小时后被乙追上.以上说法正确的个数有(  )A.个B.个C.个D.个6. 如果将直线=平移后得到直线=,那么下列平移过程正确的是( )A.将向左平移个单位B.将向右平移个单位C.将向上平移个单位m y =(m+2)x−4m −3−2−1−4A B 30km A B y(km)t(h)50.551234:y l 12x−2:y l 22x l 12l 12l 12D.将向下平移个单位7. 若实数,,满足,且,则函数的图象可能是( ) A. B. C. D.8. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程(单位:千米)与时间(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A.分B.分C.分D.分二、 填空题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )l 12a b c a +b +c =0a <b <c y =−cx−a s t ()101214169. 若与成正比例,当=时,=,则与之间的函数关系式________.10. 若直线平行于直线,且过点,则________,________.11. 如图,一次函数(,是常数, )的图象经过点,若,则的取值范围是________.12. 已知正比例函数,若随的增大而减小,则的取值范围是________.13. 某水果批发市场香蕉的价格如下表:购买香蕉数(千克)不超过千克千克以上但不超过千克千克以上每千克价格元元元若小强购买香蕉千克(大于千克)付了元,则关于的函数关系式为________.14. 写出一个具体的随的增大而减小并过的一次函数关系式________.15. 某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量(个)与售价(元)的对应关系,根据表中提供的信息可知与之间的关系式是________.数量(个)售价(元) 16. 用计算器计算并填空:(1)________,(2)________,(3)________,(4)________,…观察计算结果,用你发现的规律填空:________.三、 解答题 (本题共计 5 小题 ,每题 7 分 ,共计35分 )y x x 2y 6y x y =kx+b y =5x+3(2,−1)k =b =y =kx+b k b k <0A(2,3)kx+b <3x y =(k +3)x y x k 20204040654x x 40y y x y x (−2,4)x y y x x 12345y 8+0.216+0.424+0.632+0.840+1.09×9+7=98×9+6=987×9+5=9876×9+4=(5)98765432×9+0=17. 画出一次函数的图象.18. 江西赣南脐橙果大形正,橙色鲜艳,肉质嫩脆.某水果零售商带上若干千克的脐橙在我市出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的脐橙千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图像回答下列为题.这位零售商自带的零钱是多少?求降价前与之间的函数关系式. 19. 一个安有进水管和出水管的蓄水池,每单位时间内进水量分别是一定的.若从某时刻开始的小时内只进水不出水,在随后的小时内既进水又出水,得到时间(小时)与蓄水池内水量之间的关系如图所示.(1)求进水管进水和出水管出水的速度;(2)如果小时后只放水,不进水,求随变化而变化的关系式. 20. 周末,小李时骑自行车从家里出发到郊外春游,时回到家里.他离家的距离(千米)与时间(时)之间的函数关系可利用图中的折线表示,根据图象回答下列问题:小李到达离家最远的地方是什么时间?小李何时第一次休息?时到时,小李骑行了多少千米?返回时小李的平均速度是多少?21. 甲骑摩托车从地去地,乙开汽车从地去地,两人同时出发,匀速行驶,已知摩托车速度小于汽车速度,各自到达终点后停止,设甲、乙两人间的距离为,行驶的时间为,与之间y =2x+1x y (1)(2)y x 48x y()m 312y x 816S t (1)(2)(3)1112(4)A B B A s(km)t(h)s t的函数关系如图所示,结合图象回答下列问题:参考答案与试题解析2022-2023学年全国初中八年级下数学人教版单元测试一、 选择题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )1.【答案】B【考点】一次函数的定义【解析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①、②是正比例函数,特殊的一次函数,正确;③是反比例函数,错误;④符合一次函数的定义,正确;⑤属于二次函数,错误;⑥不是与的一次函数,错误;故选:.2.【答案】A【考点】一次函数的性质【解析】根据图象直接回答问题.【解答】解:根据图象知,当时,;∴当时,;y =x y =x 4y =4x y =2x+1y =+x+1x 2y =+1x −√y x B x =1y =0y >0x <1故选.3.【答案】D【考点】一次函数的图象一次函数的应用【解析】根据蜡烛剩余的长度原长度燃烧的长度建立函数关系,然后根据函数关系式就可以求出结论.【解答】解:由题意,得,,,,的图象是一条线段.,随的增大而减小.故选.4.【答案】C【考点】一次函数图象与系数的关系【解析】根据一场函数图象经过的象限可得出关于的一元一次不等式,解之即可得出的取值范围,再结合为负整数即可求出的值.【解答】∵一次函数的图象不经过第二象限,∴,∴.∵为负整数,∴.5.A =−h =20−5t ∵0≤h ≤20∴0≤20−5t ≤20∴0≤t ≤4∴h =20−5t ∵k =−5<0∴h t D m m m m y =(m+2)x−4m+2>0m>−2m m=−1【答案】B【考点】一次函数的应用【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】一次函数图象与几何变换【解析】根据“上加下减”的原则求解即可.【解答】将函数=的图象向上平移个单位长度,所得图象对应的函数解析式是=.7.【答案】B【考点】一次函数图象与系数的关系【解析】先判断出是负数,是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与轴的交点的位置即可得解.【解答】解:∵,且,∴,,(的正负情况不能确定)y 2x−22y 2x a c y a +b +c =0a <b <c a <0c >0b∵,∴函数的图象与轴正半轴相交.∵,∴函数的图象经过第一、二、四象限.故选.8.【答案】C【考点】函数的图象【解析】应先求出上坡速度和下坡速度,注意往返路程上下坡路程的转化.【解答】解:根据函数图象可得:明明骑自行车去上学时,上坡路程为千米,速度为千米/分,下坡路程为千米,速度为千米/分,放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,上坡路程为千米,速度为千米/分,下坡路程为千米,速度为千米/分,因此走这段路所用的时间为分.故选.二、 填空题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )9.【答案】=【考点】待定系数法求正比例函数解析式【解析】首先设=,再代入=,=可得的值,进而可得函数解析式.【解答】a <0y=−cx−a y c >0y=−cx−a B 11÷6=163−1=22÷(10−6)=122161122÷+1÷=141612C y 3xy kx x 2y 6k设=,∵当=时,=,∴=,解得:=,∴=,10.【答案】,【考点】待定系数法求一次函数解析式【解析】根据一次函数的特点,两直线平行这一次项系数相同,可确定的值;把点代入即可求出.【解答】解:因为直线平行于直线,所以,因为直线过点,将其代入,即解得.故答案为:;.11.【答案】【考点】一次函数图象上点的坐标特点【解析】根据一次函数的图象可直接进行解答.【解答】解:观察函数图象可知,此函数是减函数,当时,故当时,.故答案为:12.【答案】y kx x 2y 662k k 3y 3x 5−11k (2,−1)b y =kx+b y =5x+3k =5(2,−1)y =5x+b −1=5×2+bb =−115−11x >2y =3x =2y <3x >2x >2.k <−3正比例函数的性质【解析】根据正比例函数图象与系数的关系列出关于的不等式,然后解不等式即可.【解答】解:∵正比例函数 中,的值随自变量的值增大而减小,∴,解得,;故答案为:.13.【答案】【考点】根据实际问题列一次函数关系式【解析】找到相应范围内的单价,等量关系为:购买香蕉总价钱单价数量,把相关数值代入即可求解.【解答】解:∵大于千克,∴单价为元,∵数量为千克,∴.故答案为:.14.【答案】【考点】一次函数的性质【解析】由一次函数过,设出一次函数解析式为,将此点代入得到,又此一次函数随的增大而减小,可得出小于,取,可得出,确定出满足题意的一次函数解析式.k k +3<0y =(k +3)x y x k +3<0k <−3k <−3y =4x=×x 404x y =4x y =4x y =−x+6(−2,4)y =kx+b −2k +b =4y x k 0k =−1b =6解:设一次函数的解析式为,将,代入得:,又此一次函数随的增大而减小,∴,若,可得出,则一次函数为.故答案为:.15.【答案】【考点】根据实际问题列一次函数关系式【解析】售出个,售价为:;售出个,售价为:;售出个,售价为:;售出个,售价为:.【解答】解:依题意有:.故与之间的关系式是:.16.【答案】解:(1),(2),(3),(4),(5),,,,…在每个等式里,左端各数的数字从前往后顺次加,加数依次减,右端各数的数字依次多一位数.∴.【考点】计算器—基础知识【解析】y =kx+b(k ≠0)x =−2y =4−2k +b =−4y x k <0k =−1b =−6y =−x+6y =−x+6y =8.2x18+0.222×8+2×0.233×8+3×0.2x x×8+x×0.2y =x×8+x×0.2=8.2xy x y =8.2x 888888888888889×9+7=8898×9+6=888987×9+5=88889876×9+4=8888811898765432×9+0=888888888本题要求同学们能熟练应用计算器,会用科学记算器进行计算.【解答】解:(1),(2),(3),(4),(5),,,,…在每个等式里,左端各数的数字从前往后顺次加,加数依次减,右端各数的数字依次多一位数.∴.三、 解答题 (本题共计 5 小题 ,每题 7 分 ,共计35分 )17.【答案】解:列表:图象如图所示:【考点】一次函数的图象【解析】此题暂无解析【解答】解:列表:888888888888889×9+7=8898×9+6=888987×9+5=88889876×9+4=8888811898765432×9+0=888888888x ⋯−2−101⋯y ⋯−3−113⋯图象如图所示:18.【答案】解:农民自带的零钱是元.解:设函数的解析式是,则,解得,则与的函数解析式是.【考点】一次函数的性质【解析】此题暂无解析【解答】解:农民自带的零钱是元.解:设函数的解析式是,则,解得,则与的函数解析式是.19.【答案】由图形可以看出在到小时进水升,故进水管每小时的流量是升;x ⋯−2−101⋯y ⋯−3−113⋯(1)20(2)y =kx+b {b =2030k +b =140{k =4b =20y x y =4x+20(1)20(2)y =kx+b {b =2030k +b =140{k =4b =20y x y =4x+2004205则出水管每小时的流量==(升);∵每小时出水量为升,∴需要=可将水池里的水排放完,∴时可将水池里的水排放完;∴函数的图象经过两点、,设与的关系式为=,由题意可得:,解得:,∴=-.【考点】一次函数的应用【解析】(1)根据函数的图象可以看出每小时的进水量;再根据进水量和函数的图象即可求出出水管每小时的流量.(2)根据小时后水池里的水量和出水管每小时的流量即可求出何时可将水池里的水排放完,再根据函数的图象经过两点、即可求出与的函数关系式.【解答】由图形可以看出在到小时进水升,故进水管每小时的流量是升;则出水管每小时的流量==(升);∵每小时出水量为升,∴需要=可将水池里的水排放完,∴时可将水池里的水排放完;∴函数的图象经过两点、,设与的关系式为=,由题意可得:,解得:,∴=-.20.【答案】(20+5×8−30)÷830÷8(min)20(12,30)(20,0)y x y kx+b y x+7512(12,30)(20,0)y x 04205(20+5×8−30)÷830÷8(min)20(12,30)(20,0)y x y kx+b y x+75解:由图可得,小李到达离家最远的地方是时.由图可得,小李时第一次休息.由图可知,(千米),∴时到时,小李骑了千米.由图可知,(千米/时),∴返回时,小李的平均车速为千米/时.【考点】一次函数的应用【解析】根据函数图象中的数据,可知小李到达离家最远的地方是什么时间;根据函数图象中的数据,可知小李何时第一次休息;根据函数图象中的数据,可以计算出时到时,小李骑了多少千米;根据函数图象中的数据,可以计算出返回时,小李的平均车速是多少.【解答】解:由图可得,小李到达离家最远的地方是时.由图可得,小李时第一次休息.由图可知,(千米),∴时到时,小李骑了千米.由图可知,(千米/时),∴返回时,小李的平均车速为千米/时.21.【答案】由图象可得:甲骑摩托车的速度为:=(千米/小时),乙开汽车的速度为(千米/小时),故答案为:;;由(1)可知,==;==;设小时后两人相距,根据题意,解得=或=.答:小时或.【考点】一次函数的应用【解析】此题暂无解析【解答】(1)14(2)10(3)25−20=511125(4)30÷(16−14)=30÷2=1515(1)(2)(3)1112(4)(1)14(2)10(3)25−20=511125(4)30÷(16−14)=30÷2=1515120÷3404080b 120÷(40+80)1a 40×1.860x 20km x x此题暂无解答。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

人教版八年级数学下册16章单元测试题(含答案)

人教版八年级数学下册16章单元测试题(含答案)

人教版八年级数学下册16章单元测试题(含答案)一.选择题(共5小题)1.下列式子一定是二次根式的是()A. B. C.D.2.下列二次根式中,无论x取什么值都有意义的是()A.B.C. D.3.化简的结果是()A.5 B.﹣5 C.±5 D.254.下列根式中属于最简二次根式的是()A.B. C. D.5.下列运算结果正确的是()A.=﹣9 B.C.D.二.填空题(共5小题)6.若代数式在实数范围内有意义,则x的取值范围是.7.计算:=.8.计算:=.9.计算:﹣×=.10.已知n为整数,则使为最小正有理数的n的值是.三.解答题(共6小题)11.直接写出答案=;=;=.=,(﹣)2=,=.12.化简:(1)×;(2)×.(3).(4).13.计算:(1).(2)÷2×.(3).(4)6﹣.(5)﹣+(6)2×÷.14.计算:(1)2÷×.(2)2.(3)×÷.(4).(5).(6)2﹣6+.15.计算:(1)4x2.(2).(3)(﹣)÷.(4)(+3)(+2)(5)(2﹣)2.(6).16.观察下列的计算:==﹣1;==﹣,根据你的观察发现,可得代数式(+++…+)×(+1)的结果为.人教版八年级数学下册16章单元测试题参考答案一.选择题(共5小题)1.C 2.D.3.A.4.A.5.B.二.填空题(共5小题)6.x≤.7.2017.8.3.9..10.3.三.解答题(共6小题)11.2;5a;.1,3,4.12.解:(1)×=3;(2)×===6.(3)=×=11×6=66.(4).=×=×=.13.解:(1)原式=3×5×=15.(2)原式===8=4.(3)原式==.(4)原式=12﹣4=8.(5)原式=3﹣4+=0.(6)原式=×=.14.解:(1)原式=4÷×3=8×3=24.(2)原式=2××=××=6.(3)原式=÷=.(4)原式===20.(5)原式=3﹣+2=.(6)原式=4﹣6×+4=8﹣2=615.解:(1)原式=4x2÷12×3=x2=xy.(2)原式==x.(3)原式=﹣=2﹣=(4)原式=5+2+3+6=11+5;(5)原式=20﹣4+2=22﹣4.(6)原式=5﹣2+3﹣2+1=7﹣2.16.解:由题意给出的等式可知:原式=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)(+1)=2014﹣1=2013。

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)104343

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)104343

2022-2023学年全国初中八年级下数学人教版单元测试考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知=,若是整数,则的值可能是( )A.B.C.D.2. 下列计算中正确的是( )A.B.C.D.3. 化简的结果是( )A.B.C.D.4. 已知最简二次根式与可以进行合并,则的值等于( )A.B.C.或D.或(4+)⋅a 3–√b b a 3–√4+3–√4−3–√2−3–√+=2–√3–√5–√+2=23–√3–√6–√−2=8–√2–√−=−4a −−√9a −−√a−√×5–√920−−−√323–√2523–√1522m −−−√15−m 2−−−−−−−√m 3−53−55−35. 下列二次根式中,是最简二次根式的是( )A.B.C.D.6. 化简二次根式除了利用二次根式的性质外,还可以借助图形解释验证.如:化简时,我们可以构造如图所示的图形,其中图是一个面积为的正方形,图是一个面积为的正方形,根据两图的关系我们可以得到:.这种分析问题的方法所体现的数学思想是( )A.分类讨论B.数形结合C.公理化D.类比7. 二次根式中字母的取值范围是( )A.B.C.D.8. 下列各式中:,其中是二次根式的有( )A.个B.个C.个D.个12−−√4x−−√yx 3−−−√26−−√8–√1822=28–√2–√x−3−−−−−√x x >3x ≠3x ≥3x ≤3、、、2–√a −√12−−√x 2−−√1234二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.比较大小:________.(用,=或填空)10. 若点 为直线上一点,则________.11. ________.12. 已知最简二次根式与是同类二次根式,则的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 计算:.14. 计算: .15. 计算:16. 已知:实数,在数轴上的位置如图所示,化简:2+><(m,n)y =3x+1m +−n =18−−√32−−√2–√(+)×=3–√2–√6–√4a +3b −−−−−−√2a −b +6−−−−−−−−√b+1a +b 8÷12⋅3x 2xy −−√x 3y −−−√y 2x−−−√(+−1)(−+1)3–√2–√3–√2–√÷−×.27−−√3–√20−−√5–√a b +2−|a −b |(a +1)2−−−−−−−√(b −1)2−−−−−−√参考答案与试题解析2022-2023学年全国初中八年级下数学人教版单元测试一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】分母有理化【解析】找出括号中式子的有理化因式即可.【解答】==,则的值可能是,2.【答案】D【考点】二次根式的混合运算二次根式的性质与化简【解析】根据二次根式的运算法则,逐一判断即可.【解答】解:,被开方数不同,不能合并,故错误;,,故错误;, ,故错误; ,,故正确.故选.3.(4+)×(4−)3–√3–√16−313a 4−3–√A A B +2=33–√3–√3–√B C −2=2−2≠8–√2–√2–√C D −=2−3=−4a −−√9a −−√a −√a −√a −√D D【答案】A【考点】二次根式的乘除法【解析】根据二次根式的乘法法则求解.【解答】解:原式.故选.4.【答案】A【考点】同类二次根式最简二次根式【解析】根据同类二次根式与最简二次根式的定义,列出方程解答即可.【解答】解:∵最简二次根式与可以进行合并,∴,解得:,,当时,,不合题意,舍去;故选.5.【答案】D【考点】最简二次根式【解析】==94−−√32A 2m −−−√15−m 2−−−−−−−√2m=15−m 2m=3m=−5m=−52m=−10<0A判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:,,,所以都不是最简二次根式,是最简二次根式.故选.6.【答案】B【考点】二次根式的性质与化简二次根式的应用【解析】根据用图形解决代数问题的方法是数形结合思想,即可解得.【解答】解:这种分析问题的方法所体现的数学思想是数形结合.故选.7.【答案】C【考点】二次根式有意义的条件【解析】此题暂无解析【解答】解:由题意知,解得:.故选.=12−−√2–√2=24x −−√x −√=x y x 3−−−√xy −−√A,B,C 26−−√D B x−3≥0x ≥3C8.【答案】C【考点】二次根式的定义及识别【解析】根据二次根式的定义解答即可.【解答】解:是二次根式,时,无意义,不是二次根式,是二次根式,是二次根式,所以,二次根式有个.故选.二、 填空题 (本题共计 4 小题 ,每题5 分 ,共计20分 )9.【答案】【考点】实数大小比较分母有理化【解析】此题暂无解析【解答】此题暂无解答10.【答案】2–√a <0a −√12−−√x 2−−√3C >32–√【考点】二次根式的混合运算【解析】此题暂无解析【解答】解:点为直线上一点,所以,即,原式.故答案为:.11.【答案】【考点】二次根式的混合运算【解析】先进行二次根式的乘法运算,再进行化简即可.【解答】解:.故答案为:.12.【答案】【考点】同类二次根式【解析】根据根指数及被开方数分别相同可列出方程,解出后可得出和的值,代入可得出答案.【解答】(m,n)y =3x+1n =3m+13m−n =−1=3m +4−n 2–√2–√2–√=(3m−n+4)=32–√2–√32–√3+22–√3–√(+)×3–√2–√6–√=+3×6−−−−√2×6−−−−√=+18−−√12−−√=3+22–√3–√3+22–√3–√2a b −−−−−−√−−−−−−−−√b+1解:∵最简二次根式与是同类二次根式,∴解得:故.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:原式.【考点】二次根式的乘除法【解析】二次根式相乘除时,分别把根号外的相乘除,根号内的相乘除,得,接下来对根号的式子化简,再将其化简为最简二次根式.【解答】解:原式.14.【答案】解:原式.4a +3b −−−−−−√2a −b +6−−−−−−−−√b+1{b +1=2,4a +3b =2a −b +6,{a =1,b =1,a +b =22=×8×3x 212xy ⋅⋅y x 3y 2x−−−−−−−−−−√=2⋅x 2y 4x 3−−−√=2⋅x 2y 2x x −√=2y 2x −√×8×3x 212xy ⋅⋅y x 3y 2x −−−−−−−−−−√=×8×3x 212xy ⋅⋅y x 3y 2x−−−−−−−−−−√=2⋅x 2y 4x 3−−−√=2⋅x 2y 2x x −√=2y 2x −√=[+(−1)][−(−1)]3–√2–√3–√2–√=(−(−13–√)22–√)2=3−2−1+22–√=22–√【考点】同类二次根式【解析】此题暂无解析【解答】解:原式.15.【答案】解:.【考点】二次根式的除法二次根式的乘法二次根式的混合运算【解析】根据二次根式的乘除运算化简即可得解.【解答】解:.16.【答案】解:由数轴可知,,则,,,=[+(−1)][−(−1)]3–√2–√3–√2–√=(−(−13–√)22–√)2=3−2−1+22–√=22–√÷−×27−−√3–√20−−√5–√=−273−−−√20×5−−−−−√=−9–√100−−−√=3−10=−7÷−×27−−√3–√20−−√5–√=−273−−−√20×5−−−−−√=−9–√100−−−√=3−10=−7−1<a <0<1<b <2a +1>0b −1>0a −b <0+2−|a −b |=a +1+2b −2−b +a =2a +b −1−−−−−−−√−−−−−−√∴.【考点】二次根式的性质与化简在数轴上表示实数【解析】根据数轴确定、的符号,根据二次根式的性质和绝对值的性质化简、合并即可.【解答】解:由数轴可知,,则,,,∴.+2−|a −b |=a +1+2b −2−b +a =2a +b −1(a +1)2−−−−−−−√(b −1)2−−−−−−√a b −1<a <0<1<b <2a +1>0b −1>0a −b <0+2−|a −b |=a +1+2b −2−b +a =2a +b −1(a +1)2−−−−−−−√(b −1)2−−−−−−√。

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)102140

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)102140

2022-2023学年全国初中八年级下数学人教版单元测试考试总分:150 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )1. 从、、、中随机抽取一个数记为,再从剩下的三个数中任取一个记为,则点恰好在反比例函数的图象上的概率是( )A.B.C.D.2. 经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部右转的概率 ( )A.B.C.D.3. 如图,开关,,,都处于断开状态,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为 A.B.C.−2−136a b (a,b)y =−6x1415131619161312K 1K 2K 3K 1K 2K 3()131223D.4. 某地新高考有一项“选”选课制,高中学生李鑫和张锋都已选了地理和生物,现在他们还需要从“物理、化学、政治、历史”四科中选一科参加考试.若这四科被选中的机会均等,则他们恰好一人选物理,另一人选化学的概率为 A.B.C.D.5. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是 A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )6. 在一个不透明的布袋中装有标着数字,,,的个小球,这个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于的概率为________.7. 现有四张卡片,正面分别写有汉字“我”“爱”“中”“国”,反面是完全相同的五角星图案.现将背面朝上充分洗匀后,从中任意抽取张,其正面文字恰好组成“爱国”字样的概率为________.8. 一个不透明的袋子中装有写着,,,的四个小球,小球除标号外其余均相同,将小球摇匀后随机摸出一个记下标号后放回,再次摇匀后再随机摸出一个记下标号,则第二次摸出小球的标号数字能够整除第一次摸出小球的标号数字的概率为________.9. 掷两枚骰子,两者朝上面点数之和只可能是、、、、、、、、、和,共种可能,所以小明认为“掷两枚骰子,出现两者朝上面点数之和为”的概率是.你同意小明的观点吗?答:________,理由是________.三、 解答题 (本题共计 21 小题 ,每题 5 分 ,共计105分 )163()1814381212()491316192345449223462345678910111211211110. 现有四张完全相同的不透明卡片,其正面分别写有数字,,,,把这四张卡片背面朝上洗匀后放在桌面上.随机的取—张卡片,求抽取的卡片上的数字为非正数的概率;先随机抽取—张卡片,其上的数字作为点的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点的纵坐标,用列表的方法求出点在直线上的概率.11. 九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:直接写出,,的值;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的人恰好是乙和丙的概率. 12. 经过某路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有甲、乙、丙三辆汽车经过这个路口.(1)求甲、乙两辆汽车向同一方向行驶的概率;(2)甲、乙、丙三辆汽车向同一方向行驶的概率是________. 13. 已知直线交轴于,交轴于且坐标为,直线与轴于,与直线相交于点.求点的坐标;根据图象,写出关于的不等式的解集.14. 为了更好的为广大市民提供优质服务,松北新区对市民热衷的四个旅游景点太阳岛风景区、哈尔滨极地馆、金河湾湿地植物园、东北虎林园(以下分别用,,,表示)的喜爱情况,对某居民区市民进行了抽样调查(必选题只选一项),并将调查情况绘制成如图、图所示的两幅不完整的统计图.请根据以上信息解答下列问题:−2−102(1)(2)A A A y =x+2(1)a b m (2)22y =kx+5x A y B A (5,0)y =2x−4x D AB C (1)C (2)x 2x−4>kx+5A B C D 12本次参加抽样调查的居民有多少人?________,并通过计算把条形统计图补充完整;若居民区约有人,请估计喜欢金河湾湿地植物园的人数.15. 为了科学普及新型冠状病毒肺炎防护知识,提升学生的自我防护意识和能力,某中学开展线上“战疫情复课复学”科普知识竞赛活动,竞赛试卷满分分.活动结束后,从参赛的七年级学生中随机抽取了名同学的成绩(单位:分),收集数据如下:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,并将数据整理后,绘制以下不完整的统计图(图)、频数分布直方图(图)和扇形统计图(图).请根据图表中的信息解答下列各题:分组成绩人数图(1)(2)a =(3)8000100309193887992829393989889967810093989593968899987580869290889693123A 75≤x <803B 80≤x <85a C 85≤x <905D 90≤x <9510E 95≤x ≤100b1填空:________,________;补全频数分布直方图.若成绩在“分到分以下”为“成绩良好”,请你求出扇形统计图中“成绩良好”部分的圆心角的度数;成绩达到“分及以上”为“成绩优秀”.现需分别从组的甲、乙和组的丙、丁四位同学中,随机选取两人参加全校决赛,请用画树状图或列表法求出选中的两人恰好是在同一个小组的概率. 16. 将张印有我国传统节日“春节”“元宵节”“清明节”“中秋节”(卡片的形状、大小、质地都相同)的卡片放在一个不透明的盒子中,将卡片搅匀.从盒子中任意取出张卡片,恰好取出印有“春节”的卡片的概率为________;先从盒子中任意取出张卡片,记录后放回并搅匀,再从中任意取出张卡片,求取出的张卡片中,印有相同节日的概率(请用画树状图法或列表法求解).17. 在初三年级某班的一次体育模拟测试中,班长对全班同学的测试成绩进行了统计,并绘制了如下不完整的统计图表,请根据图表提供的信息元成以下问题:组别成绩人数图表中:________;组的圆心角为________度;组名同学中有男女,从中随机抽取两名同学参加市运会,请你用画树状图或列表法求:①被抽取的名同学恰好是男女的概率;②至少名男生被抽到的概率. 18. 将形状和大小都一样的红、白两种颜色的小球分装在甲、乙两个口袋中,甲袋装有个红球和个白球,乙袋装有个红球和个白球,现从每个口袋中各随机摸出个小球.(1)a =b =(2)8590(3)90D E 4(1)1(2)112A90≤x ≤1004B80≤x ≤9015C70≤x ≤80m D 60≤x ≤7010(1)m=B (2)A 422211111211请你用画树状图或列表的方法表示所有等可能的结果;有人说:“摸出‘两红’和摸出‘一红一白’,这两个事件发生的概率相等.”你同意这种说法吗?为什么? 19. 为了扎实推进精准扶贫工作,我县出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了到种帮扶措施,现把享受了种、种、种和种帮扶措施的贫困户分别称为,,,类贫困户.为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:本次抽样调查了多少户贫困户?抽查了多少户类贫困户?并补全统计图;若该地共有户贫困户,请估计至少得到项帮扶措施的大约有多少户?为更好地做好精准扶贫工作,现准备从类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中的甲和丁的概率. 20. 年上映的《你好,李焕英》票房破亿,某中学就《你好,李焕英》电影的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作,,,.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:本次被调查对象共有________人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为________.将条形统计图补充完整,并标明数据;若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表)求所选取的这两名学生恰好是一男一女的概率. 21. 小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)(2)252345A B C D (1)(2)C (3)130004(4)D 202150A B C D (1)(2)(3)(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求出一个回合能确定两人下棋的概率.22. 某校准备组建“校园安全宣传队”,每班有两个队员名额,某班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选,具体做法是:将甲、乙、丙、丁四名同学分别编号为,,,号,将号码分别写在个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选,利用画树状图或列表的方法,求丁同学被选中的概率. 23. 学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到天立学校,数学组王晶劲老师为了了解本班学生月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类::好,:中,:差.请根据图中信息,解答下列问题:求全班学生总人数;将上面的条形统计图与扇形统计图补充完整;张老师在班上随机抽取了名学生,其中类人,类人,类人,若再从这人中随机抽取人,请用画树状图或列表法求出全是类学生的概率.24. 某中学为了提高学生的综合素质,成立了以下社团:,机器人,,围棋,,羽毛球,,电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,图中所占扇形的圆心角为.根据以上信息,解答下列问题:这次被调查的学生共有________人;请你将条形统计图补充完整;123443A B C (1)(2)(3)4A 1B 2C 142B A B C D A 36∘(1)(2)若该校共有名学生加入了社团,请你估计这名学生中有多少人参加了羽毛球社团;在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用画树状图或列表法求恰好选中甲、乙两位同学的概率. 25. “强身健体、迫在眉睫”,某学校为了解七年级学生的体质,随机抽取了一些学生,进行了部分项目的体育测试,按成绩分成了优秀、良好、合格、不合格四个等级,并绘制了如下不完整的统计表和统计图.表中________;如果用扇形统计图来描述表中信息,那么,成绩为“合格”的区域圆心角的度数是________;补全条形统计图;在成绩优秀的名学生中,有名男生,名女生,若在其中任选两名同学分享自己的健身体会,请用列表法或画树状图的方法求正好选中一名男生和一名女生的概率. 26. 从甲、乙两班各随机抽取名学生(共人)参加数学素养测试,将测试成绩分为如下的组(满分为分):组: ,组:,组: ,组:,组: ,分别制成频数分布直方图和扇形统计图如图.根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);参加测试的学生被随机安排到个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;若甲、乙两班参加测试的学生成绩统计如下:甲班:,,,,,,,,,;乙班:,,,,,,,,,则可计算得两班学生的样本平均成绩为;样本方差为.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.27. 全运会吉祥物以陕西秦岭独有的四个国宝级动物“金丝猴、羚牛、大熊猫、朱鹮”为创意原型,设计了一组幸福快乐、充满活力、精神焕发、积极向上的运动吉祥物形象.现有四张纪念卡片分别绘有吉祥物的图案(如图)纪念卡片背面完全相同.小明先从中随机抽取一张卡片,记录下卡片上的动物名称,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的动物名称.请你用列表或画树状图的方法求出小明两次抽取的卡片中有一张是“熊熊”的概率.(3)10001000(4)(1)m=∘(2)(3)853********A 50≤x <60B 60≤x <70C 70≤x <80D 80≤x <90E 90≤x ≤100(1)(2)4(3)62646676767782838391515269707171888999100.=76,=76x 甲x 乙=80,S 甲2x 乙2=275.428. 如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字,,,甲,乙两人开始玩一个可以自由转动的转盘游戏,转盘停止后,记录下指针指向的数字,若指针指向相邻两扇形的交界处,则重新转动转盘.甲转动转盘一次,记下指针指向的数字,接着乙也转动转盘一次,再记下指针指向的数字,利用画树状图或列表格的方法求两次记录的数字之和小于的概率.29. 为响应市政府关于“生活垃圾分类”的倡议,某居民小区举行了有关知识竞答,并随机抽取了部分答卷的成绩绘制了统计表和扇形统计图,部分信息如下:本次调查一共随机抽取了________份答卷的成绩,统计表中________;扇形统计图中的“ 组”的圆心角为________,所抽取答卷的成绩的中位数落在“组别”是________(填,,或);已知抽取的答卷中,甲、乙、丙、丁、戊五人获得并列最高分,若从其中任选两人参加市级知识竞答,求甲、乙两人同时被选中的概率. 30. 一只不透明袋子中装有三张大小、质地都相同的卡片,卡片上分别标有数字、、,搅匀后先从中任意抽出一张卡片(不放回),记下数字作为点的横坐标,再从余下的两张卡片中任意抽出一张卡片,记下数字作为点的纵坐标.用画树状图或列表等方法列出所有可能出现的结果;求点落在反比例函数的图象上的概率.1234(1)a =(2)B ∘A B C D (3)12−3A A (1)(2)A y =−6x参考答案与试题解析2022-2023学年全国初中八年级下数学人教版单元测试一、 选择题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )1.【答案】C【考点】列表法与树状图法反比例函数图象上点的坐标特征【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点恰好在反比例函数的图象上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有种等可能的结果,点恰好在反比例函数的图象上的有:,,,,∴点恰好在反比例函数的图象上的概率是:.故选.2.【答案】A【考点】列表法与树状图法【解析】(a,b)y =−6x12(a,b)y =−6x(−2,3)(−1,6)(3,−2)(6,−1)(a,b)y =−6x =41213C列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:右(直,右)(左,右)(右,右)左(直,左)(左,左)(右,左)直(直,直)(左,直)(右,直)直左右∴一共有种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是.故选.3.【答案】A【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有种等可能的结果,能让两盏灯泡同时发光的是闭合开关,与,,∴能让两盏灯泡同时发光的概率为:.故选.4.【答案】A【考点】919A 6K 1K 3K 3K 1=2613A列表法与树状图法【解析】根据题意,可以画出相应的表格,从而可以得到他们一人选物理,另一人选化学的概率.【解答】解:列表如下:物理化学政治历史物理物理,物理物理,化学物理,政治物理,历史化学化学,物理化学,化学化学,政治化学,历史政治政治,物理政治,化学政治,政治政治,历史历史历史,物理历史,化学历史,政治历史,历史由表可知,他们共有种等可能结果,其中只有种恰好一人选物理,另一人选化学,所用一人选物理,另一人选化学的概率为:.故选.5.【答案】D【考点】列表法与树状图法【解析】列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共种等可能的结果,两次都是黑色的情况有种,∴两次摸出的球都是黑球的概率为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )6.【答案】162=21618A 9119D【答案】【考点】列表法与树状图法【解析】【解答】解:根据题意列表得:------------由表可知所有可能结果共有种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于的有种,所以两个小球上的数字之积大于的概率为;7.【答案】【考点】列表法与树状图法【解析】此题暂无解析【解答】解:根据题意,可画树状图如下:2323452(3,2)(4,2)(5,2)3(2,3)(4,3)(5,3)4(2,4)(3,4)(5,4)5(2,5)(3,5)(4,5)12989=8122316可知共有种情况,其中恰好组成“爱国”字样的有种情况,∴概率.故答案为:.8.【答案】【考点】列表法与树状图法【解析】首先画出树状图求出所有可能的结果数,再求出第二次摸出小球的标号数字能够整除第一次摸出小球的标号数字包含的结果数,最后根据概率公式计算即可.【解答】解:画树状图如下:根据树状图可知两次摸球共有种等可能的结果,其中第二次摸出小球的标号数字能够整除第一次摸出小球的标号数字有种等可能的结果,所以第二次摸出小球的标号数字能够整除第一次摸出小球的标号数字的概率为.故答案为:.9.【答案】不同意,种情况非等可能发生【考点】列表法与树状图法概率公式【解析】列表得出所有情况,再由概率公式求解即可.【解答】122P =161671616771671611解:列表如下:共有种等可能出现的结果,种情况非等可能发生,出现两者朝上面点数之和为”的有个,∴出现两者朝上面点数之和为的概率为.∴不同意小明的观点.原因是:种情况非等可能发生.故答案为:不同意;种情况非等可能发生.三、 解答题 (本题共计 21 小题 ,每题 5 分 ,共计105分 )10.【答案】解:∵四张完全相同的不透明卡片,其正面分别写有数字,,,,非正数有,,共张,∴随机的取一张卡片,抽取的卡片上的数字为非正数的概率为.列表如下:共有个等可能的结果,点在直线上的结果有个,即,,∴点在直线上的概率为.【考点】概率公式列表法与树状图法【解析】暂无暂无【解答】解:∵四张完全相同的不透明卡片,其正面分别写有数字,,,,非正数有,,共张,36112121361111(1)−2−102−2−10334(2)−1−202−1(−1,−1)(−2,−1)(0,−1)(2,−1)−2(−1,−2)(−2,−2)(0,−2)(2,−2)0(−1,0)(−2,0)(0,0)(2,0)2(−1,2)(−2,2)(0,2)(2,2)16A y =x+22(−2,0)(0,2)A y =x+2=21618(1)−2−102−2−1033∴随机的取一张卡片,抽取的卡片上的数字为非正数的概率为.列表如下:共有个等可能的结果,点在直线上的结果有个,即,,∴点在直线上的概率为.11.【答案】解:;画树状图,如图所示:所有等可能的情况有种,其中恰好是丙与乙的情况有种,所以选取的人恰好乙和丙的概率为.【考点】列表法与树状图法条形统计图扇形统计图【解析】此题暂无解析【解答】解:;画树状图,如图所示:34(2)−1−202−1(−1,−1)(−2,−1)(0,−1)(2,−1)−2(−1,−2)(−2,−2)(0,−2)(2,−2)0(−1,0)(−2,0)(0,0)(2,0)2(−1,2)(−2,2)(0,2)(2,2)16A y =x+22(−2,0)(0,2)A y =x+2=21618(1)a =8,b =12,m=30(2)1222==21216(1)a =8,b =12,m=30(2)所有等可能的情况有种,其中恰好是丙与乙的情况有种,所以选取的人恰好乙和丙的概率为.12.【答案】根据题意画图如下:共有种等情况数,其中甲、乙两辆汽车向同一方向行驶的有种,则甲、乙两辆汽车向同一方向行驶的概率是;【考点】列表法与树状图法【解析】(1)画树状图得出所有等可能的情况数,找出甲、乙两辆汽车向同一方向行驶的情况数,即可求出所求的概率;(2)根据题意画树状图得出所有等可能的情况数,找出甲、乙、丙三辆汽车向同一方向行驶的情况数,即可求出所求的概率.【解答】根据题意画图如下:共有种等情况数,其中甲、乙两辆汽车向同一方向行驶的有种,则甲、乙两辆汽车向同一方向行驶的概率是;根据题意画图如下:1222==2121693=39131993=3913共有种等情况数,其中甲、乙、丙三辆汽车向同一方向行驶的有种,则(三辆汽车朝一个方向行驶).故答案为:.13.【答案】解:∵直线=经过点,∴,解得:,∴直线的解析式为.联立直线、的解析式成方程组,则解得:∴点的坐标为.观察函数图象可知:当时,直线在直线的上方,∴不等式的解集为.【考点】待定系数法求一次函数解析式一次函数图象上点的坐标特点一次函数与一元一次不等式【解析】(1)根据点的坐标利用待定系数法可求出直线的解析式,联立直线、的解析式成方程组,通过解方程组即可求出点的坐标.(2)根据直线、的上下位置关系结合点的坐标,即可得出不等式的解集.【解答】解:∵直线=经过点,∴,解得:,∴直线的解析式为.联立直线、的解析式成方程组,则解得:∴点的坐标为.观察函数图象可知:当时,直线在直线的上方,∴不等式的解集为.14.【答案】273P ==3271919(1)y kx+5A(5,0)5k +5=0k =−1AB y =−x+5AB CD {y =−x+5,y =2x−4,{x =3,y =2,C (3,2)(2)x >3y =2x−4y =−x+52x−4>kx+5x >3A AB AB CD C AB CD C 2x−4>kx+5(1)y kx+5A(5,0)5k +5=0k =−1AB y =−x+5AB CD {y =−x+5,y =2x−4,{x =3,y =2,C (3,2)(2)x >3y =2x−4y =−x+52x−4>kx+5x >3解:()(人)答:本次参加抽样调查的居民有人.,(人)答:估计喜欢金河湾湿地植物园的人数为人.【考点】列表法与树状图法条形统计图扇形统计图【解析】此题暂无解析【解答】解:()(人)答:本次参加抽样调查的居民有人.(人),(人).如图所示:(人)答:估计喜欢金河湾湿地植物园的人数为人.15.【答案】,,,直方图补充如下:160÷10%=600600(2)30(3)×8000=16001206001600160÷10%=600600(2)D :600×40%=240C :600−240−60−180=120(3)×8000=16001206001600210(2)a =2b =10根据题意可知,“成绩良好”的有人,,圆心角度数为.依题意画树状图如下:等可能事件一共种,其中符合题意的有种,∴选出的两人恰好是在同一个小组中的概率为:.【考点】列表法与树状图法频数(率)分布直方图【解析】(1)根据数据即可找到相应的人数.利用(1)的结论可画出直方图;符合条件的人数,结合人数为名即可求出圆心角度数.根据题意作出树状图即可解答.【解答】解:根据数据可知,符合组条件的有;,共个,即.符合组条件的有;;;;;;;;;,共个,即.故答案为:;.,,直方图补充如下:5=53016×=360∘1660∘(3)124=4121330(1)B 82802a =2E 98989610098959699989610b =10210(2)a =2b =10根据题意可知,“成绩良好”的有人,,圆心角度数为.依题意画树状图如下:等可能事件一共种,其中符合题意的有种,∴选出的两人恰好是在同一个小组中的概率为:.16.【答案】记“春节”“元宵节”“清明节”“中秋节”的卡片分别为,,,,画树状图如下,由图可知,共有个等可能的结果,其中印有相同节日的结果共有种,所以取出的张卡片中,印有相同节日的概率为.【考点】概率公式列表法与树状图法【解析】()直接由概率公式求解即可;()画树状图,共有个等可能的结果,其中取出的张卡片中,印有相同节日的卡片的结果有个,再由概率公式求解即可.5=53016×=360∘1660∘(3)124=4121314(2)A B C D 1642=41614121624【解答】解:()从盒子中任意取出张卡片,恰好取出印有“春节”的卡片的概率为.故答案为:.记“春节”“元宵节”“清明节”“中秋节”的卡片分别为,,,,画树状图如下,由图可知,共有个等可能的结果,其中印有相同节日的结果共有种,所以取出的张卡片中,印有相同节日的概率为.17.【答案】,画出树状图如图所示,①被抽取的名同学恰好是男女的有种情况,∴被抽取的名同学恰好是男女的概率为;②至少名男生被抽到的有种情况,∴至少名男生被抽到的概率为.【考点】扇形统计图列表法与树状图法【解析】先求出总人数,进而求解即可;利用列举法求概率.【解答】解:由题意可得:全班人数为(人),∴;组的圆心角为.111414(2)A B C D 1642=4161421108(2)2118211=812231101=101256(1)(2)(1)10÷20%=50m=50−4−15−10=21B ×=1550360∘108∘。

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。

最新人教版八年级数学下册单元测试题及答案全套

最新人教版八年级数学下册单元测试题及答案全套

最新人教版八年级数学下册单元测试题及答案全套含期中期末试题单元测试(一) 二次根式1.使式子x -2有意义的x 的取值范围是()A .x ≤2B .x ≤-2C .x ≠2D .x ≥2 2.下列二次根式中是最简二次根式的是()A .12B .13C .a 2+1D .3a 2 3.化简(-5)2的结果是()A .5B .-5C .±5D .254.下面选项中,与3是同类二次根式的是()A .12B .8C .22D 5.下列计算正确的是()A .8-3= 5B .32+2=4 2C .18÷3=6D .6×(-3)=326.若实数x ,y 满足2x -1+||y -1=0,则x +y 的值是()A .1B .32C .2D .527.实数a ,b 在数轴上的对应点的位置如图所示,且|a|>|b|,则化简a 2-(a +b )2的结果为()A .2a +bB .-2a +bC .bD .-2a -b8.若8n 是整数,则正整数n 的最小值是()A .4B .3C .2D .09.已知x 1=3+2,x 2=3-2,则x 21+x 22等于()A .8B .9C .10D .1110.将1,2,3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2 018,2 018)表示的两个数的积是()1 第1排3 2 第2排3 2 1 第3排1 32 1 第4排……第4列第3列第2列第1列A. 2B. 3C. 6 D.3二、填空题(本大题共6小题,每小题4分,共24分)11.化简(315)2的结果是____________.12.计算:15×5=____________.13.若a=3-1,则a2+2a+2的值是____________.14.已知最简二次根式2m-1与n则m=____________,n=____________.15.如果ab>0,a+b<0,;②ab·ba=1;③ab÷ab=-b,其中正确的是____________.16.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________________________.三、解答题(本大题共5小题,共46分)17.(12分)计算:(1)(827-53)×6;(2)8+23-(27-2);(3)(72+12-18)×2;(4)(25-52)(-25-52)-(5-2)2.18.(8分)先化简,再求值:a 2-b 2a +b ÷a -ba 2b 2,其中a =2,b = 3.19.(8分)已知y =x -2+2-x +5,求x +2y 2的值.20.(8分)在一块边长为(1015+55)m 的正方形土地中,修建了一个边长为(1015-55)m 的正方形养鱼池,问:剩余部分的面积是多少?21.(10分)在进行二次根式的化简时,我们有时会碰到如53,23,23+1这样的式子,其实我们还可以将其进一步化简:53=5×33×3=533;(一) 23=2×33×3=63;(二) 23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1.(三) 以上这种化简的步骤叫做分母有理化. 23+1还可以用以下方法化简: 23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.(四) (1)请用不同的方法化简25+3 .①参照(三)式得25+3=________________________________________________________________________;②参照(四)式得25+3=________________________________________________________________________;(2)化简:13+1+15+3+17+5+…+.参考答案单元测试(一) 二次根式1.D 2.C 3.A 4.A 5.B 6.B 7.C 8.C 9.C 10.D 11.16512.53 13.4 14.7 3 15.②③ 16.n +1n +2=(n +1)1n +2(n ≥1) 17.(1)43-15 2.(2)32- 3.(3)7.(4)23+210.18.原式=a 2b 2.当a =2,b =3时,原式=6.19.由题意,得x =2,此时y =5.∴x +2y 2=2+2×52=52=213.20.(1015+55)2-(1015-55)2=(1015+55+1015-55)(1015+55-1015+55)=2015×105=20015×5=1 0003(m 2).答:剩余部分的面积是1 000 3 m 2. 21.(1)①2×(5-3)(5+3)(5-3)=2(5-3)5-3=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+…+2n +1-2n -12=3-1+5-3+7-5+…+2n +1-2n -12=2n +1-12.单元测试(二) 勾股定理 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A .3,4,5B .6,8,10C .3,2, 5D .5,12,13 2.已知命题:等边三角形是等腰三角形,则下列说法正确的是()A .该命题为假命题B .该命题为真命题C .该命题的逆命题为真命题D .该命题没有逆命题3.如图,点P 是平面直角坐标系中的一点,则点P 到原点的距离是()A .3B . 2C .7D .53第3题图 第5题图 第8题图4.直角三角形的一直角边长是7 cm ,另一直角边与斜边长的和是49 cm ,则斜边的长为()A .18 cmB .20 cmC .24 cmD .25 cm5.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为()A .4B .8C .16D .64 6.适合下列条件的△ABC 中,直角三角形的个数为()①a =13,b =14,c =15;②a ∶b ∶c =1∶2∶3;③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =3.A .2B .3C .4D .57.已知一个三角形的三个内角的比是1∶2∶1,则这三个内角对应的三条边的比是()A.1∶1∶ 2 B.1∶2∶1 C.1∶1∶2 D.1∶4∶18.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里9.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,M,N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.910.一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米.如果梯子的顶端下滑0.4米,那么梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米二、填空题(本大题共6小题,每小题4分,共24分)11.如图,等腰△ABC的底边BC长为16,底边上的高AD长为6,则腰AB的长为____________.第11题图第12题图第13题图12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,则该河流的宽度为____________ m.13.如图,三个正方形的面积分别为S1=3,S2=2,S3=1,则分别以它们的一边为边围成的三角形中,∠1+∠2=____________度.14.一个直角三角形的两边长分别为5 cm,12 cm,则这个直角三角形的第三边长为____________.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为____________.第15题图第16题图16.如图,一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是____________.三、解答题(本大题共5小题,共46分)17.(8分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的长度.18.(9分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13.(1)求BC的长度;(2)线段BC与线段BD的位置关系是什么?说明理由.19.(9分)如图,在边长为1的正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.20.(10分)在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺(如图).突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲离开原处的水平距离为6尺,请问水深多少?21.(10分)如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD ′与BC 交于点E ,若AD =4,DC =3,求BE 的长.单元测试(二) 勾股定理1.C 2.B 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C 11.10 12.480 13.90 14.13 cm 或119 cm 15.9216.25 17. 6. 18.(1)5.(2)BC ⊥BD ,理由如下:∵BC =5,BD =12,CD =13,∴BC 2+BD 2=25+144=169=132=CD 2.∴∠CBD =90°.∴BC ⊥BD.19.(1)5+3 5.(2)△ABC 是直角三角形.20.4.5尺.21.∵四边形ABCD 是长方形,∴AB =CD ,∠B =∠D =90°.由折叠可知,∠D =∠D′,CD =CD′.∴∠B =∠D′,AB =CD′.又∵∠AEB =∠CED′,∴△ABE ≌△CD ′E(AAS ).∴AE =CE.设BE =x ,则AE =CE =4-x ,在Rt △ABC 中,由勾股定理得,AB 2+BE 2=AE 2,即32+x 2=(4-x)2.解得x =78.∴BE 的长为78.单元测试(三) 平行四边形 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知▱ABCD 中,∠B =∠A +∠C ,则∠C =()A .18°B .36°C .60°D .144°2.在平行四边形、矩形、菱形、正方形中,是轴对称图形的有()A .1个B .2个C .3个D .4个 3.如图,在▱ABCD 中,下列说法一定正确的是()A .AB =CD B .AB =BC C .AC =BD D .AC ⊥BD 4.下列命题中正确的是()A .有一组邻边相等的四边形是菱形B .有一个角是直角的平行四边形是矩形C .对角线垂直的平行四边形是正方形D .一组对边平行的四边形是平行四边形5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且OE =a ,则菱形ABCD 的周长为()A .16aB .12aC .8aD .4a第5题图 第6题图 第7题图6.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,此正方形的面积()A.16 B.8 C.4 D.27.如图,将矩形ABCD沿AE对折,使点D落在点F处.若∠CEF=60°,则∠EAF等于() A.60° B.50° C.40° D.30°8.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A.80°B.70°C.65°D.60°第8题图第9题图第10题图9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1510.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(5,-23),则D点的坐标是()A.(3,0) B.(4,0) C.(5,0) D.(23,0)二、填空题(本大题共6小题,每小题4分,共24分)11.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是____________.(横线上只需填一个你认为合适的条件即可)12.平行四边形的周长为24 cm,相邻两边长的比为3∶1,那么这个平行四边形较短的边长为____________cm.13.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是____________.14.菱形的边长为5,一条对角线长为8,另一条对角线长为____________.15.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF=____________.第15题图第16题图16.如图,正方形ABCD中,点E,F分别在边BC,CD上,且AE=EF=FA.有下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF.其中正确的是____________(只填写序号).三、解答题(本大题共5小题,共46分)17.(6分)如图,在▱ABCD中,已知M和N分别是边AB,DC的中点,求证:四边形BMDN是平行四边形.18.(8分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.19.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE =OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.20.(10分)如图,将▱ABCD 的边BA 延长到点E ,使AE =AB ,连接EC ,交AD 于点F ,连接AC ,ED.(1)求证:四边形ACDE 是平行四边形;(2)若∠AFC =2∠B ,求证:四边形ACDE 是矩形.21.(12分)如图,BD 是正方形ABCD 的对角线,BC =2,边BC 在其所在的直线上平移,经通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明.单元测试(三) 平行四边形1.C 2.C 3.A 4.B 5.C 6.B 7.D 8.D 9.C 10.B11.AD =BC(或AB ∥CD) 12.3 13.7.5 14.6 15.5316.①②③⑤17.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =DC.∵M 和N 分别是AB ,DC 的中点,∴BM =12AB ,DN =12DC.∴BM =DN.∴四边形BMDN 是平行四边形.18.证明:∵四边形ABCD 为矩形,∴OB =OC.∵BE ⊥AC 于E ,CF ⊥BD 于F ,∴∠BEO =∠CFO =90°.又∵∠BOE =∠COF ,∴△BOE ≌△COF(AAS ).∴BE =CF.19.(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ).∴∠1=∠2.(2)四边形BCDE是菱形.理由如下:∵BC =DC ,∠1=∠2,OC =OC ,∴△ODC ≌△OBC(SAS ).∴OD =OB ,OC ⊥BD.∵OE =OC ,∴四边形BCDE 是平行四边形.∵OC ⊥BD ,∴四边形BCDE 是菱形.20.(1)∵▱ABCD 中,AB =CD 且AB ∥CD ,又∵AE =AB ,∴AE =CD ,AE ∥CD.∴四边形ACDE 是平行四边形.(2)∵▱ABCD 中,AD ∥BC ,∴∠EAF =∠B.又∵∠AFC =∠EAF +∠AEF ,∠AFC =2∠B ,∴∠EAF =∠AEF.∴AF =EF.又∵▱ACDE 中,AD =2AF ,EC =2EF ,∴AD =EC.∴四边形ACDE 是矩形. 21.(1)四边形APQD 是平行四边形.(2)OA ⊥OP ,OA =OP.∵四边形ABCD 为正方形,∴∠ABO =∠OBC =45°.∵OQ ⊥BD ,∴∠BOQ =90°.∴∠OQB =45°.∴∠OQB =∠ABO =∠OBQ =45°.∴OB =OQ.在△ABO 和△PQO 中,⎩⎨⎧AB =PQ ,∠ABO =∠OQB ,OB =OQ ,∴△ABO ≌△PQO(SAS ).∴OA =OP ,∠AOB =∠POQ.∵∠BOQ =∠BOP +∠POQ =90°,∴∠BOP +∠AOB =∠AOP =90°.∴OA ⊥OP.单元测试() 一次函数 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数:①y =x ;②y =2x -1;③y =1x;④y =x 2-1中,是一次函数的有()A .4个B .3个C .2个D .1个2.把直线y =3x 向下平移2个单位长度,得到的直线是()A .y =3x -2B .y =3(x -2)C .y =3x +2D .y =3(x +2) 3.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是()A .正方形面积S 随边长a 的变化而变化B .用10米长的绳子围一个矩形,则所围成的矩形的长y(米)随宽x(米)的变化而变化C .一场电影票价(元/张)一定时,则该场电影票房收入m(元)随出售票数n(张)的变化而变化D .菱形的面积一定时,则一条对角线长度y 随另一条对角线长度x 的变化而变化4.下列曲线中,不能表示y是x的函数的是()5.如图,直线y=2x必过的点是()A.(2,1) B.(2,2) C.(-1,-1) D.(0,0)6.已知一次函数y=kx+b,y随x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()7.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离家的路程s,则s与t之间函数的图象大致是()8.对于函数y=-2x+1,下列结论正确的是()A.它的图象必经过点(-1,2) B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是() A.x>0 B.x<0 C.x>1 D.x<1第9题图第10题图10.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是()A.只有①②B.只有③④C.只有①②③D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11.直线y=2x+1经过点(0,a),则a=____________.12.函数y=x+1+1x-1中自变量x的取值范围是____________.13.同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.14.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“联盟数”.若“联盟数”为[1,m-5]的一次函数是正比例函数,则m的值为____________.15.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.第15题图第16题图16.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴.将△ABC以y轴为对称轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点).直线y=x +b经过点A,C′,则点C′的坐标是____________.三、解答题(共46分)17.(6分)希望中学学生从2016年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.18.(8分)根据下列条件分别确定函数y =kx +b 的解析式:(1)y 与x 成正比例,当x =2时,y =3; (2)直线y =kx +b 经过点(2,4)与点(13,-13).19.(10分)如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A(m ,2),一次函数的图象经过点B(-2,-1),与y 轴交点为C ,与x 轴交点为D.(1)求一次函数的解析式; (2)求△AOD 的面积.20.(10分)我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?21.(12分)如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(8,0),点A 的坐标为(6,0),点P(x ,y)是第一象限内直线上的一个动点(点P 不与点E ,F 重合).(1)求k 的值;(2)在点P 运动的过程中,求出△OPA 的面积S 与x 的函数关系式; (3)若△OPA 的面积为278,求此时点P 的坐标.单元测试() 一次函数1.C 2.A 3.C 4.D 5.D 6.A 7.A 8.C 9.B 10.C 11.1 12.x ≥-1且x ≠1 13.77 14.5 15.y =100x -40 16.(1,3) 17.y =2x ;常量:2;变量:x ,y ;自变量:x ;y 是x 的函数:y =2x. 18.(1)y =32x.(2)y =135x -65. 19.(1)y =x +1.(2)S △AOD =1.20.设有x 名教师到外地学习,则甲宾馆的收费情况是:y 1=⎩⎪⎨⎪⎧120x (x ≤35),108x +420(x>35);乙宾馆的收费情况是:y 2=⎩⎪⎨⎪⎧120x (x ≤45),96x +1 080(x>45).(1)当x ≤35时,选择两个宾馆是一样的.(2)当35<x ≤45时,选择甲宾馆比较便宜.(3)当x >45时,①若y 1=y 2,即108x +420=96x +1 080,解得x =55;②若y 1>y 2,即108x +420>96x +1 080,解得x >55;③若y 1<y 2,即108x +420<96x +1 080,解得x <55.综上可得,当x ≤35或x =55时,选择两个宾馆是一样的;当35<x <55时,选择甲宾馆更实惠些;当x >55时,选择乙宾馆更实惠些.21.(1)由题意,得8k +6=0,解得k =-34.∴y =-34x +6.(2)过点P 作PD ⊥OA 于点D.∵点P(x ,y)是第一象限内直线上的一个动点,∴PD =-34x +6(0<x <8).∵点A 的坐标为(6,0),∴S =12×6×(-34x +6)=-94x +18(0<x <8).(3)∵△OPA 的面积为278,∴-94x +18=278,解得x =132.将x =132代入y =-34x +6,得y =98,∴P(132,98).单元测试(五) 数据的分析 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是()A .71.8B .77C .82D .95.72.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A .方差B .平均数C .中位数D .众数3.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是()A .1B .43C .0D .24.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()A .83.5分B .84.5分C .85.5分D .86.35分5.甲、乙、丙、丁四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差s 2如下表所示:如果选出一名成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁6.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:则这11名队员身高的众数和中位数分别是(单位:cm)()A.180,180 B.180,182 C.182,182 D.3,27.A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C三人的平均成绩是78分,下列说法一定正确的是()A.D,E两人的成绩比其他三人都好B.D,E两人的平均成绩是83分C.五人的成绩的中位数一定是80分D.五人的成绩的众数一定是80分8.小丽根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,那么表中数据一定不会发生变化的是()A.平均数B.众数C.方差D.中位数9.若一组数据1,2,3,4,x的平均数与中位数相同,则x的值不可能是()A.0 B.2.5 C.3 D.510.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)11.红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有____________人.12.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为____________分.13.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿片.现从它们分装的火腿片中各随机抽取10盒,经称量并计算得到质量的方差如下表所示,你认为包装质量最稳定的切割包装机是____________.14.有5个从小到大排列的正整数,如果中位数是3,唯一的众数是7,那么这5个数的平均数是____________.15.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为____________(请用“>”连接).16.若一组数据x1,x2,…,x n的平均数是a,方差是b,则4x1-3,4x2-3,…,4x n-3的平均数是____________,方差是____________.三、解答题(本大题共5小题,共46分)17.(6分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:请你通过计算,比较谁的学期总评成绩高?18.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A,B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg):A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.25.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.95.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:(2)请分别从优等品数量、平均数与方差三方面对A,B两种技术作出评价.从市场销售的角度看,你认为推广哪种种植技术较好?19.(10分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.20.(10分)在某旅游景区上山的一条山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路高度的示意图.(单位:cm)(1)两段台阶路有哪些相同点与不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为了方便游客行走,需要重新整修上山的小路,对于这两条台阶路,在台阶数不变的情况下,请你提出合理的整修建议.21.(12分)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).单元测试(五)数据的分析1.C 2.D 3.A 4.B 5.B 6.A7.B8.D9.C10.C 11.68012.8813.甲14.415.b>a>c 16.4a-316b17.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),80.6>79.05,所以小明的学期总评成绩高.18.(1)1610(2)从优等品数量的角度看,因为A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因为A 技术种植的西瓜质量的平均数更接近5 kg ,所以A 技术较好;从方差的角度看,因为B 技术种植的西瓜质量的方差更小,所以B 技术种植的西瓜质量更为稳定;从市场销售角度看,因为优等品更畅销,A 技术种植的西瓜优等品数量更多,且平均质量更接近5 kg ,所以更适合推广A 种技术. 19.(1)C 组 (2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x <2.5,所以小明的判断符合实际.20.(1)因为x 甲=15,x 乙=15,所以,相同点是两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差均不相同.(2)甲路段走起来更舒服些,因为它的台阶高度的方差小些.(3)使每个台阶高度均为15 cm ,使得台阶路高度的方差为0.21.(1)补图略.(2)其质量落在0.5~0.8 kg 这一组内的可能性最大.(3)质量落在0.8~1.1 kg 这一组内.(4)平均数x =0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×250=0.904(kg ).50÷2100×0.904=2260(kg ).∴水库中成品鱼的总质量约为2 260 kg .(答案不唯一,合理即可)期中测试(时间:100 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.若2x -1在实数范围内有意义,则x 的取值范围是()A .x ≥12B .x ≥-12C .x >12D .x ≠122.一直角三角形的两直角边长分别为12和16,则斜边长为()A .12B .16C .18D .203.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架()A .3 cm ,4 cm ,5 cmB .7 cm ,12 cm ,15 cmC .7 cm ,12 cm ,13 cmD .8 cm ,15 cm ,16 cm 4.下列计算错误的是()A.14×7=7 2 B.32-2=3 C.9a+25a=8 a D.60÷5=235.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对第5题图第6题图6.如图,在▱ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=() A.30°B.50°C.70°D.110°7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.估计8×0.5+7的运算结果在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间9.如图,菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是() A.16 3 B.16 C.8 3 D.8第9题图第10题图10.如图是由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段共()A.4条B.6条C.7条D.8条二、填空题(本大题共6小题,每小题4分,共24分)11.化简:15=__________.12.下面四组数:①4,5,6;②6,8,10;③8,15,17;④9,40,41,其中有一组与其他三组规律不同的是____________.13.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则菱形的周长为____________,点B的坐标是____________.第13题图第14题图第15题图第16题图14.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2=____________.15.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程中扫过的面积是____________.16.如图,分别以Rt△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=其中结论正确的是____________.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(1)(46-62)÷22;(2)27-(3-2)0+3 3 .18.(6分)如图,点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.19.(6分)已知x,y是实数,且y=4x-1+1-4x+3,求3xy的值.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)已知,如图,在△ABC中,∠B=30°,∠C=45°,AC=2 2.求:(1)AB的长;(2)△ABC的面积.21.(7分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.22.(7分)如图,∠O=90°,OA=90 cm,OB=30 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在▱ABCD中,∠DAB=60°,AB=2AD,点E,F分别是AB,CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.24.(9分)如图,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.25.(9分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时.①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是____________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是____________,请证明你的猜想;(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.期中测试1.A 2.D 3.A 4.B 5.A 6.C 7.D 8.B 9.C 10.D 11.5512.① 13.20 (5,0) 14.2π 15.48 16.①③④ 17.(1)23-3.(2)43-1.18.证明:在▱ABCD 中,AB ∥CD ,∴∠CAE =∠ACF ,∠FEA =∠EFC.又∵点P 是AC 的中点,∴AP =CP.∴△AEP ≌△CFP(AAS ).∴AE =CF. 19.32. 20.(1)4.(2)2+2 3. 21.6. 22.机器人行走的路程BC 为50 cm .23.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD ,AD ∥BC 且AD =BC.∵E ,F 分别为AB ,CD 的中点,∴BE =12AB ,DF =12CD.∴BE =DF.∴四边形DEBF 是平行四边形.在△ABD 中,E是AB 的中点,AB =2AD ,∴AE =BE =12AB =AD.又∵∠DAB =60°,∴△AED 是等边三角形.∴DE =AE =AD.∴DE =BE.∴四边形DEBF 是菱形.(2)四边形AGBD 是矩形.证明:∵AD ∥BC 且AG ∥DB ,∴四边形AGBD 是平行四边形.由(1)知AD =DE =AE =BE ,∴∠ADE =∠DEA =60°.∴∠EDB =∠DBE =30°.∴∠ADB =90°.∴四边形AGBD 是矩形.24.(1)证明:连接DB ,DF.∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA =DE =EF =FA.在△BAD 和△FAD 中,⎩⎨⎧AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△BAD ≌△FAD(SAS ).∴DB =DF.∴D 在线段BF 的垂直平分线上.∵AB =AF ,∴A 在线段BF 的垂直平分线上.∴AD 是线段BF 的垂直平分线.∴AD ⊥BF.(2)150°. 25.(1)①DE =EF ②NE =BF.证明:∵四边形ABCD 为正方形,∴AD =AB ,∠DAB =∠ABC =90°.∵N ,E 分别为AD ,AB 中点,∴AN =DN =12AD ,AE =EB =12AB.∴DN =BE ,AN =AE.∵∠DEF =90°,∴∠AED +∠FEB =90°.又∵∠ADE +∠AED =90°,∴∠FEB =∠ADE.∵AN =AE ,∴∠ANE =∠AEN.又∵∠A =90°,∴∠ANE =45°.∴∠DNE =180°-∠ANE =135°.∵∠CBM =90°,BF 平分∠CBM ,∴∠CBF =45°.∴∠EBF =135°.∴∠DNE =∠EBF.∴△DNE ≌△EBF(ASA ).∴NE =BF.(2)DE =EF.证明:在DA 边上截取DN =EB ,连接NE ,∵四边形ABCD 是正方形,DN =EB ,∴AN =AE.∴△AEN 为等腰直角三角形.∴∠ANE =45°.∴∠DNE =180°-45°=135°.∵BF 平分∠CBM ,∴∠EBF =90°+45°=135°.∴∠DNE =∠EBF.∵∠NDE +∠DEA =90°,∠BEF +∠DEA =90°,∴∠NDE =∠BEF.∴△DNE ≌△EBF(ASA ).∴DE =EF.。

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。

人教版八年级数学下册各单元及期中期末测试题及答案

人教版八年级数学下册各单元及期中期末测试题及答案

人教版八年级数学下册各单元及期中期末测试题及答案 精品全套 共7套第十六章 分式单元测试题时间90分钟 满分100分班级____________姓名____________学号____________成绩______一、选一选请将唯一正确答案代号填入题后的括号内;每小题3分;共30分 1.已知x ≠y;下列各式与x yx y-+相等的是 .A ()5()5x y x y -+++B 22x yx y-+ C 222()x y x y -- D 2222x y x y -+2.化简212293m m +-+的结果是 . A269m m +- B 23m - C 23m + D 2299m m +- 3.化简3222121()11x x x x x x x x --+-÷+++的结果为 .Ax-1 B2x-1 C2x+1 Dx+14.计算11()a a a a -÷-的正确结果是 . A 11a + B1 C 11a - D-1 5.分式方程1212x x =-- . A 无解 B 有解x=1 C 有解x=2 D 有解x=0 6.若分式21x +的值为正整数;则整数x 的值为A0 B1 C0或1 D0或-17.一水池有甲乙两个进水管;若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开;那么注满空池的时间是A11a b + B 1ab C 1a b + D ab a b+ 8.汽车从甲地开往乙地;每小时行驶1v km;t 小时可以到达;如果每小时多行驶2v km;那么可以提前到达的小时数为A212v t v v + B 112v t v v + C 1212v vv v + D 1221v t v t v v -9.下列说法:①若a ≠0;m;n 是任意整数;则a m.a n=a m+n; ②若a 是有理数;m;n 是整数;且mn>0;则a mn =a mn ;③若a ≠b 且ab ≠0;则a+b 0=1;④若a 是自然数;则a -3.a 2=a -1.其中;正确的是 .A ①B ①②C ②③④D ①②③④10.张老师和李老师同时从学校出发;步行15千米去县城购买书籍;张老师比李老师每小时多走1千米;结果比李老师早到半小时;两位老师每小时各走多少千米 设李老师每小时走x 千米;依题意;得到的方程是:A1515112x x -=+ B 1515112x x -=+ C 1515112x x -=- D 1515112xx -=- 二、填一填每小题4分;共20分 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3ab 2-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式;从而打开了光谱奥秘的大门;请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =fx;并且f1表示当x=1时y 的值;即f1=2211211=+;f 12表示当x=12时y 的值;即f 12=221()12151()2=+;……那么f1+f2+f 12+f3+f 13+…+fn+f 1n=结果用含n 的代数式表示.三、做一做16.7分先化简;再求值:62393m m m m -÷+--;其中m=-2.17.7分解方程:11115867x x x x +=+++++.18.8分有一道题“先化简;再求值: 2221()244x x x x x -+÷+-- 其中;x=-3”小玲做题时把“x=-3”错抄成了“x=3”;但她的计算结果也是正确的;请你解释这是怎么回事19.9分学校用一笔钱买奖品;若以1支钢笔和2本日记本为一份奖品;则可买60份奖品;若以1支钢笔和3本日记本为一份奖品;则可买50份奖品;问这笔钱全部用来买钢笔或日记本;可买多少20.9分A 、B 两地相距80千米;甲骑车从A 地出发1小时后;乙也从A 地出发;以甲的速度的1.5倍追赶;当乙到达B 地时;甲已先到20分钟;求甲、乙的速度.四、试一试21.10分在数学活动中;小明为了求2341111122222n+++++的值结果用n 表示;设计如图1所示的几何图形.1请你利用这个几何图形求2341111122222n+++++的值为 ; 2请你利用图2;再设计一个能求2341111122222n+++++的值的几何图形.12212图2图1第十七章 反比例函数单元测试题时间90分钟 满分100分班级____________姓名__________________座号____________成绩____________ 一、选择题每题4分;共24分1.下列函数关系式中不是表示反比例函数的是 A .xy=5 B .y=53x C .y=-3x -1 D .y=23x - 2.若函数y=m+1231m m x++是反比例函数;则m 的值为A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=kx-1和函数y=kxk ≠0的图象大致是4.在反比例函数y=-1x的图象上有三点x 1;y 1;x 2;y 2;x 3;y 3;若x 1>x 2>0>x 3;则下列各式正确的是 A .y 3>y 1>y 2 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 1>y 3>y 25.如图所示;A 、C 是函数y=1x的图象上的任意两点;过A 点作AB ⊥x 轴于点B;过C•点作CD ⊥y 轴于点D;记△AOB 的面积为S 1;△COD 的面积为S 2;则A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定 6.如果反比例函数y=kx的图象经过点-4;-5;那么这个函数的解析式为 A .y=-20x B .y=20x C .y=20x D .y=-20x 二、填空题每题5分;共30分 7.已知y=a-122a x-是反比例函数;则a=_____.8.在函数y=25x -+13x -中自变量x 的取值范围是_________.9.反比例函数y=kxk ≠0的图象过点-2;1;则函数的解析式为______;在每一象限内 y 随x 的增大而_________.10.已知函数y=kx的图象经过-1;3点;如果点2;m•也在这个函数图象上;•则m=_____. 11.已知反比例函数y=12mx-的图象上两点A x 1;y 1;Bx 2;y 2;当x 1〈0〈x 2时有y 1〈y 2;则m 的取值范围是________.12.若点A x 1;y 1;Bx 2;y 2在双曲线y=kxk>0上;且x 1>x 2>0;则y 1_______y 2. 三、解答题共46分 13.10分设函数y=m-2255m m x -+;当m 取何值时;它是反比例函数 •它的图象位于哪些象限 求当12≤x ≤2时函数值y 的变化范围. 14.12分已知y =y 1+y 2;y 1与x 成正比例;y 2与x 成反比例;并且当x=-1时;y=-1;•当x=2时;y=5;求y 关于x 的函数关系式.15.10分水池内储水40m3;设放净全池水的时间为T小时;每小时放水量为Wm3;规定放水时间不得超过20小时;求T与W之间的函数关系式;指出是什么函数;并求W的取值范围.16.14分如图所示;点A、B在反比例函数y=kx的图象上;且点A、B•的横坐标分别为a、2aa>0;AC⊥x轴于点C;且△AOC的面积为2.1求该反比例函数的解析式.2若点-a;y1、-2a;y2在该函数的图象上;试比较y1与y2的大小. 3求△AOB的面积.第18章勾股定理单元测试时间:100分钟 总分:120分班级 学号 姓名 得分一、相信你一定能选对每小题4分;共32分1. 三角形的三边长分别为6;8;10;它的最短边上的高为A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7;8;9;②12;9;15;③m 2 + n 2; m 2–n 2; 2mnm ;n 均为正整数;m >n ;④2a ;12+a ;22+a .其中能组成直角三角形的三边长的是 A . ①② B . ②③ C . ①③ D . ③④3. 三角形的三边为a 、b 、c ;由下列条件不能判断它是直角三角形的是A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=b+cb-cD . a :b :c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+;则这个三角形是A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4;则第三边长是 A .5 B .25 C .7 D .5或76.已知Rt △ABC 中;∠C =90°;若a +b =14cm ;c =10cm ;则Rt △ABC 的面积是A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9;另两边为连续自然数;则直角三角形的周长为A .121B .120C .90D .不能确定8. 放学以后;小红和小颖从学校分手;分别沿东南方向和西南方向回家;若小红和小颖行走的速度都是40米/分;小红用15分钟到家;小颖20分钟到家;小红和小颖家的直线距离为 A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗 每小题4分;共32分9. 在△ABC 中;∠C=90°; AB =5;则2AB +2AC +2BC =_______.10. 如图;是2002年8月北京第24届国际数学家大会会标;由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4;那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12;则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数;则这三个数分别为__________.13. 如图;一根树在离地面9米处断裂;树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示;是一个外轮廓为矩形的机器零件平面示意图;根据图中标出尺寸单位:mm 计算两圆孔中心A 和B 的距离为 .15.如图;梯子AB 靠在墙上;梯子的底端A 到墙根O 的距离为2米;梯子的顶端B 到地面的距6012014060BA C 第10题图 第13题图 第14题图 第15题图离为7米.现将梯子的底端A向外移动到A’;使梯子的底端A’到墙根O的距离等于3米;同时梯子的顶端B下降至B’;那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度;他把一根竹竿插到离岸边1.5m远的水底;竹竿高出水面0.5m;把竹竿的顶端拉向岸边;竿顶和岸边的水面刚好相齐;河水的深度为 .三、认真解答;一定要细心哟共72分17.5分右图是由16个边长为1的小正方形拼成的;任意连结这些小正方形的若干个顶点;可得到一些线段;试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.6分已知a、b、c是三角形的三边长;a=2n2+2n;b=2n+1;c=2n2+2n+1n为大于1的自然数;试说明△ABC为直角三角形.19.6分小东拿着一根长竹竿进一个宽为3米的城门;他先横着拿不进去;又竖起来拿;结果竿比城门高1米;当他把竿斜着时;两端刚好顶着城门的对角;问竿长多少米20.6分如图所示;某人到岛上去探宝;从A处登陆后先往东走4km;又往北走1.5km;遇到障碍后又往西走2km;再折回向北走到4.5km处往东一拐;仅走0.5km就找到宝藏..问登陆点A与宝藏埋藏点B之间的距离是多少AB41.524.50.521.7分如图;将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中;求细木棒露在盒外面的最短长度是多少22.8分印度数学家什迦逻1141年-1225“平平湖水清可鉴;面上半尺生红莲; 出泥不染亭亭立;忽被强风吹一边;渔人观看忙向前;花离原位二尺远; 能算诸君请解题;湖水如何知深浅 ” 请用学过的数学知识回答这个问题. 23.8分如图;甲乙两船从港口A 同时出发;甲船以16海里/时速度向北偏东40°航行;乙船向南偏东50°航行;3小时后;甲船到达C 岛;乙船到达B 岛.若C 、B 两岛相距60海里;问乙船的航速是多少24.10分如图;有一个直角三角形纸片;两直角边AC =6cm ;BC =8cm ;现将直角边AC 沿 ∠CAB 的角平分线AD 折叠;使它落在斜边AB 上;且与AE 重合;你能求出CD 的长吗25.10分如图;铁路上A 、B 两点相距25km ; C 、D 为两村庄;若DA =10km ;CB =15km ;DA ⊥AB 于A ;CB ⊥AB 于B ;现要在AB 上建一个中转站E ;使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处26.10分如图;一个牧童在小河的南4km 的A 处牧马;而他正位于他的小屋B 的西8km 北7km处;他想把他的马牵到小河边去饮水;然后回家.他要完成这件事情所走的最短路程是多少时间90分钟 满分100分小河A B班级 学号 姓名 得分一、选择题每小题3分;共24分1.在平行四边形ABCD 中;∠B =110°;延长AD 至F ; 延长CD 至E ;连结EF ;则∠E +∠F = A .110°B .30°C .50°D .70°2.菱形具有而矩形不具有的性质是 A .对角相等B .四边相等C .对角线互相平分D .四角相等3.如图;平行四边形ABCD 中;对角线AC 、BD 交于点O;点E 是BC 的中点.若OE =3 cm ;则AB 的长为 A .3 cm B .6 cm C .9 cm D .12 cm 4.已知:如图;在矩形ABCD 中;E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2;AD =4;则图中阴影部分的面积为A .8B .6C .4D .35.用两块全等的含有30°角的三角板拼成形状不同的平行四边形;最多可以拼成 A .1个B .2个C .3个D .4个6.如图是一块电脑主板的示意图;每一转角处都是直角;数据如图所示单位:mm ;则该主板的周长是 A .88 mm B .96 mm C .80 mmD .84 mm7.如图;平行四边形ABCD 中;对角线AC 、BD 相交于点O ;E 、F 是AC 上的两点;当E 、F 满足下列哪个条件时;四边形DEBF 不一定是平行四边形 A .∠ADE =∠CBF B .∠ABE =∠CDF C .OE =OFD .DE =BF8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49;小正方形的面积为4;若用x 、y 表示小矩形的两边长x >y ;请观察图案;指出以下关系式中不正确的是A .7=+y xB .2=-y x第7题第6题C .4944=+xyD .2522=+y x二、填空题每小题4分;共24分9.若四边形ABCD 是平行四边形;请补充条件 写一个即可;使四边形ABCD 是菱形.10.如图;在平行四边形ABCD 中;已知对角线AC 和BD 相交于点O ;△ABO 的周长为15;AB =6;那么对角线AC +BD = 11.如图;延长正方形ABCD 的边AB 到E ;使BE =AC ;则∠E= °.12.已知菱形ABCD 的边长为6;∠A =60°;如果点P 是菱形内一点;且PB =PD =32;那么AP 的长为 .13.在平面直角坐标系中;点A 、B 、C 的坐标分别是A -2;5;B -3;-1;C1;-1;在第一象限内找一点D ;使四边形ABCD 是平行四边形;那么 点D 的坐标是 .14.如图;四边形ABCD 的两条对角线AC 、BD 互相垂直;A 1B 1C 1D 1是中点四边形.如果AC =3;BD =4; 那么A 1B 1C 1D 1的面积为 三、解答题52分15.8分如图;在矩形ABCD 中;AE 平分∠BAD ;∠1=15°.1求∠2的度数.2求证:BO =BE .16.8分已知:如图;D 是△ABC 的边BC 上的中点;DE ⊥AC ;DF ⊥AB ;垂足分别为E 、F ;且BF =CE .当∠A 满足什么条件时;四边形AFDE 是正方形 请证明你的结论.第14题第10题 第11题17.8分如图;在平行四边形ABCD中;O是对角线AC的中点;过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.18.8分已知:如图;在正方形ABCD中;AC、BD交于点O;延长CB到点F;使BF=BC;连结DF交AB于E.求证:OE=BF在括号中填人一个适当的常数;再证明.19.8分在一次数学探究活动中;小强用两条直线把平行四边形ABCD分割成四个部分;使含有一组对顶角的两个图形全等.1根据小强的分割方法;你认为把平行四边形分割成满足以上全等关系的直线有组.2请在下图的三个平行四边形中画出满足小强分割方法的直线.3由上述实验操作过程;你发现所画的两条直线有什么规律20.12分已知:如图;在△ABC中;AB=AC;若将△ABC绕点C顺时针旋转180°得到△FEC.1试猜想线段AE与BF有何关系说明理由.2若△ABC的面积为3cm2;请求四边形ABFE的面积.3当∠ACB为多少度时;四边形ABFE为矩形说明理由.第二十章数据分析单元测试班级____________姓名____________学号____________成绩______一、填空题每空4分;共32分1.对于数据组3;3;2;3;6;3;6;3;2中;众数是_______;平均数是______;•极差是_______;中位数是______.2.数据3;5;4;2;5;1;3;1的方差是________.3.某学生7门学科考试成绩的总分是560分;其中3门学科的总分是234分;则另外4门学科成绩的平均分是_________.4.在n个数中;若x1出现f1次;x2出现f2次;…x k出现f k次;且f1+f2+…+f k=n;则它的加权平均数x=________略.5.一组数据同时减去80;实得新的一组数据的平均数为 2.3;•那么原数据的平均数为__________.二、选择题每题5分;共20分6.已知样本数据为5;6;7;8;9;则它的方差为.A.10 B.2 D7.8个数的平均数12;4个数的平均为18;则这12个数的平均数为.A.12 B.18 C.14 D.128.甲、乙两个样本的容量相同;甲样本的方差为0.102;乙样本的方差是0.06;那么.A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲、乙的波动大小一样 D.甲、乙的波动大小无法确定9.在某次数学测验中;随机抽取了10份试卷;其成绩如下:85;81;89;81;72;82;77;81;79;83则这组数据的众数、平均数与中位数分别为.A.81;82;81 B.81;81;76.5C.83;81;77 D.81;81;81三、解答题每题16分;共48分10.某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E月工资元 6000 3500 1500 1500 1500 1100 10001求该公司员工月工资的中位数、众数、平均数;2用平均数还是用中位数和众数描述该公司员工月工资的一般水平比较恰当11.为了了解学校开展“尊敬父母;从家务事做起”活动的实施情况;•该校抽取初二年级50名学生;调查他们一周按七天计算的家务所用时间单位:小时;•得到一组数据;并绘制成下表;请根据该表完成下列各题:1填写频率分布表中未完成的部分;2这组数据的中位数落在什么范围内;3由以上信息判断;每周做家务的时间不超过1.5小时的学生所占的百分比.12.小红的奶奶开了一个金键牛奶销售店;主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”;可奶奶经营不善;经常有品种的牛奶滞销没卖完或脱销量不够;造成了浪费或亏损;细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况;并绘制了下表:1计算各品种牛奶的日平均销售量;并说明哪种牛奶销量最高2计算各品种牛奶的方差保留两位小数;并比较哪种牛奶销量最稳定3假如你是小红;你会对奶奶有哪些好的建议.附加题10分下图是某篮球队队员年龄结构直方图;根据图中信息解答下列问题: 1该队队员年龄的平均数;2该队队员年龄的众数和中位数.八年级下期期中数学综合测试时间:120分钟 总分:120分班级 学号 姓名 得分一、选择题每小题3分;共30分1. 在式子a 1;π xy 2;2334a b c ;x + 65; 7x +8y ;9 x +y 10 ;x x 2 中;分式的个数是A .5B .4C .3D .2 2. 下列各式;正确的是A .1)()(22=--a b b a B .ba b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2 3. 下列关于分式的判断;正确的是A .当x =2时;21-+x x 的值为零 B .无论x 为何值;132+x 的值总为正数 C .无论x 为何值;13+x 不可能得整数值 D .当x ≠3时;xx 3-有意义4. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍;那么分式的值将是原分式值的A .2倍B .4倍C .一半D .不变 5. 下列三角形中是直角三角形的是A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9、40、41D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12-m ;m 2;12+m ;其中m 为大于1的正整数;则 A .△ABC 是直角三角形;且斜边为12-m ;B .△ABC 是直角三角形;且斜边为m 2 C .△ABC 是直角三角形;且斜边为12+m ; D .△ABC 不是直角三角形 7.直角三角形有一条直角边为6;另两条边长是连续偶数;则该三角形周长为 A. 20 B . 22 C . 24 D . 26 8.已知函数xky =的图象经过点2;3;下列说法正确的是 A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时;必有y <0 D.点-2;-3不在此函数的图象上 9.在函数xky =k >0的图象上有三点A 1x 1; y 1 、A 2x 2; y 2、A 3x 3; y 3 ;已知x 1<x 2<0<x 3;则下列各式中;正确的是A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2< y 1<y 3D.y 3<y 1<y 2 10.如图;函数y =kx +1与xky =k <0在同一坐标系中;图象只能是下图中的二、填空题每小题2分;共20分11.不改变分式的值;使分子、分母的第一项系数都是正数;则________=--+-yx yx .12.化简:3286ab a =________; 1111+--x x =___________. 13.已知a 1 -b1 =5;则b ab a b ab a ---2232+ 的值是 .14.正方形的对角线为4;则它的边长AB = .15.如果梯子的底端离建筑物9米;那么15米长的梯子可以到达建筑物的高度是______米. 16.一艘帆船由于风向的原因先向正东方向航行了160km;然后向正北方向航行了120km;这时它离出发点有____________km.17.如下图;已知OA =OB ;那么数轴上点A 所表示的数是____________.18.某食用油生产厂要制造一种容积为5升1升=1立方分米的圆柱形油桶;油桶的底面面积s与桶高h 的函数关系式为 . 19.如果点2;3和-3;a 都在反比例函数xk y = 的图象上;则a = . 20.如图所示;设A 为反比例函数xky =图象上一点;且矩形ABOC 的面积为3;则这个反比例函数解析式为 .三、解答题共70分21.每小题4分;共16分化简下列各式:1422-a a +a -21 . 2)()()(3222a b a b b a -÷-⋅-.ABCD第14题图1-30-1-2-4231BA 第20题图3)252(423--+÷--x x x x . 4y x x - -y x y -2 ·y x xy 2- ÷x 1 +y 1 .22.每小题4分;共8分解下列方程:1223-x +x -11 =3. 2482222-=-+-+x x x x x .23.6分比邻而居的蜗牛神和蚂蚁王相约;第二天上午8时结伴出发;到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训;于是给蚂蚁王留下一纸便条后提前2小时独自先行;蚂蚁王按既定时间出发;结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍;求它们各自的速度.24.6分如图;某人欲横渡一条河;由于水流的影响;实际上岸地点C偏离欲到达地点B相距50米;结果他在水中实际游的路程比河的宽度多10米;求该河的宽度AB为多少米B CA25.6分如图;一个梯子AB长2.5 米;顶端A靠在墙AC上;这时梯子下端B与墙角C距离为1.5米;梯子滑动后停在DE的位置上;测得BD长为0.5米;求梯子顶端A下落了多少米26.8分某空调厂的装配车间原计划用2个月时间每月以30天计算;每天组装150台空调.1从组装空调开始;每天组装的台数m单位:台/天与生产的时间t单位:天之间有怎样的函数关系2由于气温提前升高、厂家决定这批空调提前十天上市;那么装配车间每天至少要组装多少空调27.10分如图;正方形OABC 的面积为9;点O 为坐标原点;点B 在函数xky =k >0;x >0的图象上;点Pm 、n 是函数xky =k >0;x >0的图象上任意一点;过点P 分别作x 轴、y 轴的垂线;垂足分别为E 、F ;并设矩形OEPF 和正方形OABC 不重合部分的面积为S .1求B 点坐标和k 的值;2当S =错误!时;求点P 的坐标;3写出S 关于m 的函数关系式.28.10分如图;要在河边修建一个水泵站;分别向张村A 和李庄B 送水;已知张村A 、李庄B到河边的距离分别为2km 和7km;且张、李二村庄相距13km .1水泵应建在什么地方;可使所用的水管最短 请在图中设计出水泵站的位置;2如果铺设水管的工程费用为每千米1500元;为使铺设水管费用最节省;请求出最节省的铺设水管的费用为多少元AB河边l人教实验版八年级下期末测试题学校______班级_______姓名______得分_________一、选择题每题2分;共24分1、下列各式中;分式的个数有31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223y x y-中的x 和y 都扩大5倍;那么分式的值 A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍3、已知正比例函数y =k 1xk 1≠0与反比例函数y =2k xk 2≠0的图象有一个交点的坐标为 -2;-1;则它的另一个交点的坐标是A. 2;1B. -2;-1C. -2;1D. 2;-1 4、一棵大树在一次强台风中于离地面5米处折断倒下;倒下部分与地面成30°夹角;这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行;并且对角线互相垂直且相等的四边形是A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以x-2; 约去分母;得A .1-1-x=1B .1+1-x=1C .1-1-x=x-2D .1+1-x=x-2 7、如图;正方形网格中的△ABC;若小方格边长为1;则△ABC 是A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上答案都不对第7题 第8题 第9题8、如图;等腰梯形ABCD 中;AB ∥DC;AD=BC=8;AB=10;CD=6;则梯形ABCD 的面积是 A 、1516 B 、516 C 、1532 D 、17169、如图;一次函数与反比例函数的图像相交于A 、B 两点;则图中使反比例函数的值小于一次函数的值的x 的取值范围是A 、x <-1B 、x >2C 、-1<x <0;或x >2D 、x <-1;或0<x <210、在一次科技知识竞赛中;两组学生成绩统计如下表;通过计算可知两组的方差为2S 172甲=;2S 256乙=..下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80;但成绩≥80的人数甲组比乙组多;从中位数来看;甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多;高分段乙组成绩比甲组好..其中正确的共有 .分数 50 60 70 80 90 100 人 数甲组251013146乙组 4 4 16 2 12 12A2种 B3种 C4种 D5种11、小明通常上学时走上坡路;途中平均速度为m 千米/时;放学回家时;沿原路返回;通常的速度为n 千米/时;则小明上学和放学路上的平均速度为 千米/时A B CD A BCAB C DEGA 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园;种植了100棵樱桃树;今年已进入收获期..收获时;从中任选并采樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为A. 2000千克;3000元B. 1900千克;28500元C. 2000千克;30000元D. 1850千克;27750元 二、填空题每题2分;共24分 13、当x 时;分式15x -无意义;当m = 时;分式2(1)(3)32m m m m ---+的值为零 14、各分式121,1,11222++---x x x x x x 的最简公分母是_________________15、已知双曲线xky =经过点-1;3;如果A 11,b a ;B 22,b a 两点在该双曲线上;且1a <2a <0;那么1b 2b .16、梯形ABCD 中;BC AD //;1===AD CD AB ;︒=∠60B 直线MN 为梯形ABCD 的对称轴;P 为MN 上一点;那么PD PC +的最小值 .. 第16题 第17题 第19题17、已知任意直线l 把□ABCD 分成两部分;要使这两部分的面积相等;直线l 所在位置需满足的条件是 _________ 18、如图;把矩形ABCD 沿EF 折叠;使点C 落在点A 处;点D 落在点G 处;若∠CFE=60°;且DE=1;则边BC 的长为 .19、如图;在□ABCD 中;E 、F 分别是边AD 、BC 的中点;AC 分别交BE 、DF 于G 、H;试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ;其中正确的结论是 __ 个 20、点A 是反比例函数图象上一点;它到原点的距离为10;到x 轴的距离为8;则此函数表达式可能为_________________A E DH CB F GD21、已知:24111A Bx x x =+--+是一个恒等式;则A =______;B=________.. 22、如图; ΔP 1OA 1 、ΔP 2A 1A 2是等腰直角三角形;点1P 、2P 在函数4(0)y x x=>的图象上;斜边1OA 、12A A 都在x 轴上;则点2A 的坐标是____________.第24题 23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分;第二单元得76分;第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算;那么小林该学期数学书面测验的总评成绩应为_____________分..24、在直线l 上依次摆放着七个正方形如图所示..已知斜放置的三个正方形的面积分别是1、2、3;正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4;则S 1+S 2+S 3+S 4=_______.. 三、解答题共52分25、5分已知实数a 满足a 2+2a -8=0;求22213211143a a a a a a a +-+-⨯+-++的值.26、5分解分式方程:22416222-+=--+x x x x x -27、6分作图题:如图;Rt ΔABC 中;∠ACB=90°;∠CAB=30°;用圆规和直尺作图;用两种方法把它分成两个三角形;且要求其中一个三角形的等腰三角形..保留作图痕迹;不要求写作法和证l321S 4S 3S 2S 1第22题明28、6分如图;已知四边形ABCD 是平行四边形;∠BCD 的平分线CF 交边AB 于F ;∠ADC 的平分线DG 交边AB 于G .. 1求证:AF=GB ;2请你在已知条件的基础上再添加一个条件;使得△EFG 为等腰直角三角形;并说明理由.29、6分张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”;对两位同学进行了辅导;并在辅导期间进行了10次测验;两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次王军 68 80 78 79 81 77 78 84 83 92 张成86807583857779808075利用表中提供的数据;解答下列问题:平均成绩 中位数 众数 王军8079.5AB C ABC1填写完成下表:2张老师从测验成绩记录表中;求得王军 10次测验成绩的方差2S 王=33.2;请你帮助张老师计算张成10次测验成绩的方差2S 张;3请你根据上面的信息;运用所学的统计知识;帮助张老师做出选择;并简要说明理由..30、8分制作一种产品;需先将材料加热达到60℃后;再进行操作.设该材料温度为y ℃;从加热开始计算的时间为x 分钟.据了解;设该材料加热时;温度y 与时间x 成一次函数关系;停止加热进行操作时;温度y 与时间x 成反比例关系如图.已知该材料在操作加工前的温度为15℃;加热5分钟后温度达到60℃.1分别求出将材料加热和停止加热进行操作时;y 与x 的函数关系式;2根据工艺要求;当材料的温度低于15℃时;须停止操作;那么从开始加热到停止操作;共经历了多少时间31、6分甲、乙两个工程队合做一项工程;需要16天完成;现在两队合做9天;甲队因有其他任务调走;乙队再做21天完成任务..甲、乙两队独做各需几天才能完成任务张成 80 80。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级下册数学第十七章单元测试(含答案)

人教版八年级下册数学第十七章单元测试(含答案)

人教版八年级下册数学第十七章单元测试(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a ,b ,斜边为c )与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44a b +的值为( )A .68B .89C .119D .1302.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254 D .743.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为54.如图,点A 表示的实数是( )AB C D5.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .86.△ABC 的三边长a ,b ,c (b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .267.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .1038.如图,在ABC 中,△B =22.5°,△C =45°,若AC =2,则ABC 的面积是( )A 32+B .2C .2D .29.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:△m 为正整数,则3m ,4m ,5m 为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )A .△△△B .△△△△C .△△△D .△△△10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB =2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC =0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )A .1.0 米B .1.2 米C .1.25 米D .1.5 米11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c 2为“整弦数”,则c 不可能为正整数;△若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着直线AD 翻折,得到△AED ,DE交AC 于点G ,连接BE 交AD 于点F .若DG =EG ,AF =4,AB =5,△AEG 的面积为92,则2BD 的值为( )A .13B .12C .11D .10二、填空题(本大题共8小题,每小题3分,共24分)13.无理数可以用数轴上的点表示.如图,数轴上点A 表示的数是______.14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离P A 的长为1尺,将它向前水平推送10尺时,即10P C '=尺,秋千踏板离地的距离P B '就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.15.如图,在Rt ABC △中,9068C AC BC ∠=︒==,,,将ABC 按如图方式折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为________.16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米.17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BE CD,△BCD的面积是8,则BC的长为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C 作CF △AB 交AB 的延长线于点F ,求BF BC值.22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离22121212()()PP x x y y =-+-式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (2,4)、B (﹣3,﹣8),试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为﹣1,试求A 、B 两点间的距离;(3)已知一个三角形各顶点坐标为D (1,6)、E (﹣2,2)、F (4,2),你能判定此三角形的形状吗?说明理由.23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A 、B 两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O 沿北偏东40°的方向向A 地出发,同时,第二艘搜救艇也从港口O 出发,以15海里/时的速度向B 地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD ∠的大小)(2)由于B 地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B 地支援,在从A 地前往到B 地的过程中,与港口O 最近的距离是多少?24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?25.【阅读思考】已知0<x<1分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答(1)AP+PD的最小值为________(2)的最小值,其中x、y为两正数,且x+y=6(3)参考答案1.B2.D3.D4.B5.C6.C7.D8.D9.D10.A11.C12.A13.214.14.515.7 416.817.118.16,63,6519.1620.1021.(1)33.4海里(2)72522.(1)AB=13(2)AB=5(3)△DEF是等腰三角形,23.(1)50度(2)24海里24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.25.5(2)(3)。

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)102151

2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)102151

2022-2023学年全国初中八年级下数学人教版单元测试考试总分:150 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 17 小题 ,每题 5 分 ,共计85分 )1. 已知关于的一元二次方程无实数根,则最大整数值( )A.B.C.D.2. 若方程有两个不相等的实数根,则的值不能是( )A.B.C.D.3. 下列一元二次方程中,有两个相等的实数根的是( )A.B.C.D.4. 已知方程有两个相等实数根,则的值是 A.B.C.或D.或5. 已知,关于х的一元二次方程 则该方程解的情况是( )x +2x−(m−2)=0x 2m −112−cx+4=0x 2c c =10c =5c =−5c =4−8x+16=0x 2−8=0x 2=4(x−2)2−13x−48=0x 2+mx+1=0x 2m ()2−22−21−1+3x+m=0x 2m<0A.)有两个相等的实数根B.(B )有两个不相等的实数根C.)没有实数根 (D )不能确定6. 若关于的一元二次方程有实数根,则的取值范围为( )A.B.且C.D.且7. 若关于的方程有两个不相等的实数根,则满足条件的最小整数的值是( )A.B.C.D.8. 若关于的方程有两个不相等的实数根,则的取值范围是( )A.B.且C.D.且9. 若关于的方程的一个实数根的倒数恰是它本身,则的值是( )A.B.C.或D.x (k −2)−2kx+k =6x 2k k ≥0k ≥0k ≠2k ≥32k ≥32k ≠2x +x−a +=0x 254a −112x m +2x−1=0x 2m m<−1m>−1m≠0m>−1m≥−1m≠0x +(m+1)x+=0x 212m −5212−5212110. 若关于的方程没有实数根,则的值可以是( )A.B.C.D.11. 方程的根的情况是 A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根12. 下列方程没有实数根的是( )A.B.C.D.13. 方程的根的情况是 A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定有没有实数根14. 一元二次方程的根的情况是A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根x +2x−k =0x 2k −2−112+3x+1=0x 2()−2x+1=0x 2−2x =0x 22−x =1x 2=x−1x 2+3x−2=0x 2()2+3x+1=0x 2()15. 抛物线=的图象如图所示,则下列说法中:①=;②;③方程=没有实数根;④(为任意实数),正确的有( )个A.个B.个C.个D.个16. 一元二次方程的实数根的情况是( )A.有两个不相等实数根B.有两个相等的实数根C.没有实数根D.不能确定17. 已知关于 的方程 有实数根,则 的取值范围是( )A.B.C.D.二、 填空题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )18. 关于的一元二次方程=有两个实数根,则的取值范围是________19. 若关于的一元二次方程有两个相等的实数根,则的值是________.20. 若关于的一元二次方程的两实数根同号,则实数的取值范围是y a +bx+c(a ≠0)x 22a +b 03a +2b +c <02a +2bx+2c −5x 20a −b >m(am+b)m 1234−7x−2=0x 2x −2x+k =0x 2k k >1k =1k <1k ≤1x (k +1)−2x+1x 20k x +(2+a)x =0x 2a x +2x−2m+1=0x 2m________.21. 已知关于的一元二次方程有两个实数根,为正整数,且该方程的根都是整数,则符合条件的正整数 的值为________.22. 一元二次方程=的根的判别式是________.23. 关于的一元二次方程的两实数根之积为负,则实数的取值范围是________.24. 关于的方程有两个不相等的实数根,那么的取值范围是________.25. 若关于的一元二次方程 有两个不相等的实数根,则的取值范围是________.26. 已知关于的方程有两个实数根,则实数的取值范围是________.三、 解答题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )27. 关于的方程 其中 的两根为 ,求 的值. 28. 关于的一元二次方程有实数根.求实数的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值. 29. 已知关于的一元二次方程.请说明该一元二次方程一定有两个不相等的实数根;若该方程有一个根为,请求出此方程的另一个根.30. 有甲、乙两位同学,根据“关于的一元二次方程”(为实数)这一已知条件,他们各自提出了一个问题考查对方,问题如下:甲:你能不解方程判断方程实数根的情况吗?乙:若方程有两个不相等的正整数根,你知道整数的值吗?请你帮助两人解决上述问题.x +2x+m−2=0x 2m m a +bx+c x 20(a ≠0)x +2x−2m+1=0x 2m x m −2x+3=0x 2m x +3x−k =0x 2k x +(2k +1)x+=0x 2k 2k x −kx+−=0x 2k 214(k ≠)12,x 1x 2|−|1x 11x 2x −3x+k =0x 2(1)k (2)k (m−1)+x+m−3=0x 2−3x+k =0x 2m x m +(m+3)x+1=0(m≠0)x 2(1)(2)x =1x k −kx−2x+2=0x 2k k参考答案与试题解析2022-2023学年全国初中八年级下数学人教版单元测试一、 选择题 (本题共计 17 小题 ,每题 5 分 ,共计85分 )1.【答案】B【考点】根的判别式【解析】【解答】解:因为一元二次方程无实数根,所以,所以,所以最大整数值为.故选.2.【答案】D【考点】根的判别式【解析】方程有两个不相等的实数根,即,代入即可求的取值范围,从而得出答案.【解答】解:∵方程有两个不相等的实数根,∴ ,即,+2x−(m−2)=0x 2Δ=+4(m−2)=4+4m−8=4m−4<022m<1m 0B −cx+4=0x 2Δ=−4ac >0b 2c −cx+4=0x 2Δ=−4×1×4>0(−c)2>16c 2解得或.故选.3.【答案】A【考点】根的判别式【解析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】解:.∵∴方程有两个相等的实数根,符合题意;.∵∴有两个不相等的实数根,不符合题意;.方程化为∵∴方程有两个不相等的实数根,不符合题意;.∵∴方程有两个不相等的实数根,不符合题意;故选.4.【答案】C【考点】根的判别式【解析】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式的性质是解题关键,利用一元二次方程根的判别式等于,解方程即可求得答案.【解答】解:因为方程有两个相等的实数根,可得判别式,,,解得:.故选.5.c <−4c >4D A Δ=−4×1×16=0(−8)2B Δ=−4×1×(−8)=32>002C −4x =0x 2Δ=−4×1×0=16>0(−4)2D Δ=−4×1×(−48)=361>0(−13)2A 0−4×1×1=0m 2∴−4=0m 2∴=4m 2m=±2CB【考点】根的判别式【解析】由,确定判别式的取值范围,即可得出解的情况.【解答】解:方程有两个不相等的实数根故选:6.【答案】D【考点】根的判别式一元二次方程的定义【解析】分和两种情况考虑,当原方程为一元一次方程时,可求出的值,从而得出符合题意;当原方程为一元二次方程时,利用根的判别式即可得出关于的一元一次不等式,解之即可得出的取值范围.综上即可得出结论.【解答】解:∵关于的一元二次方程有实数根,∴且,解得:且.故选.7.【答案】Dm <0∵m <0∴△=9−4m=9+(−4m)>0∴B 1−k =01−k ≠0x k =1k k x k −2≠0Δ=(−2k −4(k −2)(k −6)≥0)2k ≥32k ≠2D根的判别式【解析】根据根的判别式即可求出的范围.【解答】解:由题意可知:,∴,解得:,故满足条件的最小整数的值是.故选.8.【答案】B【考点】根的判别式【解析】因为关于的一元二次方程=有两个不相等的实数根,所以=,解此不等式即可求出的取值范围.【解答】解:∵关于的方程有两个不相等的实数根,∴,且,即且.故选.9.【答案】C【考点】根的判别式【解析】a Δ>01−4(−a +)>054a >1a 2D x −m x 22x △4+4m>0m x m +2x−1=0x 2Δ=−4×m×(−1)=4+4m>022m≠0m>−1m≠0B解:∵一元二次方程的一个实数根的倒数是它本身,∴该实数可能为或.当时,方程为,解得.当时,方程为,解得.综上,的值为或.故选.10.【答案】A【考点】根的判别式【解析】根据根的判别式即可求出答案.【解答】解:由题意可知:,∴,选项中满足的值为.故选.11.【答案】D【考点】根的判别式【解析】首先求出方程的判别式,然后根据一元二次根与判别式的关系,可以判断方程的根的情况.【解答】解:∵一元二次方程中,,1−1x =11+(m+1)+=012m=−52x =−1(−1−(m+1)+=0)212m=12m −5212C Δ=4+4k <0k <−1k <−1−2A 2+3x+1=0x 2Δ=−4×2×1=1>032∴方程有两个不相等的实数根.故选.12.【答案】D【考点】根的判别式【解析】根据根的判别式的值的大小与零的关系来判断根的情况.没有实数根的一元二次方程,即判别式的值是负数的方程.【解答】解:,,方程有两个相等的实数根,故错误;,,方程有两个不相等的实数根,故错误;,方程整理为,,方程有两个不相等的实数根,故错误;,方程整理为,,方程没有实数根,故正确.故选.13.【答案】A【考点】根的判别式【解析】此题暂无解析【解答】解:∵,∴,∴方程有两个不相等的实数根.故选.14.【答案】DD A Δ=−4×1×1=0(−2)2B Δ=4>0C 2−x−1=0x 2Δ=1+8=9>0D −x+1=0x 2Δ=1−4=−3<0D a =1,b =3,c =−2Δ=−4ac b 2=−4×1×(−2)32=17>0+3x−2=0x 2A【考点】根的判别式【解析】首先求出方程的判别式,然后根据一元二次根与判别式的关系,可以判断方程的根的情况.【解答】解:∵一元二次方程中,,∴方程有两个不相等的实数根.故选.15.【答案】B【考点】抛物线与x 轴的交点二次函数图象与系数的关系根的判别式【解析】利用抛物线的对称轴为直线可对①进行判断;利用=时,,把=代入得到,然后根据可对②进行判断;几何图象,利用抛物线=与直线没有交点可对③进行判断;根据二次函数的性质,根据=时有最大值可对④进行判断.【解答】∵抛物线的对称轴为直线,∴=,即=,所以①错误;∵=时,,∴,∴,即,∵抛物线开口向下,∴,∴,∴,所以②正确;∵抛物线=与直线没有交点,∴方程没有实数解,即方程=没有实数根,所以③正确;2+3x+1=0x 2Δ=−4×2×1=1>032D x =−=−1b 2a x 1a +b +c <0b 2a 3a +c <0b <0y a +bx+c x 2y =52x −1y x =−=−1b 2a b 2a 2a −b 0x 1y <0a +b +c <0a +2a +c <03a +c <0a <0b <03a +2b +c <0y a +bx+c x 2y =52a +bx+c =x 2522a +2bx+2c −5x 20∵=时有最大值,∴(为任意实数),∴,所以④错误.16.【答案】A【考点】根的判别式【解析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵,∴方程有两个不相等的实数根.故选17.【答案】D【考点】根的判别式【解析】本题考查了一元二次方程的判别式.【解答】解:根据题意,因为方程有实数根,所以判别式,解得:.故选.二、 填空题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )18.【答案】x −1y a −b +c ≥a +bm+c m 2m a −b ≥m(am+b)Δ=(−7−4×(−2)=57>0)2A.=−4ac b 2=(−2−4k )2=4−4k ≥0k ≤1D且【考点】根的判别式一元二次方程的定义【解析】根据一元二次方程的定义和判别式的意义得到且=,然后求出两个不等式的公共部分即可.【解答】根据题意得且=,解得且.19.【答案】【考点】根的判别式【解析】根据根的判别式得出==,求出即可.【解答】解:∵关于的一元二次方程有两个相等的实数根,∴,解得:.故答案为:.20.【答案】【考点】根与系数的关系根的判别式【解析】k ≤0k ≠−1k +1≠0△(−2−4(k +1)≥0)2k +1≠0△(−2−4(k +1)≥0)2k ≤0k ≠−1−2△(2+a −4×1×0)20x +(2+a)x =0x 2Δ=(2+a −4×1×0=0)2a =−2−20≤m<12+2x−2m+1=02设、为方程的两个实数根.由方程有实数根以及两根之积为负可得出关于的一元一次不等式组,解不等式组即可得出结论.【解答】解:设,为方程的两个实数根,由已知得:解得:.故答案为:.21.【答案】或【考点】根的判别式【解析】【解答】解:∵,,,关于的一元二次方程有实数根,∴,∴.∵为正整数,且该方程的根都是整数,为整数,∴或.故答案为:或.22.【答案】=【考点】根的判别式【解析】此题暂无解析【解答】此题暂无解答x 1x 2+2x−2m+1=0x 2m x 1x 2+2x−2m+1=0x 2{Δ=−4×(−2m+1)=8m≥0,22−2m+1>0,0≤m<120≤m<1223a =1b =2c =m−2x +2x+m−2=0x 2Δ=−4ac =−4(m−2)=12−4m≥0b 222m≤3m Δ−−√m=2323△−4acb 223.【答案】【考点】根的判别式【解析】【解答】解:∵关于的一元二次方程有两个实数根,∴.∵方程的两个实数根之积为负,根据韦达定理得.可列一元一次不等式组,解①得,解②得.故的取值范围是.故答案为:.24.【答案】且【考点】根的判别式一元二次方程的定义【解析】【解答】解:∵方程有两个实数根,∴方程为一元二次方程,即.又∵有两个不相等的实数根,m>12x Δ=−4ac =−4×1×(−2m+1)=8m>0b 222=−2m+1<0c a {8m>0①,−2m+1<0②,m>0m>12m m>12m>12m<13m≠0m≠0Δ=−4ac =4−12m>02∴,解得.∴的取值范围是且.故答案为:且.25.【答案】【考点】根的判别式【解析】【解答】解:根据题意该一元二次方程有两个不相等的实数根,∴,∴.故答案为:.26.【答案】【考点】根的判别式一元二次方程的解【解析】本题考查了一元二次方程的根的判别式,解题的关键是知道时,一元二次方程有两个实数根,要求学生具备一定的理解能力和计算能力。

人教版八年级数学下册单元测试题全套及参考答案

人教版八年级数学下册单元测试题全套及参考答案

浙教版八年级数学下册单元测试题全套(含答案)第1章 达标检测卷 (满分100分 时间60分钟)一、选择题(每小题4分,共20分) 1.若m -3为二次根式,则m 的取值范围为( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列式子中,二次根式的个数是( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸2)31(-;⑹)1(1>-x x ;⑺322++x x .A .2B .3C .4D .53是同类二次根式的是( )4.下列计算正确的有( )①694)9)(4(=-⋅-=--;②694)9)(4(=⋅=--; ③145454522=-⋅+=-;④145452222=-=-. A .1个 B .2个 C .3个 D .4个5, , 是( )A .①②B .③④C .①③D .①④ 二、填空题(每小题4分,共20分) 6.化简:=<)0(82a b a .7.计算:= . 8.在实数范围内分解因式:=-322x .9.比较大小:--(填“>”“<”或“=” ).10.一个三角形的三边长分别为8,12,18cm cm cm ,则它的周长是 cm. 三、解答题(共60分)11.计算:(每小题5分,共25分) (1)n m 218 (2)232⨯(3))36)(16(3--⋅- (4)33142ab a b • (5)45188125+-+12.(8分)已知一个矩形的长和宽分别是10和22,求这个矩形的面积.13.(8分)的值。

互为相反数,求与已知:b a b a b a •-++-8614.(9分) 已知32-=x ,32+=y ,求代数式22y xy x ++的值.15.(10分)实数p 在数轴上的位置如图,化简()222)1(p p -+- .参考答案一、选择题1.A 2.C 3.D 4.A 5.C 二、填空题 6.b a 22- 7.391948.()()3232-+x x 9.> 10.3225+三、解答题11.(1)n m 23 (2)6 (3)-243(4)222b a (5)258+第2章 达标检测卷 (100分 60分钟 )一、选择题(本大题共9个小题,每小题3分,共27分) 1.下列方程,是关于x 的一元二次方程的是( ). A.23(1)2(1)x x +=+ B.21120x x+-= C.20ax bx c ++= D.2221x x x +=- 2.方程()()24330x x x -+-=的根为( ). A.3x = B.125x =C.12123,5x x =-=D.12123,5x x == 3.解下列方程:(1)()225x -=,(2)2320x x --=,(3)x 2+2x +1=0,较适当的方法分别为( ). A.(1)直接开平法方,(2)因式分解法,(3)配方法 B.(1)因式分解法,(2)公式法,(3)直接开平方法 C.(1)公式法,(2)直接开平方法,(3)因式分解法 D.(1)直接开平方法,(2)公式法,(3)因式分解法 4.方程0322=-+x x 的两根的情况是( ). A.没有实数根 B.有两个不相等的实数根 C.有两个相同的实数根 D.不能确定5.若12+x 与12-x 互为倒数,则实数x 为( ).A.12±B.1±C.2±D.6.如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为( ).A. -1B. 2C.21-D.21+7.若方程0522=+-m x x 有两个相等的实数根,则m =( ). A.2- B. 0 C. 2 D.8138.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,那么根据题意,列出方程为( ).A.(1)1035x x +=B.(1)10352x x -=⨯C.(1)1035x x -=D.2(1)1035x x +=9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程为( ).A.720)21(500=+xB.720)1(5002=+x C.720)1(5002=+x D.500)1(7202=+x二、填空题(本大题共8个小题,每小题3分,共24分) 10.方程2310x x -+=的解是.11.如果二次三项式221)16x m x -++(是一个完全平方式,那么m 的值是_______. 12.如果一元二方程043)222=-++-m x x m (有一个根为0,那么m =. 13.若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为.14是同类二次根式,则x =____________.15.已知方程022=-+kx x 的一个根是1,则另一个根是,k 的值是.16. 若一元二次方程20ax bx c ++=有两根1和-1,则a +b +c =______,a -b +c =_____. 17.若2225120x xy y --=,则xy=____________. 三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1) 26730x x +-=; (2) 22510x x +-=.19.(10分)已知)0(04322≠=-+y y xy x ,求yx yx +-的值.20. (10分)已知关于x 的方程222(1)0x m x m -++=. (1) 当m 取何值时,方程有两个实数根;(2) 为m 选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21. (10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的 是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数, 十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A2.D3.D4.B5.A6.B7.D8.B9.B 二、填空题 10.253± 11.125,3m m =-= 12.2m =- 13.1,6p q =-=- 14. 2或12 15.22,1x k =-= 16. 0,0 17. 4或32-三、解答题 18.[解] (1) 1213,32x x ==-. (2) 12x x ==.19.[解]原方程可变形为:(4)()0+-=x y x y 即(4)0()0+=-=或x y x y ∴4=-=或x y x y 当45443---=-==+-+,x y y y x y x y y y 当0--===++,x y y yx y x y y y20.[解] (1)依题意得:△≥0即 224(1)4+-m m ≥0 整理得:84+m ≥0 解得:当12≥-m .(2) 当4=m 时,原方程可化为:210160-+=x x 解得:122,8==x x .21.(1) 60平方米 4平方米 2017年. (2) 10%22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得, x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章 达标检测卷(时间:90分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A .3B .3.5C .4D .52.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是( )A .方差B .平均数C .中位数D .众数3.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )A.8 B .7 C .9 D .106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )一周内累计的读书时间/时5 8 10 14 人数/个1432A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( ) A .2 2 B .5 C .8 D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.第5组 2≤t <2.5 616.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x 的值为___.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___; (2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人. 20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图; (2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:员工人数 2 4 8 20 8 4月工资(元) 7 000 6 000 4 000 3 500 3 000 2 700(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:甲球员的命中率(%) 87 86 83 85 79乙球员的命中率(%) 87 85 84 80 84(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A 10.B 11. 乙 12.11 13.15314.90 15.2 16.4 17.7 18.nk 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平.22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x 甲=(87+86+83+85+79)÷5=84;x 乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%. (2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x 甲=x 乙,S 甲2>S 乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24. 解:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2) x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人).S A 2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A ,B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3) 由题意得5-x100≤4,解得x ≥100,100-80=20(元).答:门票价格至少应提高20元.第4章 达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD 中,∠A :∠B :∠C=1:2:1,则∠D 等于( ) A .0° B .60° C .120° D .150°2.在平行四边形ABCD 中,对角线AC 、BD 交于点O ,下列式子一定成立的是( ) A .AC ⊥BD B .OA=OC C .AC=BD D .AO=OD3.若点P (a ,2)与Q (-1,b )关于坐标原点对称,则a ,b 分别为( ) A .-1,2 B .1,-2 C .1,2 D .-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是() A .1 B .2 C .3 D .45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有( )A .1个B .2个C .3个D .4个 6.下列图形,既是轴对称图形又是中心对称图形的是( )7.一个多边形的内角和是720°,那么这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形8.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足()A.∠A+∠C=180° B.∠B+∠D=180°C.∠A+∠B=180° D.∠A+∠D=180°9.已知平行四边形 ABCD的周长为30cm,AB:BC=2:3,则AB的长为()A.6cm B.9cm C.12cm D.18cm10.如图,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数是()A.7 B.8 C.9 D.11O二、填空题(每小题4分,共40分)11.在四边形ABCD中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________.13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E,F是平行四边形ABCD对角线BD上的两点,请你添加一个条件,使四边形AECF•也是平行四边形.你添加的条件是:___________.15.如图,在平行四边形ABCD中,∠A的平分线交BC于点E.若AB=10cm,CD=14cm,则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________.18.在平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是_______.19.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1 A1、 A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数是.20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y 轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题(共50分)21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22. (8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23. (10分) 如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE = BF.请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________; ⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24. (12分) 如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.25. (14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。

人教版八年级数学下册全册单元测试卷及答案

人教版八年级数学下册全册单元测试卷及答案

《第十六章 二次根式》测试卷(A 卷)(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 43.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 4..计算的结果是( ) A. 6 B.C. 2D.5.下列计算正确的是( ) A. 2×3=6B.+=C. 5﹣2=3D.÷=6.下列二次根式,不能与合并的是( )A. B. C. D.7.化简的结果是( ).A. B. C. D.8.计算25)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 982 ) 16410a b+(a >0,b >0),分别作了如下变形:甲:()()()()==a b a ba ba b a ba ba b----++-乙:()()==a ba ba ba b a ba b-+--++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 12.=____=.13.13.13.已知32,32x y =+=-,则33_________x y xy +=.14.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____.15.化简:(1)______;(2)______;(3)______.16.计算: ()3327+=________.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.18.计算()2252-的结果是________.19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a b a b +-,如3※2=3232+-=5.那么12※4=____. 三、解答题(共60分) 21.(15分).计算与化简(1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 【答案】B【解析】∵二次根式1x -有意义,∴x ﹣1≥0,解得:x ≥1.故选B . 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 4 【答案】B 【解析】=.故选B.3.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 【答案】C4..计算的结果是()A. 6B.C. 2D.【答案】D【解析】.故选D.5.下列计算正确的是()A. 2×3=6B. +=C. 5﹣2=3D. ÷=【答案】D【解析】根据二次根式的性质和运算,可知×3=18,故不正确;根据最简二次根式和同类二次根式,可知+不能计算,故不正确;根据最简二次根式和同类二次根式,可知5﹣2不能计算,故不正确;根据二次根式的除法和化简,可知÷=,故正确.故选:D. 学6.下列二次根式,不能与合并的是( )A. B. C. D.【答案】B7.化简的结果是( ).A. B. C. D.【答案】A【解析】原式=,故选A.825)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 【答案】B ()22555-==.故答案为:5.982 ) 164【答案】C82164==. 故选C.10a b+(a >0,b >0),分别作了如下变形:甲:()()()=a b a ba b a ba ba b-++-乙:=a ba ba b a ba b++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 【答案】D二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 【答案】【解析】根据=a ,可知a , 故2019=;2x =. 故答案为:;12.=____=.【答案】|a|【解析】由二次根式的性质得=|a|=.故答案为:|a| 学 13.13.13.已知32,32x y ==33_________x y xy +=.【答案】1014.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____. 【答案】 1 1【解析】最简二次根式125a a ++与34b a +是同类二次根式, ∴12{2534a a b a +=+=+,解得1{1.a b == 故答案为:1,1. 15.化简:(1)______;(2) ______;(3)______.【答案】 42 0.45【解析】原式原式原式故答案为:(1). 42 (2). 0.45 (3).16.计算: ()3327+=________.【答案】12 【解析】原式()33333433412.=+=⨯=⨯=故答案为:12.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.【答案】-3b【解析】由数轴知:c<a<0<b , ∴a+c<0,c-b<0,a-2b<0,∴原式=|a+c|-|c -b|-|a -2b|=(-a-c )-(b-c )-(2b-a )=-a-c-b+c-2b+a=-3b , 故答案为:-3b. 18.计算()2252-的结果是________.【答案】22﹣410 【解析】原式()()22252252220410222410.=-⨯⨯+=-+=-故答案为: 22410.-19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______. 【答案】3所以m =5.49 3.m +== 故答案为:3.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a b +,如32+5那么12※4=____. 【答案】12【解析】根据题意可得: 1241641124.124882+====-※故答案为: 1.2三、解答题(共60分) 21.(15分).计算与化简 (1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 【答案】(1)10-5(2)3314(3)5-2【解析】22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 【答案】当x ≥-23且x ≠-1时,1132+++x x 在实数范围内有意义.【解析】考点:1、二次根式有意义的条件;2、分式有意义的条件. 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 【答案】1. 【解析】试题分析:先把原式y 2-4y+4写成(y-2)2的形式,x y -(y-2)2=00x y -=,(y-2)2=0,从而求出x 、y 的值,再求yx 11+的值就容易了. 2440x y y y --+= x y -(y-2)2=00x y -=,(y-2)2=0, ∴x=2,y=2 ∴1111122x y +=+=. 考点:1.偶次方;2.算术平方根;3.二次根式. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.【答案】7【解析】考点:1、二次根式有意义的条件;2、算术平方根. 25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 【答案】(1)255x(2)x=20,周长25 【解析】试题分析:(1)将三边相加即可;(2)去x=20,答案不唯一,符合题意即可. 试题解析:(1)周长1545205245x x x=2552555xx x x =++.(2)当x=20时,周长=22055⨯=25.(答案不唯一,符合题意即可) 学考点:二次根式的加减.26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 【答案】(1)x=4,y=3;(2)5 【解析】试题分析:(1)根据同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式,即可列出关于x 、y 的方程组,再解出即可;考点:1.同类二次根式;2.二次根式的计算 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++【答案】(111n n n n=+++;(2)2311;(3101.【解析】试题分析:根据观察,可得规律,根据规律,可得答案. 试题解析:(1)写出第n 11n n n n=+++(2)原式121123111211==+(3)原式213243109101⋅⋅⋅+考点:1.探索规律题(数字的变化类);2.分母有理化.第十七章一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.新人教版八年级下册第18章 平行四边形单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).1S 2S 第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12 BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,3602.2,223.84.四边形ABCD是菱形或四条边都相等或四边形ABCD是正方形等5.56.207.一组邻边相等或对角线互相垂直8.24+4 29.510.41511.6,7512.②13.120 14.1 12n-⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D三、解答题19.∠DAE=20°20.略21.14cm或16cm22.略23.2601块24.略25.(1)OE=OF;(2)当点O运动到AC的中点时,四边形AECF•是矩形26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF是矩形;(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y=1x-3+x-1的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0(第3题)4.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t/s123 4下落高度h/m5204580则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4至8 s内甲的速度都大于乙的速度(第9题)10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x 的函数图象大致为()(第10题)二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a+b=________.16.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑的全程为________m.(第16题)17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x轴上存在点P,使点P到A,B两点的距离之和最小,则点P的坐标为__________.(第18题)三、解答题(19~21题10分,其余每题12分,共66分)19.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?(第19题)20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.(第21题)22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?(第22题)23.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲,乙两个仓库分别可运出80 t和100 t有机化肥;A,B两个果园分别需要110 t和70 t有机化肥,两个仓库到A,B两个果园的路程如下表:路程/ km甲仓库乙仓库A果园15 25B果园2020设甲仓库运往A果园x t有机化肥,若汽车每吨每千米的运费为2元.(1)根据题意,填写下表:运量/t 运费/元甲仓库乙仓库甲仓库乙仓库A果园x 110-x 2×15x 2×25(110-x)B果园(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省.最省的总运费是多少元?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.B7.B8.C 点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12. ∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1.9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.1616.2 200 点拨:设小明的速度为a m/s ,小刚的速度为b m/s ,由题意得⎩⎨⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎨⎧a =2,b =4.故这次越野跑的全程为1 600+300×2=2 200(m).17.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧,∴图象过第一、二、四象限.∴图象与y 轴的交点在正半轴上,故1-m >0,解得m <1.∴m 的取值范围是m <-2.18.(-1,0) 点拨:如图,∵B (-2,1),∴点B 关于x 轴的对称点B ′的坐标为(-2,-1).作直线AB ′,与x 轴交于点P ,此时点P 即为所求.(第18题)设直线AB ′对应的函数解析式为y =kx +b ,∵A (2,3),B ′(-2,-1),∴⎩⎨⎧2k +b =3,-2k +b =-1,解得⎩⎨⎧k =1,b =1.∴直线AB ′对应的函数解析式为y =x +1.当y =0时,x =-1,∴点P 的坐标为(-1,0).三、19.解:(1)由图象可知,对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①由函数图象可知,当t =0.7 s 时,h =0.5 m ,它的实际意义是秋千摆动0.7 s 时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2, 解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2.(1)把x =-2代入y =-2x +2,得y =6;把x =3代入y =-2x +2,得y =-4.∴y 的取值范围是-4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n =-2m +2.∵m -n =4,∴m -(-2m +2)=4,解得m =2.∴n =-2.∴点P 的坐标为(2,-2).21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内,∴S =12OA ·BC =12×6y =3y .∵x +y =8,∴y =8-x.∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.(第21题)22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2).(3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元.23.解:(1)80-x ;x -10;2×20(80-x );2×20(x -10)(2)y =2×15x +2×25(110-x )+2×20(80-x )+2×20(x -10),即y =-20x +8 300.在一次函数y =-20x +8 300中,∵-20<0,且10≤x ≤80,∴当x =80时,y 最小=6 700.答:当甲仓库运往A 果园80 t 有机化肥时,总运费最省,最省的总运费是6 700元.24.解:(1)当1≤x ≤8,x 取整数时,每平方米的售价应为y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,每平方米的售价应为y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x≤8,x 取整数),50x +3 600(9≤x≤23,x 取整数). (2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2).按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =485 760-a (元),按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1>W 2时,即485 760-a >475 200,解得a <10 560;当W 1<W 2时,即485 760-a <475 200,解得a >10 560.∴当0<a <10 560时,方案二更合算;当a =10 560时,两种方案一样合算;当a >10 560时,方案一更合算.第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( C)A.220 B.218 C.216 D.2092.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( C)尺码(cm)2222.52323.52424.525销售量(双)4661021 1A.平均数 B.中位数 C.众数 D.方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是( D) A.甲 B.乙 C.丙 D.丁4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( A)成绩(分)272830人数23 1A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,55.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d +9,e+2的平均数是( C)A.x-1 B.x+3 C.x+10 D.x+126.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是( A)A.33 ℃,33 ℃ B.33 ℃,32 ℃C.34 ℃,33 ℃ D.35 ℃,33 ℃7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是( C) A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( B) A.0 B.1 C.2 D.49.下列说法正确的是( C)A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0 D.一组数据的方差是这组数据的平均数的平方10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C)A.2.25 B.2.5 C.2.95 D.3,第10题图),第15题图)二、填空题(每小题3分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分. 12.已知一组数据0,2,x ,4,5的众数是4,那么这组数据中位数是__4__.13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)14.一组数据3,5,a ,4,3的平均数是4,这组数据的方差为__0.8__.15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s 12,s 22,根据图中的信息判断两人方差的大小关系为__s 12<s 22__.16.甲、乙两人各射击5次,成绩统计表如下:环数(甲) 6 7 8 9 10次数 1 1 1 1 1环数(乙) 6 7 8 9 10次数 0 2 2 0 1那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”)17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.18.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.三、解答题(共66分)19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A __.A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情年收入(万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1(1)(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲 1 1 0 2 1 3 2 1 1 0 乙 0 2 2 0 3 1 0 1 3 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x 甲=1.2(个),x 乙=1.3(个);s 甲2=0.76,s 乙2=1.21 (2)由(1)知x 甲<x 乙,。

最新人教版八年级数学下册单元测试题全套及答案(20201204183741)

最新人教版八年级数学下册单元测试题全套及答案(20201204183741)


D ,使
CD

1 3BD
,连接
DM , DN , MN. 若 AB = 6, 则 DN = __3__.
18. (2016 ·玉林 )如图 ,已知正方形 ABCD 边长为 1, ∠ EAF =45° , AE =AF , 则有
下列结论: ①∠ 1=∠ 2= 22.5°;②点 C 到 EF 的距离是 2- 1;③△ ECF 的周长为 2;④
,第 8 题图 )
,第 9 题图 )
9.如图 , 平行四边形 ABCD 的周长是 26 cm,对角线 AC 与 BD 交于点 O,AC ⊥ AB ,
E 是 BC 中点 , △ AOD 的周长比△ AOB 的周长多 3 cm, 则 AE 的长度为 ( B )
A . 3 cm B .4 cm C.5 cm D. 8 cm
3 5. ( 2016·眉山 )随着智能手机的普及 ,抢微信红包成为了春节期间人们最喜欢的活动 之一.某中学九年级 (5)班班长对全班 50 名学生在春节期间所抢的红包金额进行统计 ,并绘 制成了统计图.根据如图提供的信息 , 红包金额的众数和中位数分别是 ( C ) A . 20, 20 B .30, 20 C. 30,30 D. 20, 30
一、选择题 (每小题 3 分 , 共 30 分 ) 1. (2016·临夏州 )下列根式中是最简二次根式的是 ( B )
2 A. 3 B. 3 C. 9 D. 12 2. 下列各组数中 ,能构成直角三角形的是 ( B ) A . 4, 5, 6 B .1, 1, 2 C. 6, 8, 11 D .5, 12,23 3. (2016·黄冈 )在函数 y= xx+4中 , 自变量 x 的取值范围是 ( C ) A . x> 0 B. x≥- 4 C.x≥- 4 且 x≠ 0 D. x> 0 且 x≠- 1 4. (2016·来宾 )下列计算正确的是 ( B ) A. 5- 3= 2 B . 3 5× 2 3=6 15 C. (2 2)2= 16 D. 3 = 1

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

(精品)最新人教版八年级数学下册单元测试题全套及答案

(精品)最新人教版八年级数学下册单元测试题全套及答案

最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分) 1.二次根式2-x 有意义,则x 的取值范围是(D) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2016·自贡)下列根式中,不是最简二次根式的是(B)A.10B.8C. 6D. 2 3.下列计算结果正确的是(D)A.3+4=7 B .35-5=3 C.2×5=10 D.18÷2=3 4.如果a +a 2-6a +9=3成立,那么实数ɑ的取值范围是(B)A .a ≤0B .a ≤3C .a ≥-3D .a ≥3 5.估计32×12+20的运算结果应在(C)A .6到7之间B .7到8之间C .8到9之间D .9到10之间6.12x 4x +6xx9-4x x 的值一定是(B ) A .正数B .非正数C .非负数D .负数7.化简9x 2-6x +1-(3x -5)2,结果是(D )A .6x -6B .-6x +6C .-4D .4 8.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是(D )A .k <m =nB .m =n >kC .m <n <kD .m <k <n9.下列选项错误的是(C)A.3-2的倒数是3+ 2B.x 2-x 一定是非负数C .若x <2,则(x -1)2=1-xD .当x <0时,-2x 在实数范围内有意义10.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为(A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分) 11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__.12.计算:(1)(2016·潍坊)3(3+27)=__12__;(2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m-3)2__.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x=__22__.18.若xy>0,则化简二次根式x-yx2的结果为__--y__.三、解答题(共66分) 19.(12分)计算:(1)48÷3-12×12+24;(2)(318+1672-418)÷42;解:(1)4+ 6 (2)9 4(3)(2-3)98(2+3)99-2|-32|-(2)0.解:120.(5分)解方程:(3+1)(3-1)x=72-18.解:x=32 221.(10分)(1)已知x=5-12,y=5+12,求yx+xy的值;解:∵x+y=252=5,xy=5-14=1,∴yx+xy=y2+x2xy=(x+y)2-2xyxy=(5)2-2×11=3(2)已知x,y是实数,且y<x-2+2-x+14,化简:y2-4y+4-(x-2+2)2.解:由已知得x-2≥0,2-x≥0,∴x=2,∴y<x-2+2-x+14=14,即y<14<2,则y-2<0,∴y2-4y+4-(x-2+2)2=(y-2)2-(2-2+2)2=|y-2|-(2)2=2-y-2=-y22.(10分)先化简,再求值:(1)[x+2x(x-1)-1x-1]·xx-1,其中x=2+1;解:原式=2(x-1)2,将x=2+1代入得,原式=1(2)a2-1a-1-a2+2a+1a2+a-1a,其中a=-1- 3.解:∵a+1=-3<0,∴原式=a+1+a+1a(a+1)-1a=a+1=-323.(7分)先化简,再求值:2a-a2-4a+4,其中a= 3.小刚的解法如下:2a-a2-4a+4=2a-(a-2)2=2a-(a-2)=2a-a+2=a+2,当a=3时,2a-a2-4a+4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a-a2-4a+4=2a-(a-2)2=2a-|a-2|.当a=3时,a-2=3-2<0,∴原式=2a+a-2=3a-2=33-224.(10分)已知长方形的长a=1232,宽b=1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a+b)=2×(1232+1318)=62,∴长方形周长为62(2)4×ab=4×1 232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程:223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23;338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38.(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415(2)nnn2-1=n+nn2-1,证明:nnn2-1=n3n2-1=n3-n+n n2-1=n(n2-1)+nn2-1=n+nn2-1第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为(B)A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是(D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是(C) A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(D)A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为 2.5,则ab 的值是(D)A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是(A)A.2 3 B.2 C.4 3 D.4,第7题图),第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是(C)A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面 2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为(B)A.132B.312C.3+192D.27二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB的长为__5__.13.三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB为半径画弧交x轴正半轴于点C,则点C的坐标为__(4,0)__.,第14题图),第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔 6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=__2018__.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为__13或5__.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB 于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226(cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y 轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB 的延长线于点 D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;解:(1)先证△DBM≌△PCM,从中可得BD=PC=2-m,则AD=2-m+2=4-m,∴点D的坐标为(-2,4-m)(2)分两种情况:①当AP=AD时,AP2=AD2,∴22+m2=(4-m)2,解得m=32;②当AP=PD时,过点P作PH⊥AD于点H,∴AH=12AD,∵AH=OP,∴OP=12AD,∴m=12(4-m),∴m=43,综上可得,m的值为32或43第十八章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是(B)A.30°B.45°C.60°D.75°2.(2016·株洲)如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是(D)A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE,第2题图),第3题图),第6题图)3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为(D)A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是(D)A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是(C)A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为(C)A.20°B.25°C.30°D.35°7.(2016·菏泽)在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下结论正确的有(B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE =6,∠EFB′=60°,则矩形ABCD的面积是(D)A.12 B.24 C.12 3 D.16 3,第8题图),第9题图),第10题图)9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B. 2 C.4-2 2 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF,其中正确的结论是(B)A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共24分)11.如图,在?ABCD中,AB=5,AC=6,当BD=__8__时,四边形ABCD是菱形.,第11题图),第12题图),第14题图)12.(2016·江西)如图,在?ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A=∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.14.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=14CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图),第16题图),第17题图),第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.(2016·天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于__89__.三、解答题(共66分) 19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形(2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)(2016·宿迁)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)(2016·南通)如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,∴△BEF≌△CDF(ASA)(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形22.(9分)如图,在?ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.解:(1)由SAS证△ABE≌△CDF即可(2)连接CE,AF,AC.∵四边形AECF是矩形,∴AC=EF,∴BD-ACBE=BD-EFBE=BE+DFBE=2BEBE=223.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF是正方形,并说明理由.解:(1)由SAS可证(2)理由:∵AB∶AD=1∶2,∴AB=12AD,∵AM=12AD,∴AB11。

人教版八年级数学下册全册单元测试卷(AB卷共10份及答案)【新版】

人教版八年级数学下册全册单元测试卷(AB卷共10份及答案)【新版】

新人教版八年级下册第16章 二次根式单元测试试卷(A 卷)一、认真填一填:(每小题4分,共40分)1、 函数y =的自变量x 的取值范围为2 =3、已知a =,则代数式21a -的值为4n 的最小值为5、在实数范围内分解因式:226x - =6、已知x , y 23(2)0y -= 的值为7、已知2a =-,则代数式242a a --的值为8、若1m = ,则m 的取值范围是9、如果矩形长为cm ,则这个矩形的对角线长为________10、观察下列各式:....请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .二、精心选一选:(每小题4分,共24分)11、下列计算错误..的是 ( )A =C =D 、3=12、下列二次根式中属于最简二次根式的是( )AC 13、小明的作业本上有以下四题:24a =; =;③===做错的题是( )A 、①B 、②C 、③D 、④14、下列根式中,与 是同类二次根式的是( )A B C D15=-成立,则 a , b 满足的条件是( )A 、a <0 , 且b >0B 、a ≤0 且b ≥0C 、a <0 且 b ≥0D 、a 、b 异号16、化简(a -的结果是( )AC 、、三、细心算一算:(共56分)17、(8分)计算:18、(8分)计算:x x xx 1246932-+19、(10分)计算:20、(10分)计算:)4831375(12-+21、(10分)21)2)+22、(10分)如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .四、用心想一想:(共30分)23、(10分)如图,已知ΔABC 是边长为1的等腰直角三角形,以Rt ΔABC 的斜边AC 为直角边,画第二个等腰Rt ΔACD ,再以Rt ΔACD 的斜边AD 为直角边,画第三个等腰Rt ΔADE ,……如此类推.求AC 、AD 、AE 的长;求第n 个等腰直角三角形的斜边长.24、(10分)若 a, b 为实数,21473a b b =-+-+ ,求 2()a b -C DE FGB A25、(10分)阅读下列材料,然后回答问题.,32,132+一样的式子,其实我们还可以将其进一步化简:5535553=⨯⨯;(一)32=363332=⨯⨯(二)132+=))(()-(1313132-+⨯=131313222---=)()((三)以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:132+=131313131313131322-+-++-+-=))((=)(=(四)请用不同的方法化简352+.(1)参照(三)式得352+=______________________________________________;(2)参照(四)式得352+=_________________________________________。

最新人教版八年级数学下册单元测试题及答案全册

最新人教版八年级数学下册单元测试题及答案全册

最新人教版八年级数学下册单元测试题及答案全册含期末试题第十六章达标检测卷一、选择题(每题3分,共30分)1.要使二次根式x -3有意义,x 必须满足( ) A .x ≤3 B .x ≥3 C .x >3 D .x <3 2.下列二次根式中,不能与2合并的是( ) A .12B .8C .12D .18 3.下列二次根式中,最简二次根式是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.下列计算正确的是( )A .53-23=2B .22×32=6 2C .3+23=3D .33÷3=3 5.下列各式中,一定成立的是( )A .(-2.5)2=( 2.5)2 C .x 2-2x +1=x -1 D 6.若k ,m ,n ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n 7.计算912÷5412×36的结果为( ) A .312 B .36 C .33 D .3348.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形9.已知x ,y 为实数,且3x +4+y 2-6y +9=0.若axy -3x =y ,则实数a 的值为( ) A .14 B .-14 C .74 D .-7410.已知实数x ,y 满足:y =x 2-16+16-x 2+24x -4,则xy +13的值为( )A .0B .37C .13D .5二、填空题(每题3分,共30分) 11.计算:24-323=________.12.若最简二次根式3a -1与2a +3可以合并,则a 的值为________. 13.已知x -1x =6,则x 2+1x2=________.14.当x =5-1时,代数式x 2+2x +3的值是________.15.有一个密码系统,其原理如图所示,当输出的值为3时,则输入的x =________.输入x →x +26→ 输出 (第15题)16.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.17.实数a 在数轴上的位置如图,化简|a -1|+(a -2)2=________.(第17题)18.若实数m 满足(m -2)2=m +1,且0<m <3,则m 的值为________. 19.若xy >0,则二次根式x-yx2化简的结果为________. 20.若x +y =5+3,xy =15-3,则x +y =________.三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:(1)312-248+8; (2)⎝⎛⎭⎫13+27×3;(3)48÷3-215×30+(22+3)2;(4)(2-3)2 017(2+3)2 018-|-3|-(-2)0.22.先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =5+2,b =5-2.23.已知a ,b ,c 是△ABC 的三边长,化简:(a +b +c )2-(b +c -a )2+(c -b -a )2.24.已知a +b =-2,ab =12,求ba+ab的值.25.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.26.观察下列各式: ①2-25=85=225;②3-310=2710=3310;③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -nn 2+1(n ≥2,n 为自然数)等于什么?并通过计算证实你的猜想.27.(1)已知|2 017-x|+x -2 018=x ,求x -2 0182的值;(2)已知a >0,b >0且a(a +b)=3b(a +5b),求2a +3b +aba -b +ab 的值.答案一、1.B 2.C 3.B 4.D 5.A 6.D7.B点拨:原式=912×1254×36=36×6=36.8.B点拨:原等式可化为|a-b|+|b-c|=0,∴a-b=0且b-c=0,∴a=b=c,即△ABC是等边三角形.9.A10.D二、11.612.4 点拨:∵最简二次根式3a -1与2a +3可以合并,∴它们的被开方数相同,即3a -1=2a +3,解得a =4.13.8 点拨:x 2+1x 2=x 2+1x2-2+2=⎝⎛⎭⎫x -1x 2+2=(6)2+2=6+2=8.14.7 15.22 16.23 17.1 18.1219.--y 点拨:由题意知x <0,y <0,所以x -yx2=--y.解此类题要注意二次根式的隐含条件:被开方数是非负数.20.8+23三、21.解:(1)原式=-23+2 2. (2)原式=10. (3)原式=15+2 6. (4)原式=1.22.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b ,当a =5+2,b =5-2时,原式=5+2+5-25+2-5+2=254=52.23.解:∵a ,b ,c 是△ABC 的三边长,∴a +b +c >0,b +c -a >0,c -b -a <0-(b +c -a)+(a +b -c)=3a +b -c. 24.解:由题意,知a <0,b <0=ab a 2+ab b 2=ab -a +ab-b=-(a +b )ab ab =-(-2)×1212=2 2.点拨:此题易出现以下错误:原式=b a +a b =a +b ab=-212=-2 2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由a +b =-2,ab =12,可知a <0,b <0,所以将b a+a b 变形成b a +ab是不成立的. 25.解:(1)2(a +b)=2×⎝⎛⎭⎫1232+1318=2×(22+2)=6 2.故长方形的周长为6 2. (2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大. 26.解:(1)12526;5526(2)猜想:n -nn 2+1=n nn 2+1.验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1.27.解:(1)∵x -2 018≥0,∴x ≥2 018, ∴原等式可化为x -2 017+x -2 018=x , ∴x -2 018=2 017. ∴x -2 018=2 0172. ∴x =2 0172+2 018.∴x -2 0182=2 0172-2 0182+2 018=(2 017-2 018)×(2 017+2 018)+2 018=-(2 017+2 018)+2 018=-2 017.(2)∵a(a +b)=3b(a +5b), ∴a +ab =3ab +15b , ∴a -2ab -15b =0, ∴(a -5b)(a +3b)=0. ∵a >0,b >0, ∴a +3b >0, ∴a -5b =0, ∴a =25b.∴原式=2×25b +3b +25b 225b -b +25b 2=58b29b =2.第十七章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( ) A .2,3,4 B .3,2,7 C .6,22,10 D .3,5,8 2.在平面直角坐标系中,点P(3,4)到原点的距离是( ) A .3 B .4 C .5 D .±5(第3题)3.如图所示,数轴上点A 所表示的数为a ,则a 的值是( ) A .5+1 B .-5+1 C .5-1 D .54.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有() A.1个B.2个C.3个D.4个5.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.12 B.7+7 C.12或7+7 D.以上都不对6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于D,E是垂足,连接CD,若BD =1,则AC的长是()A.2 3 B.2 C.4 3 D.4(第6题)(第7题)(第8题)(第9题)(第10题)7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.16 C.22 D.558.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205 cm D.210 cm9.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C 的坐标为⎝⎛⎭⎫12,0,点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312 C .3+192D .27二、填空题(每题3分,共30分)11.已知一个直角三角形的木板三边的平方和为1 800 cm 2,则斜边长为________. 12.命题“角平分线上的点到角两边的距离相等”的逆命题是______________________. 13.若一个三角形的三边之比为345,且周长为24 cm ,则它的面积为________cm 2.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m 处,过了10 s ,飞机距离这个男孩头顶5 000 m ,则飞机平均每小时飞行__________km .15.已知a ,b ,c 是△ABC 的三边长,且满足关系c 2-a 2-b 2+|a -b|=0,则△ABC 的形状为____________.16.如图,在平面直角坐标系中,将长方形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为________.(第16题)(第17题)(第18题)(第19题)(第20题)17.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.18.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.19.如图,圆柱形无盖容器高18 cm,底面周长为24 cm,在容器内壁离容器底4 cm的点B处有一滴蜂蜜,此时蚂蚁正好在容器外壁,离容器上沿2 cm与蜂蜜相对的A处,则蚂蚁从外壁A处到达内壁B处的最短距离为________cm.20.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300 m是盆景园B,从盆景园B向左转90°后直走400 m 到达梅花阁C,则点C的坐标是________.三、解答题(26,27题每题10分,其余每题8分,共60分)21.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(第21题)(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.22.如图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向行了100 3 km到达B点,然后再沿北偏西30°方向行了100 km到达目的地C点,求出A,C两点之间的距离.(第22题)23.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状.24.我们把满足方程x2+y2=z2的正整数解(x,y,z)叫做勾股数,如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(________,________,________),(________,________,________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三边长的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.25.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.(第25题)26.如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C 落在点E处,BF是折痕,且BF=CF=8.求AB的长.(第26题)27.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN上限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由(参考数据:2≈1.41,3≈1.73).(第27题)答案一、1.B 2.C 3.C 4.C 5.C 6.A 7.B 8.A 9.A 10.B 二、11.30 cm12.到角两边距离相等的点在角的平分线上 13.24 14.1 08015.等腰直角三角形 点拨:由题意知:⎩⎪⎨⎪⎧c 2-a 2-b 2=0,a -b =0,∴⎩⎪⎨⎪⎧a 2+b 2=c 2,a =b. ∴△ABC 为等腰直角三角形. 16.(10,3) 17.(2)n -118.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32;用勾股定理计算出BC 的长为2,因此BC 边上的高为322.19.2020.(400,800) 点拨:如图,连接AC.由题意可得OA =500 m ,AB =300 m ,BC =400 m .在△AOD 和△ACB 中,AD =AB ,∠ODA =∠ABC =90°,OD =CB ,∴△AOD ≌△ACB(SAS ),∴AC =AO =500 m ,∠CAB =∠OAD.∵点B ,A ,O 在一条直线上,∴点C ,A ,D 也在一条直线上,∴CD =AC +AD =800 m ,∴点C 的坐标为(400,800).(第20题)三、21.解:(1)∵AD ⊥BC ,∴△ABD 和△ACD 均为直角三角形. ∴AB 2=AD 2+BD 2,AC 2=AD 2+CD 2. 又∵AD =12,BD =16,CD =5,∴AB =20,AC =13.∴△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,∵AB 2+AC 2=202+132=569,BC 2=212=441,∴AB 2+AC 2≠BC 2.∴△ABC 不是直角三角形.22.解:∵AD ∥BE , ∴∠ABE =∠DAB =60°. 又∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =100 3 km ,BC =100 km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km ), ∴A ,C 两点之间的距离为200 km . 23.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0, ∴a =3,b =4,c =5. ∵32+42=52,即a 2+b 2=c 2,∴根据勾股定理的逆定理可判定△ABC 是直角三角形.点拨:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断. 24.(1)(答案不唯一)6;8;10;9;12;15(2)证明:x 2+y 2=(2n)2+(n 2-1)2=4n 2+n 4-2n 2+1=n 4+2n 2+1=(n 2+1)2=z 2, 即以x ,y ,z 为三边长的三角形为直角三角形.25.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形. ∵BC +CD =34 cm , ∴CD =(34-x)cm .∵∠ABC =90°,AB =6 cm ,∴在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x)2-576, ∴36+x 2=(34-x)2-576,解得x =8.∴当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形. 26.解:∵BF =CF =8,∠C =30°,∴∠FBC =∠C =30°,∴∠DFB =60°.由题易知BE 与BC 关于直线BF 对称, ∴∠DBF =∠FBC =30°, ∴∠BDC =90°.∴DF =12BF =4,∴BD =BF 2-DF 2=64-16=4 3. ∵∠A =90°,AD ∥BC ,∴∠ABC =90°, ∴∠ABD =30°,∴AD =12BD =23,∴AB =BD 2-AD 2=48-12=6.27.解:此车没有超速.理由如下:如图,过点C 作CH ⊥MN 于H ,∵∠CBH =60°,∴∠BCH =30°,又BC =200米,∴BH =12BC =100米,∴CH =BC 2-BH 2=1003米.∵∠CAH =45°,∠CHA =90°, ∴AH =CH =1003米. ∴AB =1003-100≈73(米). ∴73÷5=735(米/秒).又∵60千米/时=503米/秒,735<503,∴此车没有超速.第十八章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.已知四边形ABCD 是平行四边形,下列结论中,错误的是( ) A .AB =CD B .AC =BDC .当AC ⊥BD 时,它是菱形 D .当∠ABC =90°时,它是矩形2.已知在▱ABCD 中,BC -AB =2 cm ,BC =4 cm ,则▱ABCD 的周长是( ) A .6 cm B .12 cm C .8 cm D .10 cm3.如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =50 cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为( )A .25 cmB .50 cmC .75 cmD .100 cm(第3题)(第6题)(第8题)(第9题)(第10题)4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是() A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,将边长为2 cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF.若∠DAB=30°,则四边形CDFE的面积为()A.2 cm2B.3 cm2C.4 cm2D.6 cm210.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)11.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.(第11题)(第12题)(第13题)(第14题)12.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为________. 13.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F.若AB =6,则BF 的长为________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于O ,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶2,且AC =10,则EC 的长度是________.15.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是对角线__________的四边形.(第15题)(第16题)(第18题)(第19题)(第20题)16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.18.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 016秒时,点P的坐标为________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.如图,Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(21题8分,26题12分,其余每题分,共60分)21.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.(第21题)22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.(第22题)23.如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长.(第23题)24.如图,在矩形ABCD中,点E,F分别在边BC,AD上,连接EF,交AC于点O,连接AE,CF.若沿EF折叠矩形ABCD,则点A与点C重合.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的边长;(3)在(2)的条件下求EF的长.(第24题)25.如图,已知在Rt △ABC 中,∠ACB =90°,现按如下步骤作图: ①分别以A ,C 为圆心,a 为半径(a >12AC)作弧,两弧分别交于M ,N 两点;②过M ,N 两点作直线MN 交AB 于点D ,交AC 于点E ; ③将△ADE 绕点E 顺时针旋转180°,设点D 的对应点为点F. (1)请在图中直接标出点F 并连接CF ; (2)求证:四边形BCFD 是平行四边形; (3)当∠B 为多少度时,四边形BCFD 是菱形?(第25题)26.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.(第26题)答案一、1.B 2.B 3.D 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.C10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF(HL ), ∴BE =DF(故①正确). ∠BAE =∠DAF.∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF(故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x ,∴AG =62x , ∴AC =6x +2x2, ∴AB =BC =3x +x2, ∴BE =3x +x 2-x =3x -x2,∴BE +DF =3x -x ≠2x(故④错误), ∵S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.110° 12.30 13.8 14.2.5 15.相等16.75° 点拨:如图,连接BD ,由菱形的性质及∠A =60°,得到三角形ABD 为等边三角形.由P 为AB 的中点,利用等腰三角形三线合一的性质得到∠ADP =30°.由题意易得∠ADC =120°,∠C =60°,进而求出∠PDC =90°,由折叠的性质得到∠CDE =∠PDE =45°,利用三角形的内角和定理即可求出∠DEC =75°.(第16题)17.25或52或65218.(1,0)19.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y)2=42=16.∴x 2+(y -4)2=16.20.7 点拨:如图所示,过点O 作OM ⊥CA ,交CA 的延长线于点M ;过点O 作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =NB. ∴O 点在∠ACB 的平分线上. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.(第20题)三、21.证明:连接DB.∵四边形ABCD 是菱形,∴BD 平分∠ABC. 又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF.22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF(SAS ).(2)解:由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:如图,连接BD ,设BD 交AC 于点O. ∵四边形ABCD 是平行四边形, ∴OB =OD.由BE ∥DF ,得∠BEO =∠DFO.而∠EOB =∠FOD , ∴△BEO ≌△DFO. ∴BE =DF.又BE ∥DF , ∴四边形BEDF 是平行四边形.(第23题)(2)解:∵AB ⊥AC ,AB =4,BC =213,∴AC =6,AO =3. ∴在Rt △BAO 中,BO =AB 2+AO 2=42+32=5. 又∵四边形BEDF 是矩形, ∴OE =OB =5.∴点E 在OA 的延长线上,且AE =2.24.(1)证明:由题意可知,OA =OC ,EF ⊥AC.∵AD ∥BC , ∴∠FAC =∠ECA.在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠FAO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE.∴OF =OE. ∵OA =OC ,EF ⊥AC , ∴四边形AECF 为菱形.(2)解:设菱形AECF 的边长为x ,则AE =x ,BE =BC -CE =8-x.在Rt △ABE 中,BE 2+AB 2=AE 2, ∴(8-x)2+42=x 2,解得x =5.即菱形AECF 的边长为5. (3)解:在Rt △ABC 中,AC =AB 2+BC 2=42+82=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=52-(25)2=5, ∴EF =2OE =2 5. 25.(1)解:如图所示.(第25题)(2)证明:连接AF ,DC.∵△CFE 是由△ADE 顺时针旋转180°后得到的,A 与C 是对应点,D 与F 是对应点, ∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形. ∴AD ∥CF.由作图可知MN 垂直平分AC ,又∠ACB =90°,∴MN ∥BC. ∴四边形BCFD 是平行四边形.(3)解:当∠B =60°时,四边形BCFD 是菱形.理由如下: ∵∠B =60°,∠ACB =90°, ∴∠BAC =30°.∴BC =12AB.又易知BD =12AB ,∴DB =CB.∵四边形BCFD 是平行四边形,∴四边形BCFD 是菱形. 26.解:(1)如图①所示.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠PAE =∠PAB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°,∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠PAE =130°, ∴∠ADF =180°-130°2=25°. (3)如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF ,又∵∠BAD =90°.∴∠ABF +∠FBD +∠ADB =90°, ∴∠ADF +∠ADB +∠FBD =90°,∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2.在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.(第26题)第十九章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各选项中表示y 是x 的函数的是( )2.在函数y =x +4x中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-4 3.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若一次函数y =(1-2m)x +m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是( )A .m >0B .m <12C .0<m <12D .m >125.一艘轮船在长江航线上往返于甲、乙两地,若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(h ),航行的路程为s(km ),则s 与t 的函数图象大致是( )6.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx -1的解集在数轴上表示正确的是()(第6题)7.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()8.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<49.已知一次函数y=32x+m和y=-12x+n的图象都经过点A(-2,0),且与y轴分别交于点B,C,那么△ABC的面积是()A.2 B.3 C.4 D.6(第10题)10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(m)与小文出发时间t(min)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共30分)11.函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与x轴的交点坐标为________.13.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.14.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =2.其中说法正确的有________(把你认为说法正确的序号都填上).(第14题)(第16题)(第17题)(第18题)(第19题)15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是__________. 16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A(-6,0),B(0,3)两点,点C ,D 在直线AB 上,C 的纵坐标为4,点D 在第三象限,且△OBC 与△OAD 的面积相等,则点D 的坐标为__________.17.如图,直线l 1,l 2交于点A ,观察图象,点A 的坐标可以看作方程组__________的解. 18.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y =-34x 上,则点B 与其对应点B′间的距离为________.(第20题)19.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上,已知OA2=1,则OA2 015的长为________.20.一次越野赛跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图,则这次越野赛跑的全程为________m.三、解答题(21题6分,26题10分,27题12分,其余每题8分,共60分)21.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?22.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),求此一次函数的解析式.23.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,试求:(1)y2=ax+b的函数解析式;(2)使y1,y2的值都大于零的x的取值范围.(第23题)24.已知一次函数y =ax +2与y =kx +b 的图象如图,且方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,点B 的坐标为(0,-1),请你确定这两个一次函数的解析式.(第24题)25.如图所示,已知直线y =x +3与x 轴、y 轴分别交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为21的两部分,求直线l 对应的函数解析式.(第25题)26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地,40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/小时,结果与甲车同时到达B地.甲、乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?(第27题)答案一、1.D点拨:根据函数的定义可知,对于自变量x的任何值,y都有唯一确定的值与之对应,只有D才满足这一条件.故选D.2.C 3.C 4.C 5.B 6.A7.B 点拨:∵y 随x 的增大而减小, ∴k<0.又∵kb>0,∴b<0,故选B . 8.C 9.C10.B 点拨:由图象得出小文步行720 m ,需要9 min , 所以小文的速度为720÷9=80(m /min ),当第15 min 时,小亮骑了15-9=6(min ),骑的路程为15×80=1 200(m ), ∴小亮的速度为1 200÷6=200(m /min ), ∴200÷80=2.5,故②正确;当第19 min 以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达青少年宫,故①正确; 此时小亮骑了19-9=10(min ),骑的总路程为10×200=2 000(m ),∴小文的步行时间为2 000÷80=25(min ), 故a 的值为25,故③错误;∵小文19 min 步行的路程为19×80=1 520(m ),∴b =2 000-1 520=480,故④正确.∴正确的有①②④.故选B .二、11.-2 点拨:∵函数是正比例函数,∴⎩⎪⎨⎪⎧m 2-4=0,m -2≠0.∴m =-2.12.(3,0) 13.-1;-5214.①②③15.m <12 点拨:根据题意可知:⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解不等式组即可.16.(-8,-1)17.⎩⎪⎨⎪⎧y =-x +2,y =2x -1 18.8 点拨:由题意可知,点A 移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,-34x =6,解得x =-8,∴△OAB 沿x 轴向左平移了8个单位长度到△O′A′B′位置,∴点B 与其对应点B′间的距离为8.19.22 013 点拨:因为OA 2=1,所以OA 1=12,进而得出OA 3=2,OA 4=4,OA 5=8,由此得出OA n=2n -2,所以OA 2 015=22 013.20.2 200 点拨:设小明的速度为a m /s ,小刚的速度为b m /s ,由题意,得⎩⎪⎨⎪⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.故这次越野赛跑的全程为1 600+300×2=2 200(m ).三、21.解:(1)由题意知,6+3m<0,解得m<-2,所以当m <-2且n 为任意实数时,y 随x 的增大而减小;(2)由题意知,6+3m ≠0,且n -4<0,故当m ≠-2且n <4时,函数图象与y 轴的交点在x 轴的下方; (3)由题意知,6+3m ≠0,且n -4=0,故当m ≠-2且n =4时,函数图象经过原点. 22.解:设一次函数的解析式为y =kx +b ,∵一次函数的图象与直线y =-x +1平行,∴k =-1, ∴一次函数的解析式为y =-x +b , ∵图象经过点(8,2), ∴2=-8+b ,解得b =10, ∴一次函数的解析式为y =-x +10.23.解:(1)对于函数y 1=x +1,当x =0时,y =1.∴将点(0,1),点(2,0)的坐标分别代入y 2=ax +b 中,得⎩⎪⎨⎪⎧b =1,2a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =1,∴y 2=-12x +1;(2)由y 1>0,即x +1>0,得x>-1, 由y 2>0,即-12x +1>0,得x<2.故使y 1>0,y 2>0的x 的取值范围为-1<x <2.24.解:因为方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,所以交点A 的坐标为(2,1),所以2a +2=1,解得a =-12.又因为函数y =kx +b 的图象过交点A(2,1)和点B(0,-1),所以⎩⎪⎨⎪⎧2k +b =1,b =-1,解得⎩⎪⎨⎪⎧k =1,b =-1.所以这两个一次函数的解析式分别为y =-12x +2,y =x -1.点拨:此类问题的解题规律是明确方程组的解就是两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的解析式的关键..是确定a ,k ,b 的值. 25.解:∵直线y =x +3与x ,y 轴分别交于A ,B 两点, ∴A 点坐标为(-3,0),B 点坐标为(0,3),∴OA =3,OB =3, ∴S △AOB =12OA·OB =12×3×3=92,设直线l 对应的函数解析式为y =kx(k ≠0),∵直线l 把△AOB 的面积分为21的两部分,直线l 与线段AB 交于点C ,∴分两种情况来讨论:①当S △AOCS △BOC =21时,设C 点坐标为(x 1,y 1),又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×23=3,即S △AOC =12·OA·|y 1|=12×3×|y 1|=3,∴y 1=±2,由图可知取y 1=2. 又∵点C 在直线AB 上, ∴2=x 1+3.∴x 1=-1.∴C 点坐标为(-1,2).把C 点坐标(-1,2)代入y =kx 中,得2=-1×k , ∴k =-2.∴直线l 对应的函数解析式为y =-2x. ②当S △AOCS △BOC =12时,设C 点坐标为(x 2,y 2).又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×13=32,即S △AOC =12·OA·|y 2|=12×3×|y 2|=32.∴y 2=±1,由图可知取y 2=1.又∵点C 在直线AB 上,∴1=x 2+3,∴x 2=-2,∴C 点坐标为(-2,1).把C 点坐标(-2,1)代入y =kx 中,得1=-2k ,∴k =-12,∴直线l 对应的函数解析式为y =-12x ,综上所述,直线l 对应的函数解析式为y =-2x 或y =-12x.26.解:(1)经销商能盈利5×11+5×17+5×9+5×13=250(元);(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果10-(10-x)=x(箱).∵9(10-x)+13x ≥100,∴x ≥2.5.设经销商盈利为w 元,则w =11x +17(10-x)+9(10-x)+13x =-2x +260.∵-2<0,∴w 随x 的增大而减小,∴当x =3时,w 值最大,最大值为-2×3+260=254(元). 答:使水果经销商盈利最大的配货方案为甲店配A 种水果3箱,B 种水果7箱,乙店配A 种水果7箱,B 种水果3箱.最大盈利为254元.27.解:(1)a =4.5,甲车的速度为46023+7=60(千米/小时);(2)设乙开始的速度为v 千米/小时,则4v +(7-4.5)×(v -50)=460,解得v =90,4v =360,则D(4,360),E(4.5,360),设直线EF 对应的函数关系式为y =kx +b ,把点E(4.5,360),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧4.5k +b =360,7k +b =460,解得⎩⎪⎨⎪⎧k =40,b =180.所以线段EF 所表示的y 与x 之间的函数关系式为y =40x +180(4.5≤x ≤7);(3)60×23=40(千米),则C(0,40),设直线CF 对应的函数解析式为y =mx +n.把点C(0,40),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧n =40,7m +n =460,解得⎩⎪⎨⎪⎧m =60,n =40,所以直线CF 对应的函数解析式为y =60x +40,易得线段OD 对应的函数解析式为y =90x(0≤x ≤4),当60x +40-90x =15,解得x =56;当90x -(60x +40)=15,解得x =116;当40x +180-(60x +40)=15,解得x =254.所以乙车出发56小时或116小时或254小时,乙车与甲车相距15千米.第二十章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是( ) A .3 B .4 C .5 D .62.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为( )A .89分B .90分C .92分D .93分3.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下:并求出鞋号的中位数是25.5 cm ,众数是26 cm ,平均数约是25.5 cm ,下列说法正确的是( ) A .因为需要鞋号为27 cm 的人数太少,所以鞋号为27 cm 的鞋可以不生产 B .因为平均数约是25.5 cm ,所以这批男鞋可以一律按25.5 cm 的鞋生产 C .因为中位数是25.5 cm ,所以25.5 cm 的鞋的生产量应占首位 D .因为众数是26 cm ,所以26 cm 的鞋的生产量应占首位4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( ) A .4,4 B .3,4 C .4,3 D .3,35.济南某中学足球队的18名队员的年龄如下表所示:。

人教版八年级下册数学第十四章单元同步检测试题(含答案)

人教版八年级下册数学第十四章单元同步检测试题(含答案)

人教版八年级下册数学第十四章单元同步检测试题(含答案) 一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab22.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣24.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±35.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣47.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m58.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣129.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣210.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64二.填空题(共8小题)11.分解因式:xy﹣2y2=.12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=.13.若a m=5,a n=6,则a m+2n的值为.14.计算:(﹣x﹣2y2)2=.15.计算:=.16.若x+y=5,xy=6,则(x+1)(y+1)的值为.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.参考答案一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【解答】解:系数的最大公约数是4,相同字母的最低指数幂是ab,所以多项式12ab3+8a3b的各项公因式是4ab,故选:C.2.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.【解答】解:(x+3y)(ax﹣y)=ax2﹣xy+3axy﹣3y2=ax2+(3a﹣1)xy﹣3y2由题意得,3a﹣1=0,解得,a=,故选:D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣2【解答】解:∵x m÷x2n+1=x,∴m﹣2n﹣1=1,则m﹣2n=2.故选:C.4.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±3【解答】解:∵x2﹣axy+9y2是完全平方式,∴﹣axy=±2×3y•x,解得k=±6.故选:C.5.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)【解答】解:A、3x2+6=3(x2+2),故此选项不合题意;B、x2+4,无法分解因式,符合题意;C、x2﹣x+=(x﹣)2,故此选项不合题意;D、x(x﹣1)﹣2(x﹣1)=(x﹣1)(x﹣2),故此选项不合题意;故选:B.6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣4【解答】解:(a﹣2)(﹣a+2)=﹣(a﹣2)(a﹣2)=﹣(a2﹣4a+4)=﹣a2+4a﹣4.故选:C.7.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m5【解答】解:A.a2•a3=a5,故此选项不合题意;B.a2•b2=(ab)2,故此选项不合题意;C.(a4)3=a12,故此选项不合题意;D.(﹣m)7÷(﹣m2)=m5,故此选项符合题意;故选:D.8.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.9.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣2【解答】解:(x+3)(2x﹣a)=2x2﹣ax+6x﹣3a=2x2+(6﹣a)x﹣3a,∵展开后不含x的一次项,∴6﹣a=0.解得a=6.故选:A.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64【解答】解:∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二.填空题(共8小题)11.分解因式:xy﹣2y2=y(x﹣2y).【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=2xy+4x﹣1.【解答】解:原式=2xy+4x﹣1,故答案为:2xy+4x﹣1.13.若a m=5,a n=6,则a m+2n的值为180.【解答】解:∵a n=6,∴(a n)2=a2n=36∴a m+2n=a m•a2n=5×36=180.故单位:18014.计算:(﹣x﹣2y2)2=x2﹣4xy2+4y4.【解答】解:(﹣x﹣2y2)2=x2﹣4xy2+4y4.故答案为:x2﹣4xy2+4y4.15.计算:=1.【解答】解:原式==a0=1.16.若x+y=5,xy=6,则(x+1)(y+1)的值为12.【解答】解:当x+y=5、xy=6时,原式=xy+x+y+1=6+5+1=12,故答案为:12.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为8或﹣12..【解答】解:由题意得:a2+(m+2)ab+25b2=(a±5b)2,∴a2+(m+2)ab+25b2=a2±10ab+25b2,∴m+2=±10,∴m+2=10或m+2=﹣10,∴m=8或m=﹣12,故答案为:8或﹣12.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.【解答】解:∵x﹣2y+z=2x+z=2+2y(x+z)2=(2+2y)2x2+z2+2xz=4y2+4y+4x2+z2=4y2+8y﹣2xz+4…①x2+4y2+z2=9x2+z2=9﹣4y2…②∴由①、②两式得:4y2+8y﹣2xz+4=9﹣4y2化简得:4y2+4y﹣xz=,所求代数式为:2xy+2yz﹣xz=2y(x+z)﹣xz=2y(2y+2)﹣xz=,故答案为.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.【解答】解:∵22•22m﹣1•23﹣m=128=27,∴2+2m﹣1+3﹣m=7,解得:m=3.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:(1)代数式的值与t的值取值无关系,与s的值取值有关系.∵(s﹣2t)(s+2t+1)+4t(t+)=s2+2st+s﹣2ts﹣4t2﹣2t+4t2+2t=s2+s,∴代数式的值与t的值取值无关系,与s的值取值有关系.(2)(ax﹣b)(2x2﹣x+2)=2ax3﹣ax2+2ax﹣2bx2+bx﹣2b=2ax3﹣(a+2b)x2+(2a+b)x﹣2b,∵积展开式中不含x的一次项,且常数项为﹣4,∴2a+b=0,﹣2b=﹣4,∴a=﹣1,b=2.a b=1.(3)设另一个因式为(x+m).根据题意得,(x+m)(2x﹣5)=2x2+3x﹣k,x2﹣5x+2mx﹣5m=2x2+3x﹣k,x2+(2m﹣5)x﹣5m=2x2+3x﹣k,∴2m﹣5=3,﹣k=﹣5m,∴m=4,k=20,∴另一个因式:(x+4),k是20.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.【解答】解:(1)原式=(a+b)2﹣32=a2+2ab+b2﹣9;(2)原式=(a﹣b)2(a﹣b)=(a2﹣2ab+b2)(a﹣b)=a3﹣2a2b+ab2﹣a2b+2ab2﹣b3=a3﹣3a2b+3ab2﹣b3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.【解答】解:根据题意可知图中第五行的数字依次为1、﹣4、6、﹣4、1,因为它的每一行的数字正好对应了(a﹣b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数,所以(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版八年级数学下册
单元测试题全套及答案
(含期中,期末试题,带答案)
第十六章检测题
(时间:120分钟满分:120分)
一、选择题(每小题3分,共30分)
1.二次根式2-x有意义,则x的取值范围是(D)
A.x>2 B.x<2 C.x≥2 D.x≤2
2.(2016·自贡)下列根式中,不是最简二次根式的是(B)
A.10
B.8
C. 6
D. 2
3.下列计算结果正确的是(D)
A.3+4=7 B.35-5=3 C.2×5=10 D.18÷2=3 4.如果a+a2-6a+9=3成立,那么实数ɑ的取值范围是(B) A.a≤0 B.a≤3 C.a≥-3 D.a≥3
5.估计32×1
2+20的运算结果应在(C)
A.6到7之间B.7到8之间C.8到9之间D.9到10之间
6.1
2x4x+6x
x
9-4x x的值一定是(B)
A.正数B.非正数C.非负数D.负数
7.化简9x2-6x+1-(3x-5)2,结果是(D)
A.6x-6 B.-6x+6 C.-4 D.4
8.若k,m,n都是整数,且135=k15,450=15m,180=6n,则下列关于k,m,n的大小关系,正确的是(D)
A.k<m=n B.m=n>k C.m<n<k D.m<k<n
9.下列选项错误的是(C)
A.3-2的倒数是3+ 2
B.x2-x一定是非负数
C.若x<2,则(x-1)2=1-x D.当x<0时,-2
x在实数范围内有意义
10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C 所对应的实数为(A)
A .23-1
B .1+ 3
C .2+ 3
D .23+1
二、填空题(每小题3分,共24分)
11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__.
12.计算:(1)(2016·潍坊)3(3+27)=__12__;
(2)(2016·天津)(5+3)(5-3)=__2__.
13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y )2018的值是__1__.
14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.
,第17题图)
15.已知50n 是整数,则正整数n 的最小值为__2__. 16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m -3)2__.
17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =__22__.
18.若xy >0,则化简二次根式x
-y x 2的结果为__--y __.
三、解答题(共66分)
19.(12分)计算:
(1)48÷3-12×12+24; (2)(318+1
672-418)÷42; 解:(1)4+ 6 (2)94
(3)(2-3)98(2+3)99-2|-32|-(2)0.
解:1
20.(5分)解方程:(3+1)(3-1)x =72-18.
解:x =
322
21.(10分)(1)已知x =5-12,y =5+12,求y x +x y 的值;
解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11
=3
(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.
解:由已知得⎩⎨⎧x -2≥0,2-x ≥0,
∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y
22.(10分)先化简,再求值:
(1)[x +2x (x -1)-1x -1]·x x -1
,其中x =2+1; 解:原式=2(x -1)2
,将x =2+1代入得,原式=1
(2)a 2-1a -1-a 2+2a +1a 2+a
-1a ,其中a =-1- 3. 解:∵a +1=-3<0,∴原式=a +1+a +1a (a +1)-1a
=a +1=-3
23.(7分)先化简,再求值:2a-a2-4a+4,其中a= 3.小刚的解法如下:2a-a2-4a+4=2a (a-2)2=2a-(a-2)=2a-a+2=a+2,当a=3时,2a-a2-4a+4=3+2.小刚的解法对吗?若不对,请改正.
解:不对.2a-a2-4a+4=2a-(a-2)2=2a-|a-2|.当a=3时,a-2=3-2<0,∴原式=2a+a-2=3a-2=33-2
24.(10分)已知长方形的长a=1
232,宽b=
1
318.
(1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.
解:(1)2(a+b)=2×(1
232+
1
318)=62,∴长方形周长为62(2)4×ab=4×
1
232×
1
318=
4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程:
22
3=2+
2
3,验证:2
2
3=
23
3=
23-2+2
22-1

2(22-1)+2
22-1
=2+
2
3;
33
8=3+
3
8,验证:3
3
8=
33
8=
33-3+3
32-1

3(32-1)+3
32-1
=3+
3
8.
(1)按照上述两个等式及其验证过程的基本思路,猜想44
15的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.。

相关文档
最新文档