数学九年级上册(人教版) 圆周角
合集下载
人教版九年级数学上册《圆周角》课件
∴ ∠BAD+ ∠BCD =360°-90°-90°= 180°
探究 4 如图,A,B,C,D,是⊙O上的四
点,若AC不是直径,则∠BAD与
∠BCD的关系还成立吗?为什么? 解析:成立,连结OB,OD ∵ 弧BAD与弧BCD所对的圆心角之和为360°
∴ ∠BAD + ∠BCD = 360°÷2=180° 圆内接四边形性质:圆内接四边形对角互补
圆周角和圆心角的大小.
注意:圆心与圆周角的位置
1.圆心在圆周角的 一边上 C O
2.圆心在圆周角的 3.圆心在圆周角的 内部 外部
C O O A B
C
Aห้องสมุดไป่ตู้
B
A
B
猜想: 同弧所对的圆周角等于它所对的圆心角的一半.
证明
1 ACB AOB 2
C
(1)圆心在∠ACB的一边上.
证明:∵ OA=OC ∴ ∠A=∠C ∵∠BOA=∠A+∠C
5.(1)证明:∵AB为O的直径, ∴∠ACB=90∘, ∴AC⊥BC, 又∵DC=CB, ∴AD=AB, ∴∠B=∠D; (2)设BC=x,则AC=x−2, 在Rt△ABC中,AC² +BC² =AB² , ∴(x−2)² +x² =42, 解得:x=1+ 7 ,(x=1− 7 舍去) ∵∠B=∠E,∠B=∠D, ∴∠D=∠E, ∴CD=CE, ∵CD=CB, ∴CE=CB=1+ 7
C
O A B B D
C O A D O
C
A B
圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角 等于它所对的圆心角的一半.
D A C O
仅从射门角度 大小考虑,谁 相对于球门的 角度更好?
人教版九年级上册数学.圆周角PPT课件.
若ABCD为圆内接四边形,则下列哪
个选项可能成立( B ) 21.2 特殊情况下,招标代理机构可于投标有效期满之前以书面形式要求投标人延长有效期。投标人应以书面形式答复招标代理机构的
上述要求。若投标人拒绝上述要求,可在原定的投标有效期满后收回其投标保证金;若投标人接受招标代理机构的延期要求,投标文 件继续有效,且不允许修改,但需相应延长投标保证金的有效期。 1.人员服务礼仪 (3)库存报表:包括商品库存明细表、商品库存汇总表、商品库存报警表、商品库存分析表、商品进销存台帐、商品收发汇总表。 员工在整个服务过程中必须保持精神专注,时刻准备着为顾客服务。举例来说,有些营业场所会有老人光顾。在老人进来的时候,因
D C 革命纲领,充分发动群众,解央了民主革命的核心问题,即土地问题。④所属的世界革命范畴不同:旧民主主义革命属于世界资产阶级
革命的一部分,新民主主义革命属于世界无产阶级革命的一部分。
∠BOC=__1_0_0_°,∠A=__5_0_°_
O
3、如图(2)四边形ABCD中, A B
C
∠B与∠1互补,AD的延 长线与DC所夹∠2=600 ,
D 12 E
则∠1=_1_2_0_°_,∠B=_6_0_°__. B
C
4. 判断:圆上任意两点之间分圆周为两条弧,
这两条弧的度数和为3600( √ )
∠B=80°,则∠ADC=_1_0_0_°∠CDE=__8_0_°__
A
A
D
E
80
B
C
100 D
O
B
C
(2)四边形ABCD内接于⊙O,∠AOC=100° 则∠B=_5_0_°___∠D=__1_3_0_°_
(3)四边形ABCD内接于⊙O, ∠A:∠C=1:3,则 ∠A=__4_5_°_,
个选项可能成立( B ) 21.2 特殊情况下,招标代理机构可于投标有效期满之前以书面形式要求投标人延长有效期。投标人应以书面形式答复招标代理机构的
上述要求。若投标人拒绝上述要求,可在原定的投标有效期满后收回其投标保证金;若投标人接受招标代理机构的延期要求,投标文 件继续有效,且不允许修改,但需相应延长投标保证金的有效期。 1.人员服务礼仪 (3)库存报表:包括商品库存明细表、商品库存汇总表、商品库存报警表、商品库存分析表、商品进销存台帐、商品收发汇总表。 员工在整个服务过程中必须保持精神专注,时刻准备着为顾客服务。举例来说,有些营业场所会有老人光顾。在老人进来的时候,因
D C 革命纲领,充分发动群众,解央了民主革命的核心问题,即土地问题。④所属的世界革命范畴不同:旧民主主义革命属于世界资产阶级
革命的一部分,新民主主义革命属于世界无产阶级革命的一部分。
∠BOC=__1_0_0_°,∠A=__5_0_°_
O
3、如图(2)四边形ABCD中, A B
C
∠B与∠1互补,AD的延 长线与DC所夹∠2=600 ,
D 12 E
则∠1=_1_2_0_°_,∠B=_6_0_°__. B
C
4. 判断:圆上任意两点之间分圆周为两条弧,
这两条弧的度数和为3600( √ )
∠B=80°,则∠ADC=_1_0_0_°∠CDE=__8_0_°__
A
A
D
E
80
B
C
100 D
O
B
C
(2)四边形ABCD内接于⊙O,∠AOC=100° 则∠B=_5_0_°___∠D=__1_3_0_°_
(3)四边形ABCD内接于⊙O, ∠A:∠C=1:3,则 ∠A=__4_5_°_,
人教版数学九年级上册圆周角的概念和圆周角的定理课件(第一课时18张)
1
= 2∠AOD,∠CBD
= 1∠COD,
2
∴ ∠ABC = 1∠AOC.
2
A C
●O B
一条弧所对的圆周角等于它所对的圆心角的一
半.
活动三:学以致用
1. 如图1,在圆O中, ∠BOC=50°,则∠BAC = 25°;
2.变式1:如图2,已知∠BCD=120°,则∠AOB= 120; °
3.变式2:如图3,已知圆心角∠AOB=100°,则
⌒ BC所对圆周角是∠ BAC , 圆心角
是∠BOC,
则∠
BAC=
1 2
∠BOC
O
A
C
B
例1.如图:OA、OB、OC都是⊙ O的半径
∠AOB=2∠BOC. ∠ACB=40°,求∠BAC的度数.
证明:∵
∠ACB=
1 2
∠AOB=40
°
∴ ∠AOB= 80 °
∵ ∠AOB=2∠BOC
O
∴ ∠BOC=40 °
特征:① 角的顶点在圆上.
② 角的两边都和圆相交 (即两边是圆的两条弦)
判别下列各图形中的角是不是圆周角。
×
√
×
√
×
×
×
当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角 的大小有什么关系?.
A C
●O
B
E
D
圆周角: ∠ABC,
∠ADC, ∠AEC.
新人教版九年级上册数学
24.1.4圆周角(第1课时)
问题:请同学们想一想,球员射中球门的难易 与什么有关?
总结:如图所示,球员射中球门的难易与他所在的位置B对球门
人教版九年级数学上册--圆周角
圆周角(2)
复习回顾
定义
顶点在圆上, 并且两边都与 圆相交的角.
C
圆周角定理
一条弧所对的圆 周角等于它所对 的圆心角的一半.
C
O
A
B
O
A
B
1.同弧或等弧所对的
圆周角相等.
CD
C
O A OB AB
2.半圆(或直径)所对 的圆周角是直角, 90 的圆周角所对的弦 是直径.
引入新知
同圆或等圆中,同弦或等弦所对的圆周角相等吗?
B
弦AC所对的圆周角相等吗?
F O
A
C
DE
B F
O
A
C
DE
B,D,E和F 四个角的大小关系:
B=F,D=E.
B 和D的关系: 不一定相等!
B
四边形ABCD中,B和D有什么数量
关系?
O
A
C
D
B
定义:
如果一个四边形的所有顶点都在同一个
圆上,这个四边形叫做圆内接四边形,
O
这个圆叫做这个四边形的外接圆.
菱形ABCD是正方形.
平行移动线段BC ,使点C落在圆上.
为叙述方便,我们把大于 小于 的角称为优角.
同圆或等圆中,同弦或等弦所对的圆周角相等吗? 解:延长CD至点E,使DE=BC,连接AE.
四边形ABCD内接于⊙O.
为叙述方便,我们把大于 小于 的角称为优角.
四边形ABCD是平行四边形,
同圆或等圆中,同弦或等弦所对的圆周角相等吗?
探究圆内接梯形
∠AOB= ,则∠ACB=_______.
对于圆内接多边形来说,
顶点在圆上,并且两边都与圆相交的角. 弦AC所对的圆周角相等吗?
复习回顾
定义
顶点在圆上, 并且两边都与 圆相交的角.
C
圆周角定理
一条弧所对的圆 周角等于它所对 的圆心角的一半.
C
O
A
B
O
A
B
1.同弧或等弧所对的
圆周角相等.
CD
C
O A OB AB
2.半圆(或直径)所对 的圆周角是直角, 90 的圆周角所对的弦 是直径.
引入新知
同圆或等圆中,同弦或等弦所对的圆周角相等吗?
B
弦AC所对的圆周角相等吗?
F O
A
C
DE
B F
O
A
C
DE
B,D,E和F 四个角的大小关系:
B=F,D=E.
B 和D的关系: 不一定相等!
B
四边形ABCD中,B和D有什么数量
关系?
O
A
C
D
B
定义:
如果一个四边形的所有顶点都在同一个
圆上,这个四边形叫做圆内接四边形,
O
这个圆叫做这个四边形的外接圆.
菱形ABCD是正方形.
平行移动线段BC ,使点C落在圆上.
为叙述方便,我们把大于 小于 的角称为优角.
同圆或等圆中,同弦或等弦所对的圆周角相等吗? 解:延长CD至点E,使DE=BC,连接AE.
四边形ABCD内接于⊙O.
为叙述方便,我们把大于 小于 的角称为优角.
四边形ABCD是平行四边形,
同圆或等圆中,同弦或等弦所对的圆周角相等吗?
探究圆内接梯形
∠AOB= ,则∠ACB=_______.
对于圆内接多边形来说,
顶点在圆上,并且两边都与圆相交的角. 弦AC所对的圆周角相等吗?
人教版九年级上册数学圆周角课件
∵OC⊥AB,∴AC= 2 AB= 2(cm), ∴OC=AC,∴∠AOC=45°,
1 ∴∠AOB=90°,∴∠ADB=2 ∠AOB=45°, ∴∠AEB=180°﹣∠ADB=135°。
∴此弦所对的圆周角等于45°或135°。
例题讲授
例5.已知弦AB、CD相交于E,AC 的度数为90°,BD 的度数为30°,则∠AEC=_6__0_°___。
例题讲授
解:如图,∵∠AOC=160°, ∴∠ABC= 12∠AOC= 12×160°=80°, ∵∠ABC+∠AB′C=180°, ∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°。 ∴∠ABC的度数是:80°或100°。 故选D。
练一练
1.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心 O,点P是优弧 AMB 上一点,则∠APB的度数为( )。 A.45° B.30° C.75° D.60°
1
1
证明:∠A=2 ∠BOC,∠D= 2(360°-∠BOC)
1
1
∴∠A+∠D=2 ∠BOC+ 2(360°-∠BOC)
1
=2 ×360°=180°
∴∠A与∠D互补。
结论:在同圆或等圆中,等弦所对圆周角相等或互补。
探究新知
探究二: 圆的内接多边形
引入概念
探究新知
探究二: 圆的内接多边形
探索圆的内接四边形四个角之间的关系。
解:连接BC, ∵ AC 的度数为90°,BD 的度数为30°, ∴∠ABC=45°,∠BCD=15°, ∴∠AEC=∠ABC+∠BCD=60°。
练一练
等腰△ABC的顶角∠A=120°,腰AB=AC=10, △ABC的外接圆半径等于___1_0___。
1 ∴∠AOB=90°,∴∠ADB=2 ∠AOB=45°, ∴∠AEB=180°﹣∠ADB=135°。
∴此弦所对的圆周角等于45°或135°。
例题讲授
例5.已知弦AB、CD相交于E,AC 的度数为90°,BD 的度数为30°,则∠AEC=_6__0_°___。
例题讲授
解:如图,∵∠AOC=160°, ∴∠ABC= 12∠AOC= 12×160°=80°, ∵∠ABC+∠AB′C=180°, ∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°。 ∴∠ABC的度数是:80°或100°。 故选D。
练一练
1.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心 O,点P是优弧 AMB 上一点,则∠APB的度数为( )。 A.45° B.30° C.75° D.60°
1
1
证明:∠A=2 ∠BOC,∠D= 2(360°-∠BOC)
1
1
∴∠A+∠D=2 ∠BOC+ 2(360°-∠BOC)
1
=2 ×360°=180°
∴∠A与∠D互补。
结论:在同圆或等圆中,等弦所对圆周角相等或互补。
探究新知
探究二: 圆的内接多边形
引入概念
探究新知
探究二: 圆的内接多边形
探索圆的内接四边形四个角之间的关系。
解:连接BC, ∵ AC 的度数为90°,BD 的度数为30°, ∴∠ABC=45°,∠BCD=15°, ∴∠AEC=∠ABC+∠BCD=60°。
练一练
等腰△ABC的顶角∠A=120°,腰AB=AC=10, △ABC的外接圆半径等于___1_0___。
人教版初中数学九年级上册《圆周角》课件
答案:C
拓展点一
拓展点二
拓展点三
此题的方法不唯一,也可以连接AD,利用等腰三角形的性质
得出∠BAD的度数,然后利用∠EBC=∠BAD得出结果,熟练掌
握圆周角定理及其推论是解本题的关键.
拓展点一
拓展点二
拓展点三
拓展点二利用圆周角定理及其推论证明线段相等或角相等
例2 如图,AB,CD是☉O的直径,DF,BE是弦,且DF=BE,求
知识点一
知识点二
知识点三
知识点四
例1 下面图形中的角,是圆周角的是(
)
解析:根据圆周角的定义用排除法即可.选项A的角顶点不在圆上,
选项C,D中的角在圆内没有形成两条弦,故选B.
答案:B
知识点一
知识点二
知识点三
知识点四
注意圆周角必须满足两个条件:①顶点在圆上;②角的两条
边都与圆相交.二者缺一不可.
拓展点一
拓展点二
拓展点三
利用“在同圆或等圆中,相等的圆周角所对的弧相等”是证
明弧相等的重要方法之一,解答此类问题的方法往往也不
唯一.
拓展点一
拓展点二
拓展点三
拓展点三与圆周角定理有关的综合题
例3 如图,△ABC是☉O的内接三角形,点C是优弧 上一点(点C
与A,B不重合),设∠OAB=α,∠C=β.
答案:A
知识点一
知识点二
知识点三
知识点四
在圆中求圆心角的度数,一般借助于圆心角所对的弧所对
的圆周角或圆心角所对的弦来解决问题.
拓展点一
拓展点二
拓展点三
拓展点一利用圆周角定理及其推论求角的度数或线段的长度
例1 如图,△ABC中,AB=AC,以AB为直径的☉O分别交BC,AC于点
拓展点一
拓展点二
拓展点三
此题的方法不唯一,也可以连接AD,利用等腰三角形的性质
得出∠BAD的度数,然后利用∠EBC=∠BAD得出结果,熟练掌
握圆周角定理及其推论是解本题的关键.
拓展点一
拓展点二
拓展点三
拓展点二利用圆周角定理及其推论证明线段相等或角相等
例2 如图,AB,CD是☉O的直径,DF,BE是弦,且DF=BE,求
知识点一
知识点二
知识点三
知识点四
例1 下面图形中的角,是圆周角的是(
)
解析:根据圆周角的定义用排除法即可.选项A的角顶点不在圆上,
选项C,D中的角在圆内没有形成两条弦,故选B.
答案:B
知识点一
知识点二
知识点三
知识点四
注意圆周角必须满足两个条件:①顶点在圆上;②角的两条
边都与圆相交.二者缺一不可.
拓展点一
拓展点二
拓展点三
利用“在同圆或等圆中,相等的圆周角所对的弧相等”是证
明弧相等的重要方法之一,解答此类问题的方法往往也不
唯一.
拓展点一
拓展点二
拓展点三
拓展点三与圆周角定理有关的综合题
例3 如图,△ABC是☉O的内接三角形,点C是优弧 上一点(点C
与A,B不重合),设∠OAB=α,∠C=β.
答案:A
知识点一
知识点二
知识点三
知识点四
在圆中求圆心角的度数,一般借助于圆心角所对的弧所对
的圆周角或圆心角所对的弦来解决问题.
拓展点一
拓展点二
拓展点三
拓展点一利用圆周角定理及其推论求角的度数或线段的长度
例1 如图,△ABC中,AB=AC,以AB为直径的☉O分别交BC,AC于点
人教版数学九年级上册24.1.圆周角(教案)
其次,实践活动中的分组讨论非常活跃,学生们提出了不少实际问题,并通过讨论找到了解决方案。这让我意识到,将理论知识与实际情境结合,能够有效提高学生的兴趣和参与度。因此,我计划在未来的课程中,设计更多类似的实践活动,让学生在实践中学习和应用。
我还注意到,在小组讨论环节,部分学生较为内向,不太愿意主动表达自己的观点。为了鼓励这部分学生,我打算在接下来的课程中,多设置一些开放性问题,并给予他们更多的鼓励和支持,帮助他们建立自信,积极参与到课堂讨论中来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、圆周角定理及其应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-在证明圆周角定理时,引导学生关注半径、弦、圆心角之间的数量关系,明确证明过程中的关键步骤。
-结合实际例子,如圆桌的周长、圆形花坛的面积等,让学生学会运用圆周角知识解决生活中的问题。
2.教学难点
-理解并运用圆周角定理:学生需要掌握圆周角定理的推导过程,以及如何将其应用于解题。
-解决与圆周角相关的实际问题:学生需要将理论运用于实际,找出问题中的圆周角关系,并解决问题。
三、教学难点与重点
1.教学重点
-圆周角的定义及其性质:理解圆周角的定义,掌握圆周角定理及其应用。
-圆周角定理的证明:掌握证明圆周角定理的过程,理解其中的逻辑推理和几何关系。
-圆周角在实际问题中的应用:学会将圆周角知识应用于解决实际问题,如求弧长、圆面积等。
举例解释:
我还注意到,在小组讨论环节,部分学生较为内向,不太愿意主动表达自己的观点。为了鼓励这部分学生,我打算在接下来的课程中,多设置一些开放性问题,并给予他们更多的鼓励和支持,帮助他们建立自信,积极参与到课堂讨论中来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、圆周角定理及其应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-在证明圆周角定理时,引导学生关注半径、弦、圆心角之间的数量关系,明确证明过程中的关键步骤。
-结合实际例子,如圆桌的周长、圆形花坛的面积等,让学生学会运用圆周角知识解决生活中的问题。
2.教学难点
-理解并运用圆周角定理:学生需要掌握圆周角定理的推导过程,以及如何将其应用于解题。
-解决与圆周角相关的实际问题:学生需要将理论运用于实际,找出问题中的圆周角关系,并解决问题。
三、教学难点与重点
1.教学重点
-圆周角的定义及其性质:理解圆周角的定义,掌握圆周角定理及其应用。
-圆周角定理的证明:掌握证明圆周角定理的过程,理解其中的逻辑推理和几何关系。
-圆周角在实际问题中的应用:学会将圆周角知识应用于解决实际问题,如求弧长、圆面积等。
举例解释:
人教版初中数学九年级上册圆周角课件
离为 17CM或7CM
。
4.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的是( D )
A.50°
B.60°
C .80°
D.100°
5.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是( D )
A.64°
B.58°
C.32°
D.26°
6.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对
几何语言:
=
,
∵
∴ ∠ =பைடு நூலகம்
1
∠.
2
结论
同弧或等弧所对的圆周角相等,
都等于该弧所对的圆心角的一半.
例题分析
(
已知:在⊙O中,AB 所对的圆周角是 ∠C,圆心
角是 ∠AOB. 求证: ∠C =
1
2
∠AOB.
证明: ∵ OA=OC
∴∠A=∠C
又 ∠AOB=∠A+∠C
∴∠AOB= 2∠C
图来证明刚才我们发现的同弧所对的圆周角与圆心角的大小
关系吗?
你能发现几杆类似的“红旗”图案?
这些对该情况下命题的证明有哪些启示?
证一证
A
A
O
O
C D
D
B
作辅助线
分离右旗
分离左旗
∴∠A=∠C.
∵∠BOC是△AOC的外角,
C ∴∠BOC=∠A+∠C.
(“红旗”图案)
撤消辅助线
还原右旗
闪动角
还原左旗
证明∵OA=OC
∴∠BOC=2∠A.
1
即 ∠BAC = 2∠BOC.
学生完成证明过程,思考交流后一种情况的证明思路,在展
示台上展示学生的证明过程,教师做思路和规范性点评)
。
4.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的是( D )
A.50°
B.60°
C .80°
D.100°
5.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是( D )
A.64°
B.58°
C.32°
D.26°
6.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对
几何语言:
=
,
∵
∴ ∠ =பைடு நூலகம்
1
∠.
2
结论
同弧或等弧所对的圆周角相等,
都等于该弧所对的圆心角的一半.
例题分析
(
已知:在⊙O中,AB 所对的圆周角是 ∠C,圆心
角是 ∠AOB. 求证: ∠C =
1
2
∠AOB.
证明: ∵ OA=OC
∴∠A=∠C
又 ∠AOB=∠A+∠C
∴∠AOB= 2∠C
图来证明刚才我们发现的同弧所对的圆周角与圆心角的大小
关系吗?
你能发现几杆类似的“红旗”图案?
这些对该情况下命题的证明有哪些启示?
证一证
A
A
O
O
C D
D
B
作辅助线
分离右旗
分离左旗
∴∠A=∠C.
∵∠BOC是△AOC的外角,
C ∴∠BOC=∠A+∠C.
(“红旗”图案)
撤消辅助线
还原右旗
闪动角
还原左旗
证明∵OA=OC
∴∠BOC=2∠A.
1
即 ∠BAC = 2∠BOC.
学生完成证明过程,思考交流后一种情况的证明思路,在展
示台上展示学生的证明过程,教师做思路和规范性点评)
人教版初中九年级上册数学《圆周角》精品课件
8 6
O
A
10
B
∴ AD=BD= 2 AB 2
= 5 2 (cm).
D
知识点3 圆内接多边形
如果一个多边形的所有顶点 都在同一个圆上,这个多边形叫 做圆内接多边形,这个圆叫做这 个多边形的外接圆.
C
D O
A
B
如图所示,四边形ABCD是⊙O的内接四边形, ⊙O是四边形ABCD的外接圆.
圆内接四边形的四个角之间有什么关系?
C
那么,圆周角与弧、弦有什么 关系吗?
O
A
B
知识点2 圆周角定理的推论 同弧: ∠BAC与∠BDC同B⌒C,∠BAC与∠BDC
有什么关系?
证明:根据圆周角定理可知,
A
D
BAC 1 BOC, BDC 1 BOC.
2
2
∴ BAC BDC.
同弧所对的圆周角相等.
O
B
C
等弧:B⌒C=C⌒E,∠BDC与∠CAE有什么关系?
80° .
4.如图,点B、A、C都在⊙O上, ∠BOA=110°,则∠BCA=
125°.
5.如图,⊙O中,弦AD平行于弦BC, ∠AOC=78°,求∠DAB的度数. 解:∵AD∥BC,
∴∠DAB=∠B. 又∵∠B= 1 ∠AOC=39°. ∴∠DAB=239°.
6.如图,⊙O的半径为1,A,B,C是⊙O上的三个 点,且∠ACB=45°,求弦AB的长. 解:连接OA、OB. ∵∠ACB=45°, ∴∠BOA=2∠ACB=90°. 又OA=OB, ∴△AOB是等腰直角三角形.
AB OA2 OB2 2OA2 2OA 2.
7.如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB= 60°,判断△ABC的形状并证明你的结论. 解:△ABC是等边三角形. 证明如下: ∵∠APC=∠ABC=60°,
人教版初中数学九年级上册《圆周角》课件
课堂小结
1. 圆周角
顶点在圆上,并且两边都和圆相交的角.
A
2. 圆周角定理
B
C
在同圆(或等圆)中,同弧或等弧所对的圆
周角相等,都等于该弧所对的圆心角的一半.
3.如左图,点A、B、C、D在⊙O上,点A与点D在 点B、C所在直线的同侧,∠BAC=400 (1)∠BDC=_______° (2)∠BOC=_______°
4.如右图,∠A是⊙O的圆周角,∠A=40°,则 ∠OBC=_______°
5.如图,D是A C的中点,与∠ABD相等的 角的个数是( ). A.4个 B.3 个 C.2 个 D.1个
如图,在⊙O中,请在练习本上画出弧BC所对的 圆心角和圆周角。
用量角器分别测量∠BAC与∠BOC的度数,比 较两角的大小,找出关系.
命题:一条弧所对的圆周角等于它所对的 圆心角的一半.
探究一:
(1)当圆心在圆周角的一边上时, A
证明:(圆心在圆周角上)
O
OA OC C BAC
BAC
B 1
C BOC
人教版九年级数学上册第二十四章圆
24.1.4圆周角第一课时
问题 1 下列图形中,哪个是圆心角?什么叫 圆心角?圆心角有什么主要特征?
问题 2 上图中(2)的角有什么主要特征?
问题3 按照顶点在圆上,两边都和圆相 交的条件画图,能画出多少个这样的角?
上图中还有圆周角吗?并分析(1)(4)(6)(7) 为什么不是圆周角?
BOC BAC C
2
结论:在同圆或等圆中,一条弧所对的圆 周角等于它所对圆心角的一半.
2.当圆心在圆周角内部时
提示:能否转化为1的情况?
过点B作直径BD.由1可得:
初中数学人教九年级上册第二十四章 圆 圆周角定理PPT
(2)∵BA=BC,∴∠A=∠C. 由圆周角定理得∠A=∠E, ∴∠C=∠E,∴DC=DE.
27
28
知识点三:圆周角定理的推论
合作探究
先独立完成导学案互动探究1、3, 再同桌相互交流,最后小组交流;
1.如图,在⊙O中,弦AB=3cm,点C在 ⊙O上,∠ACB=30°.求⊙O直径. 2.如图,AB是⊙O的直径,BD是⊙O的弦 ,延长BD到点C,使AC=AB,BD与CD的 大小有什么关系?为什么?
B A
O A
O B
知识点三:圆周角定理的推论
学以致用
1、如图,AB是半圆的直径,点D是AC的中
点,∠ABC=50°,则∠DAB等于( ) C
A.55°B.60°C.65°D.70°
B
A
O
2.如图,⊙O的半径为1,AB是⊙O的一条
弦,且AB= 3,则弦AB所对的圆周角的度 A
数为( )D A.30º B.60º C.30º或150 º D.60º或120º
如果AB=CD,那么∠E和∠F是什么关系? O1 D
反过来呢?
C
A
F
结合⑴、⑵你能得到什么结论?
O2
B
21
知识点三:圆周角定理的推论
归纳总结
圆周角定理推理1
同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
∵ AB=CD ∴∠E=∠F
在⊙O中∵∠E=∠F ∴AB=CD
E
A
F
O D
对的弧也相等;②两条弦相等,弦所对的弧也相等;③弦
心距弦心距所对的弦相等;④两个圆周角相等,圆周角所
对的弧相等;⑤弧相等弧所对的弦相等;
C
⑥弧相等弧所对的圆周角也相等。
24.1.4 第1课时 圆周角定理 初中数学人教版数学九年级上册课件
1.圆 周 角 与 圆心 的 位置 有 以下 几 种关 系 ,试 测 量 各图 中 ∠BOC与∠BAC的关系.
圆心在角 圆心在角 的一边上 的内部
圆心在角的外部
通过测量,可得∠BAC=
1∠BOC
2
2.如图,当圆心O在∠BAC内部时,请说明∠A=12∠BOC.
解:如图,连接AO并延长交☉O于点D. ∵OA=OB,OA=OC, ∴∠B=∠3,∠C=∠4.
2
归纳总结 圆周角定理:一条弧所对的圆周角等于它所对 的圆心角的 一半 .
合作探究
圆周角定理的推论
1.(1) 如 图 , 在 ☉O 中 , AB = MN , 则
∠MDN与∠ACB的大小关系是
.
(2)直径所对的圆周角是多少度?请说径吗?
请说明理由.
解:(1)∠MDN=∠ACB. (2)因为直径所对的圆心角是180°,所以直径所对的圆周 角是90°.(3)90°圆周角所对的弧是半圆,所以90°圆周 角所对的弦是直径.
(2)当点P在使PC=AB的位置时,有AF=EF. 证明:∵PC=AB,∴∠EBD=∠C. ∵∠FAE=90°-∠C,∠AEF=∠BED=90°-∠EBD,
∴∠FAE=∠AEF,AF=EF.
圆周角定理、推论的应用 认真阅读课本“例4”,体会圆周角定理、推论的应用,解决下 面的问题. 2.如图,在☉O中,弦AB=3 cm,点C在☉O上,∠ACB=30°.求 ☉O的直径.
(1)当AP=AB时,求证:AE=BE. (2)当点P在什么位置时,AF=EF,证 明你的结论.
解:(1)证明:如图,连接AB,AP. ∵AP=AB,∴∠ABP=∠P. ∵BC为☉O直径, ∴∠BAC=90°. 又AD⊥BC,可证∠BAE=∠C. ∵∠C=∠P,∴∠BAE=∠P, ∴∠ABE=∠BAE,∴AE=BE.
圆心在角 圆心在角 的一边上 的内部
圆心在角的外部
通过测量,可得∠BAC=
1∠BOC
2
2.如图,当圆心O在∠BAC内部时,请说明∠A=12∠BOC.
解:如图,连接AO并延长交☉O于点D. ∵OA=OB,OA=OC, ∴∠B=∠3,∠C=∠4.
2
归纳总结 圆周角定理:一条弧所对的圆周角等于它所对 的圆心角的 一半 .
合作探究
圆周角定理的推论
1.(1) 如 图 , 在 ☉O 中 , AB = MN , 则
∠MDN与∠ACB的大小关系是
.
(2)直径所对的圆周角是多少度?请说径吗?
请说明理由.
解:(1)∠MDN=∠ACB. (2)因为直径所对的圆心角是180°,所以直径所对的圆周 角是90°.(3)90°圆周角所对的弧是半圆,所以90°圆周 角所对的弦是直径.
(2)当点P在使PC=AB的位置时,有AF=EF. 证明:∵PC=AB,∴∠EBD=∠C. ∵∠FAE=90°-∠C,∠AEF=∠BED=90°-∠EBD,
∴∠FAE=∠AEF,AF=EF.
圆周角定理、推论的应用 认真阅读课本“例4”,体会圆周角定理、推论的应用,解决下 面的问题. 2.如图,在☉O中,弦AB=3 cm,点C在☉O上,∠ACB=30°.求 ☉O的直径.
(1)当AP=AB时,求证:AE=BE. (2)当点P在什么位置时,AF=EF,证 明你的结论.
解:(1)证明:如图,连接AB,AP. ∵AP=AB,∴∠ABP=∠P. ∵BC为☉O直径, ∴∠BAC=90°. 又AD⊥BC,可证∠BAE=∠C. ∵∠C=∠P,∴∠BAE=∠P, ∴∠ABE=∠BAE,∴AE=BE.
人教版初中九年级上册数学课件 《圆周角》圆(第1课时圆周角及其定理)
A.140° C.60°
B.70° D.40°
8
5.某小区新建一个圆形人工湖,如图所示,弦 AB 是湖上一座桥,已知桥 AB 长为 200 m,测得圆周角∠ACB=45°,则这个人工湖的直径 AD 长为___2_0_0__2_____m.
9
6.如图,在⊙O 中,弦 AC=2 3,B 是圆上一点,且∠ABC=45°,则⊙O 的 半径 r=___6___.
17
解:(1)∵∠APC=∠CPB=60°,∠BAC=∠CPB,∠ABC=∠APC,∴∠ABC =∠BAC=60°,∴△ABC 为等边三角形.
(2)PC=PA+PB.证明:在 PC 上截取 PD=PA,连接 AD.∵∠APC=60°,∴ △APD 是等边三角形,∴AD=PA=PD,∠ADP=60°,∴∠ADC=120°.又∵∠APB =∠APC+∠BPC=120°,∴∠ADC=∠APB.又∵∠ACP=∠ABP,∴△APB≌△ ADC(AAS),∴PB=DC.又∵PD=PA,∴PC=PA+PB.
18
︵ (3)在AB上任取一点 P,过点 P 作 PE⊥AB,垂足为点 E,过点 C 作 CF⊥AB,垂足 为点 F.∵S△APB=12AB·PE,S△ABC=12AB·CF,∴S 四边形 APBC=12AB·(PE+CF).当点 P
︵ 为AB的中点时,PE+CF=PC 最长,即 PC 为⊙O 的直径,此时四边形 APBC 的面 积最大.又∵⊙O 的半径为 1,∴易得等边三角形的边长 AB= 3,∴四边形 APBC 的最大面积为 S 四边形 APBC=12×2× 3= 3.
A.16° B.32°
C.58° D.64°
分析:∵AB是⊙O的直径, ∴∠ADB=90°,∴∠A=90°- ∠ABD=32°,∴∠BCD=∠A= 32°.
24.1.4 圆周角 人教版九年级数学上册第1课时课件
∠BAD= 1∠BOD,
2
∴∠BAC=∠2 CAD-∠BAD= (∠1 COD-∠BOD)= ∠B10C.
2
2
圆周角定理:一条弧所对的圆周角等 于它所对的圆心角的一半.
数学思想方法:分类思想、化归思 想、由特殊到一般的数学方法.
共同探究2
思考: 1.同弧所对的圆周角是否相等? 2.如果改为等弧,那么所对的圆周角还
(2)如图(2)圆心O在∠BAC的内部上时.
作直径AD,则由(1)可得∠BAD= 1 ∠BOD,
∠CAD= 1 ∠COD,
2
∴∠BAC=2∠BAD+∠CAD= (∠1 BOD+∠COD)
= 1 ∠BOC.
2
2
证明:
(3)如图(3) ,圆心O在∠BAC的外部上时.
作直径AD,则由(1)可得∠CAD= 1 ∠COD,
圆周角:顶点在圆上,并且两边都和圆相交, 我们把这样的角叫做圆周角.
观察下列图形中的角都是圆周角吗?
O
共同探究1
动手操作:
1.画⊙O,在⊙O上任意画弧AB,分别画出弧AB所
对的圆心角和圆周角.
2.你能画出几个弧AB所对的圆心角和圆周角?
3.分别测量所画圆心角和圆周角的度数,它们之 间有什么关系?
思考:
第二十四章 圆
24.1.4 圆周角(第1课时)
问题思考
足球训练场上教练在球门前划了一个圆圈进
行无人防守的射门训练如图,甲、乙两名运动员
分别在C、D两处,他们争论不休,都说在自已所
在的位置对球门AB的张角大,如果你是教练,请
评一评他们两个人谁的位置对球门AB的张角大?
为什么?
A
B
C D
人教版九年级数学上册24.1.4 圆周角
O
BAC
BAD DAC
B
C
D
1
1
(BOD DOC ) BOC.
2
2
探究新知
圆心O在∠BAC的外部 证明:连接AO并延长交⊙O于点D.
D
A O
C B
究新知
圆周角定理
一条弧所对的圆周 角等于它所对的圆心角 的一半;
探究新知
互动探究
问题1 如图,OB,OC都是⊙O的半径,点A ,D 是上
任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC 相等吗?请说明理由.
D
答:相等.
证明:在⊙O中,∵BAC
1 2
BOC
,
BDC 1 BOC ,
2
∴∠BAC=∠BDC.
探究新知
问题2 如图,若 CD EF,∠A与∠B相等吗?
答:相等.
证明:连接OC,OE,OD,OF,
CD EF,
AB E
O
COD EOF .
C
F
A 1 COD,B 1 EOF,
D
2
2
A B.
成立
想一想:(1)反过来,若∠A=∠B,那么 CD EF 成立吗?
(2)若CD是直径,你能求出∠A的度数吗? 90°
探究新知
圆周角定理的推论
A2
同弧或等弧所对的
A1
A3
圆周角相等.
探究新知
试一试
如图,点A、B、C、D在☉O上,点A与点D在 点B、C所在直线的同侧,∠BAC=35º.
B
C
A
O·
A
A
C O·
√ C (1) A
顶点(不2)在圆上 B
B 边A(C3没)有和圆相交
相关主题