重庆八中 2019级 初三上 第十八讲 全等三角形

合集下载

八年级数学全等三角形综合(含知识点、练习题、答案、作业)

八年级数学全等三角形综合(含知识点、练习题、答案、作业)
AB CD AF CE
∴ Rt△ ABF ≌ Rt△CDE ( HL ), ∴ BF=DE .
BFG 在△ BFG 和△ DEG 中 BGF
DEG DGE ,
BF DE
∴△ BFG ≌△ DGE( AAS ). ∴ EG=FG . ( 2)( 1)中结论依然成立. 理由如下:∵ AE=CF , ∴ AE ﹣EF=CF ﹣ EF. ∴ AF=CE . ∵ DE ⊥AC , BF⊥ AC , ∴∠ DEG= ∠BFE=90°.
ACG B 45
BGH 与 CGK 均为旋转角,
BGH CGK
B KCG
在 BGH 与 CGK 中, BG CG
BGH
CGK
BGH≌ CGK ASA
BH CK , S BGH S CGK
S四边形 CHGK
S CHG
S CGK
S CHG S BGH
1 S ABC
2
11 44 4
22
( 2) AC
BC 4 , BH x , CH
( 1)在上述旋转过程中, BH 与 CK 有怎样的数量关系,四边形 CHGK的面积有何变化?证明你发现
的结论;
( 2)连接 HK,在上述旋转过程中,设 BH=X, GKH 的面积为 y,求 y 与 x 之间的函数关系式,并
写出自变量 x 的取值范围;
( 3)在( 2)的前提下,是否存在某一位置,使 求出此时 x 的值;若不存在,说明理由.
例 1.1.6 已知:等边 ABC 中,点 O 是边 AC , BC 的垂直平分线的交点, M , N 分别在直线 AC ,
BC 上,且 MON 60 . ( 1)如图 1 ,当 CM CN 时, M , N 分别在边 AC , BC 上时,请写出 AM 、 CN 、 MN 三者之 间的数量关系; ( 2)如图 2,当 CM CN 时, M , N 分别在边 AC , BC 上时,( 1)中的结论是否仍然成 立?若成立,请你加以证明;若不成立,请说明理由;

八年级数学全等三角形综合(含知识点、练习题、答案、作业)

八年级数学全等三角形综合(含知识点、练习题、答案、作业)

三角形综合讲义全等综合知识精讲一.全等三角形的判定方法:边角边定理()SAS:两边和它们的夹角对应相等的两个三角形全等.角边角定理()ASA:两角和它们的夹边对应相等的两个三角形全等.边边边定理()SSS:三边对应相等的两个三角形全等.角角边定理()AAS:两个角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边定理()HL:斜边和一条直角边对应相等的两个直角三角形全等.二.全等三角形的应用:1.运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线;2.能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.1.三.全等三角形辅助线的作法2.1.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如下图(AD是ABC∆底边的中线).2.角平分线类辅助线作法图3图2图1FEDNDMEAB CAB CDCBA有下列三种作辅助线的方式:(1)由角平分线上的一点向角的两边作垂线;(2)过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;(3)OA OB,这种对称的图形应用得也较为普遍.3.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.三点剖析一.考点:1.全等三角形的判定2.全等三角形辅助线的作法二.重难点:1.全等三角形的判定2.全等三角形辅助线的作法三.易错点:1.在使用判定定理证明两个三角形全等时要注意条件的顺序必须和判定定理要求的一样,对应顶点要对应.2.辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;3.辅助线不是随便都可以作的,比如“作一条线段等于另外一条线段且与某条线段夹角是多少度”这种辅助线就不一定能作出来.1.全等三角形的判定2.全等三角形辅助线的作法例题讲解一:全等与三角形综合例1.1.1把两个全等的Rt ABC ∆和Rt EFG ∆(其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕O 点顺时针旋转(旋转角α满足条件:090α︒<<︒),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②)(1)在上述旋转过程中,BH 与CK 有怎样的数量关系,四边形CHGK 的面积有何变化?证明你发现的结论;(2)连接HK ,在上述旋转过程中,设BH=X ,GKH ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的前提下,是否存在某一位置,使GKH ∆的面积恰好等于ABC ∆面积的516?若存在,求出此时x 的值;若不存在,说明理由.【答案】(1)面积是4,是一个定值,在旋转中没有变化;理由见解析;(2)04x <<;(3)存在.【解析】(1)在上述旋转过程中,BH =CK ,四边形CHGK 的面积不变证明:连接CG 、KH ,ABC ∆为等腰直角三角形,()O G 为其斜边中点,CG BG ∴=,CG AB ⊥45ACG B ∴∠=∠=︒BGH ∠与CGK ∠均为旋转角,BGH CGK ∴∠=∠在BGH ∆与CGK ∆中,B KCG BG CG BGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩()BGH CGK ASA ∴∆∆≌ BH CK ∴=,BGH CGK S S ∆∆∴=111444222CHG CGK CHG BGH ABC CHGK S S S S S S ∆∆∆∆∆∴=+=+==⨯⨯⨯=四边形(2)4AC BC ==,x BH =,4CH x ∴=-,CH x = 由GHK CHK CHGK S S S ∆∆=-四边形得()1442y x x =-- 21242y x x ∴=-+ 由090α︒<<︒,得到max 4BH BC == 04x ∴<<.(3)存在;根据题意,得215248216x x -+=⨯ 解这个方程,得11x =,23x =即当11x =或23x =时,GHK ∆的面积均等于ABC ∆的面积的516. 例1.1.2如图1所示,点E 、F 在线段AC 上,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,垂足分别为点E ,F ;DE ,BF 分别在线段AC 的两侧,且AE=CF ,AB=CD ,BD 与AC 相交于点G .(1)求证:EG=GF ;(2)若点E 在F 的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E 、F 分别在线段CA 的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)【答案】(1)见解析(2)成立,见解析(3)成立 【解析】(1)∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°. ∵AE=CF ,∴AE+EF=CF+EF . ∴AF=CE .在Rt △ABF 和Rt △CDE 中, AB CDAF CE =⎧⎨=⎩∴Rt △ABF ≌Rt △CDE (HL ), ∴BF=DE .在△BFG 和△DEG 中BFG DEG BGF DGE BF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG ≌△DGE (AAS ). ∴EG=FG .(2)(1)中结论依然成立. 理由如下:∵AE=CF , ∴AE ﹣EF=CF ﹣EF . ∴AF=CE .∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°.在Rt △ABF 和Rt △CDE 中AB CD AF CE =⎧⎨=⎩,∴Rt △ABF ≌Rt △CDE (HL ).∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE(AAS).∴EG=FG.(3)(1)中结论依然成立.如图所示:理由如下:∵AE=CF,∴AE+ACEF=CF+AC.∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.在Rt△ABF和Rt△CDE中AB CD AF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE(AAS).∴EG=FG.例1.1.3等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上一点,连接CF,过点B作BH⊥CF交CF 于G,交AC于H.(1)如图(1),延长BH 到点E ,连接AE ,当∠EAB=90°,AE=1,F 为AB 的三等分点,且BF <AF 时,求BE 的长;(2)如图(2),若F 为AB 中点,连接FH ,求证:BH+FH=CF ; 【答案】见解析【解析】(1)∵BH ⊥CF ,∠ABC=90°, ∴∠ABE+∠CFB=∠CFB+∠BCF=90°, ∴∠ABE=∠BCF ,在△ABE 与△BCF 中,90EAB FBC AB B ABE BCF C︒∠=∠⎧∠=∠=⎪=⎨⎪⎩, ∴△ABE ∽△BCF , ∴BF=AE=1,∵F 为AB 的三等分点,且BF <AF , ∴AB=3BF=3,∴(2)证明:过点A 作AD ⊥AB 交BH 的延长线于点D . ∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°, ∴∠ABD=∠BCF ,在△ABD 与△BCF 中,DAB FBC D CFBAB BC ∠=∠⎧⎪⎨⎪=∠=⎩∠,∴Rt △BAD ≌Rt △CBF , ∴AD=BF ,BD=CF . ∵F 为AB 的中点, ∴AF=BF , ∴AD=AF ,在△ADH 与△AFH 中,45AD AF AH DAH HAF AH ︒∠=∠==⎧⎪⎨⎪=⎩,∴△AHD ≌△AHF , ∴DH=FH .∵BD=BH+DH=BH+FH , ∴BH+FH=CF ;例 1.1.6已知:等边ABC ∆中,点O 是边AC ,BC 的垂直平分线的交点,M ,N 分别在直线AC ,BC 上,且60MON ∠=︒.(1)如图1,当CM CN =时,M ,N 分别在边AC ,BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2)如图2,当CM CN ≠时,M ,N 分别在边AC ,BC 上时,(1)中的结论是否仍然成 立?若成立,请你加以证明;若不成立,请说明理由;【答案】(1)AM CN MN =+(2)AM CN MN =+(3)MN AM CN =+ 【解析】该题考查的是等边三角形的性质和全等三角形的性质和判定. (1)如图1,在AM 上截取AN CN '=,连接ON ',OC ,OA , ∵O 是边AC 和BC 垂直平分线的交点,ABC ∆是等边三角形, ∴OC OA =,O 也是等边三角形三个角的平分线交点,∴160302OCA OAB OCN ∠=∠=∠=⨯︒=︒∴1803030120AOC ∠=︒-︒-︒=︒, ∴NCO OAN ∠=∠', ∵在OCN ∆和OAN ∆'中''OC OA NCO OAN AN CN =⎧⎪∠=∠⎨⎪=⎩OCN OAN ∆∆'≌(SAS ),∴ON ON '=,CON AON ∠=∠',∵120COA ∠=︒,60NOM ∠=︒,∴60CON COM ∠+∠=︒, ∴60AON COM ∠'+∠=︒,即NOM N OM ∠=∠',∵在NOM ∆和'N OM ∆中 ''ON ON NOM N OM OM OM =⎧⎪∠=∠⎨⎪=⎩∴'NOM N OM ∆∆≌(SAS ), ∴MN MN =',∵MN AM AN AM CN '=-'=-, ∴AM CN MN =+……2分(2)如图2,过点O 作OD AC ⊥,OE BC ⊥易得OD OE =,120DOE ∠=︒, 在边AC 上截取'DN NE =,连接'ON ,∵'DN NE =,OD OE =,'ODN OEN ∠=∠, ∴'DON EON ∆∆≌, ……4分 ∴'ON OE =,'DON NOE ∠=∠ ∴120DOE ∠=︒,60MON ∠=︒ ∴60MOD NOE ∠+∠=︒ ∴'60MOD DON ∠+∠=︒易证'MON MON ∆∆≌……4分 ∴'MN MN =∴'MN MD DN MD NE =+=+ MD AM AD AM CE =-=- NE CE CN =-∴()()MN AM CE CE CN AM CN =-+-=-, ∴AM CN MN =+课后作业1已知ABC ∆,90BAC ∠=︒,等腰直角BDE ∆,90BDE ∠=︒,BD=DE ,点D 在线段AC 上.(1)如图1,当30ACB ∠=︒,点E 在BC 上时,试判断AD 与CE 的数量关系,并加以证明;(2)如图2,当45ACB ∠=︒,点E 在BC 外时,连接EC\、BD 并延长交于点F ,设ED 与BC 交于点N ,图中是否存在与BN 相等的线段?若存在,请加以证明.若不存在,请说明理由.【答案】见解析.【解析】解:(1)2ED AD =.理由是:BDE ∆是等腰直角三角形 ∴45DBE DEB ∠=∠=︒ 又Rt ABC ∆中,30ACB ∠=︒,60ABC ∴∠=︒ 604515ABD ABC DBE ∴∠=∠-∠=︒-︒=︒ 同理60CEP ∠=︒,180180604515PED CEP DEB ∴∠=︒-∠-∠=︒-︒-︒=︒PDE ABD ∴∠=∠ ∴在ABD ∆和PDE ∆中,90DPE A PDE ABD DE BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ABD PDE AAS ∴∆∆≌AD PE ∴= 又∵Rt PCE ∆中,30C ∠=︒,2CE PE ∴= 2CE AD ∴=.(2)BN EF =,理由是:如图2,过E 作EG AC ⊥,交AC 的延长线于G 90BDE ∠=︒ 90BDE EDF ∴∠=∠=︒ 90GDE ADB ∠+∠=︒90A ∠=︒,90ADB ABD ∴∠+∠=︒ GDE ABD ∴∠=∠在ABD ∆和GDE ∆中,90GDE ABD G A DE BD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD GDB AAS ∴∆∆≌ AD GE ∴=,DG AB =AB AC =,AC DG ∴= AD DG GE ∴== CGE ∴∆是等腰直角三角形 45GCE ∴∠=︒45DCF GCE ∴∠=∠=︒ 90FCB ∴∠=︒ 90F FBC ∴∠+∠=︒ 90FBC DNB ∠+∠=︒F DNB ∴∠=∠ 在FDE ∆和NDB ∆中,F DNB FDE NDB DE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()FDE NDB AAS ∴∆∆≌ BN EF ∴=.2如图1,在ABC ∆中,ACB ∠是锐角,点D 为射线BC 上的一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC ,90BAC ∠=︒,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF 、BD 所在直线的位置关系为 ,线段CF 、BD 的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否依然成立,并说明理由;(2)如果AB=AC ,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C 、F 不重合),并说明理由.【答案】见解析.【解析】证明:(1)①正方形ADEF 中,AD=AF ,90BAC DAF ∠=∠=︒ BAD CAF ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌ CF BD ∴=,B ACF ∠=∠ 90ACB ACF ∴∠+∠=︒ 即CF BD ⊥.②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,90DAF ∠=︒ 90BAC ∠=︒ DAF BAC ∴∠=∠ DAB FAC ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌ CF BD ∴=,ACF ABD ∠=∠ 90BAC ∠=︒ ,AB AC = 45ABC ∴∠=︒ 45ACF ∴∠=︒ 90BCF ACB ACF ∴∠=∠+∠=︒ 即CF BD ⊥.(2)当45ACB ∠=︒时,CF BD ⊥(如图).理由:过点A 作AG AC ⊥交CB 的延长线于点G ,则90GAC ∠=︒,45ACB ∠=︒,90AGC ACB ∠=︒-∠,904545AGC ∴∠=︒-︒=︒ 45ACB AGC ∴∠=∠=︒,AC AG ∴= DAG FAC ∠=∠(同角的余角相等),AD=AF GAD CAF ∴∆∆≌ 45ACF AGC ∴∠=∠=︒,454590BCF ACB ACF ∠=∠+∠=︒+︒=︒ 即CF BC ⊥.3如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中90C ∠=︒,30B E ∠=∠=︒.(1)操作发现如图2,固定ABC ∆,使DEC ∆绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ;②设BDC ∆的面积为1S ,AEC ∆的面积为2S ,则1S 与2S 的数量关系是 .(2)猜想论证当DEC ∆绕点C 旋转到如图3所示的位置时,小明猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了BDC ∆和AEC ∆中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知60ABC ∠=︒,点D 是角平分线上一点,BD=CD=4,DE//ABA 交BC 于点E (如图4).若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请直接写出相应的BF 的长.【答案】见解析.【解析】解:(1)①∵DEC ∆绕点C 旋转点D 恰好落在AB 边上,AC CD ∴= 90903060BAC B ∠=︒-∠=︒-︒=︒,ACD ∴∆是等边三角形,60ACD ∴∠=︒ 又60CDE BAC ∠=∠=︒ ACD CDE ∴∠=∠ //DE AC ∴.②30B ∠=︒,90C ∠=︒ 12CD AC AB ∴== BD AD AC ∴== 根据等边三角形的性质,ACD ∆的边AC 、AD 上的高相等∴BCD ∆的面积和AEC ∆的面积相等(等底等高的三角形的面积相等),即12S S =(2)如图,DEC ∆是由ABC ∆绕点C 旋转得到,BC CE ∴=,AC CD = 90ACN BCN ∠+∠=︒,1809090DCM BCN ∠+∠=︒-︒=︒,ACN DCM ∴∠=∠在ACN ∆和DCM ∆中,90ACN DCM CMD N AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACN DCM AAS ∴∆∆≌ AN DM ∴=BDC ∴∆的面积和AEC ∆的面积相等(等底等高的三角形的面积相等)即12S S =;(3)如图,过点D 作DF 1//BE ,易求四边形BE DF 1是菱形,所以BE= DF 1,且BE 、DF 1上的高相等,此时1DCF BDE S S ∆∆=;过点D 作2DF BD ⊥,60ABC ∠=︒,DF 1//BE ,2160F F D ABC ∴∠=∠=︒,∵B F 1=D F 1,11302F BD ABC ∠=∠=︒,290F DB ∠=︒, 1260F DF ABC ∴∠=∠=︒ 12DF F ∴∆是等边三角形,12DF DF ∴=BD CD =,60ABC ∠=︒,点D 是角平分线上一点,160302DBC DCB ∴∠=∠=⨯︒=︒ 118018030150CDF BCD ∴∠=︒-∠=︒-︒=︒ 236015060150CDF ∠=︒-︒-︒=︒12CDF CDF ∴∠=∠ 在1CDF ∆和2CDF ∆中,1212DF DF CDF CDF CD CD =⎧⎪∠=∠⎨⎪=⎩()12CDF CDF SAS ∴∆∆≌∴点F 2也是所求的点,60ABC ∠=︒,点D 是角平分线上的一点,DE //AB160302DBC BDE ABD ∴∠=∠=∠=⨯︒=︒ 又4BD =14cos3022BE ∴=⨯÷︒==,1BF ∴=,2112BF BF F F =+==故BF.。

八年级数学全等三角形新课讲义完整版(全8讲)

八年级数学全等三角形新课讲义完整版(全8讲)

⼋年级数学全等三⾓形新课讲义完整版(全8讲)⼋年级数学全等三⾓形新课讲义全⾯完整版(全⼋讲)A B C 1 E DA B C D O 1 2(1)(2) A B D C (1)(2) AB C E D第⼀讲全等三⾓形概念及其性质(⼀)知识要点1、全等三⾓形的有关概念1)能够完全重合的两个图形叫做形。

2)能够完全重合的两个三⾓形叫做全等形。

把两个全等的三⾓形重合在⼀起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的⾓叫做对应⾓。

3)全等三⾓形表⽰⽅法:“全等”⽤“≌”表⽰,读作“全等于”,如△ABC ≌△DEF 。

4)对应元素:①对应顶点:点A 与点D ,点B 与点E ,点C 与点F 是对应顶点②对应边:AB 与DE ,AC 与DF ,BC 与EF 是对应边③对应⾓:∠A 与∠D ,∠B 与∠E ,∠C 与∠F 是对应⾓当两个三⾓形全等时,通常把表⽰对应顶点的字母写在对应的位置上,如右图所⽰,△ABC 和△DEF 全等,是,记作△ABC ≌△DEF 。

其中,。

2、常见的全等三⾓形的基本图形有平移型、旋转型和翻折型。

(1)平移型:如下左图,若△ABC ≌△DEF ,则BC=EF 。

将△DEF 向左平移得到下右图,则仍有BC=EF ,在右图中,若知BC=EF ,则可推出BE=CF 。

(2)旋转型:如下左图,两对三⾓形的全等属于旋转型,图形的特点是:图1的旋转中⼼为点A ,有公共部分∠1;图2的旋转中⼼为点O ,有⼀对对顶⾓∠1=∠2。

(3)翻折型:如右图,两个三⾓形的全等属于翻折型,其中图中有公共边AB 3、全等三⾓形的性质1)全等三⾓形的对应边相等; 2)全等三⾓形的对应⾓相等。

3)知识延伸:如果两个三⾓形全等,则三⾓形的对应边上的中线、⾼线及对应⾓的⾓平分线也相等。

AB C DE F AB C DE FAC D FB AD EEAB C D OA B C DFE 4、规律⽅法⼩结:在寻找全等三⾓形的对应边和对应⾓时,常⽤的⽅法有:(1)全等三⾓形对应⾓所对的边是对应边,两个对应⾓所夹的边是对应边;(2)全等三⾓形对应边所对的⾓是对应⾓,两条对应边所夹的⾓是对应⾓;(3)公共边⼀定是对应边,公共⾓⼀定是对应⾓,对顶⾓⼀定是对应⾓;(4)全等三⾓形中⼀对最短的边(或最⼩的⾓)是对应边(或对应⾓)。

初二数学全等三角形知识点总结和题型归纳

初二数学全等三角形知识点总结和题型归纳

全等三角形知识点总结和题型归纳全等图形:能够完全重合的两个图形就是全等图形. 全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.板块一、全等三角形的认识与性质【例1】 ①判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 . ② 两个三角形具备下列( )条件,则它们一定全等. A .两边和其中一边的对角对应相等 B .三个角对应相等C .两角和一组对应边相等D .两边及第三边上的高对应相等 ③ 下列命题错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等例题精讲C .全等三角形对应角的角平分线相等D .有两边和一个角对应相等的两个三角形全等【例2】 ⑴ 考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有_________个.⑵ 已知ABC ∆中,AB BC AC =≠,作与ABC ∆只有一条公共边,且与ABC ∆全等的三角形,这样的三角形一共能作出 个.⑶如图,在Rt ABC ∆中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=︒,那么DBF ∠=__________.⑷ 如图,已知ABC ∆中,90ABC AB BC ∠=︒=,,三角形的顶点在相互平行的三条直线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______.【巩固】如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.FDBACBAl 3l 2l 1FAE P DCB板块二、三角形全等的判定与应用(注意几何表达形式)全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩ 找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等. 性质: 判定:⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【例3】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【巩固】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.【例4】 已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【例5】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.FEDCBADCBA ODCBA F E ODCB A【巩固】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.【例6】 已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.【巩固】如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.【例10】 如图,设ABC ∆和CDE ∆都是正三角形,且62EBD ∠=︒,则AEB ∠ 的度数是( )A .124︒B .122︒C .120︒D .118︒B .【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥. FEDCBAF E CBAOF E DCBA 图1ADBCE【巩固】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.【例12】 如图,ABC ∆中,AB BC =,90ABC ∠=︒,D 是AC 上一点,且CD CB AB ==,DE AC ⊥交AB 于E 点.求证:AD DE EB ==.【例13】 ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.PFEDCBA GA BCDEFCB DEANP MCBA【例14】 如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=︒,求ABC ∠和AIB ∠的大小.【例15】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.【例16】 ⑴ 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的中点.求证:BF FD ⊥.⑵ 如右下图,在ABC ∆中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.ABCIFQPEDCBAF EDCBA MFED CB A【例17】 如图,在ABC ∆中,B ∠,C ∠为锐角,,,M N D 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.【例18】 如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC ∆是等腰三角形.【例19】 如图,ABC ∆为边长是1的等边三角形,BDC ∆为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 于M ,AC 于N ,连接MN ,形成一个AMN ∆.求AMN ∆的周长.ABCD MNEFNM D CBACBAAM NBCD【例20】 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?⑴ 阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等, 可证明如下:已知:ABC ∆、111A B C ∆均为锐角三角形,11AB A B =,11BC B C =,1C C ∠=∠.求证:111ABC A B C ∆∆≌.(请你将下列证明过程补充完整.)证明:分别过点B ,1B 作BD AC ⊥于D ,1111B D AC ⊥于1D .则11190BDC B D C ∠=∠=︒,∵11BC B C =,1C C ∠=∠,∴111BCD B C D ∆∆≌ ∴11BD B D =⑵ 归纳与叙述:由⑴可得到一个正确结论,请你写出这个结论.【习题1】如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.DCBA D 1C 1B 1A 1DC BA家庭作业【习题2】已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.FEDC B AEDCBF ADOECB A4321FDOE CB A【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【例3】 如图2-9所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NEB M ADM ED CBAFABCDEOOEDCBA板块二、全等与角度【例10】 如图,在ABC ∆中,60BAC ∠=,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例11】 在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例12】 如图所示,在ABC ∆中,AC BC =,20C ∠=,又M 在AC 上,N 在BC 上,且满足50BAN ∠=,60ABM ∠=,求NMB ∠.【例13】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例14】 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例15】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例16】 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC ∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.ADOC BD CBA【例4】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.【例5】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例6】 如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE的交点为F .求证:FE FD =.【例7】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.ED CB AOED CBAFBEDCA E DC B A4321【例8】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.【例9】 长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB于F ,则EF =__________.【例10】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.【例11】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.PDBOCAFEDCBA DC B A如图所示,在ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BCA ∠的角平分线交AD 与F ,交AB 于E ,FG 平行于BC 交AB 于G . AE =4,AB =14,则BG =______.板块三 倍长中线法HG D AB C EGFE DCB A三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题) 见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.版块一、倍长中线【例1】 已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.【巩固】在ABC ∆中,5,9AB AC ==,则BC 边上的中线AD 的长的取值范围是什么?【例2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC于F ,AF EF =,求证:AC BE =.【例3】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.MCB AFEDC BA【例4】 已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .【例5】 如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.【例10】 在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.【例11】 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.F GE DCBAGEDCBAFEDCBAFEDCBA【例12】 如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.版块二、中位线的应用D C B A D'C'B'A'MECBA【例13】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =.【例14】 如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.【巩固】已知△ABC 中,AB =AC ,BD 为AB 的延长线,且BD =AB ,CE 为△ABC 的AB 边上的中线.求证CD =2CE【例15】 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.【例16】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.FADE CBE DB CAEDCBA等腰三角形知识点和题型总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.EDFCBA2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90的等腰三角形.(2)底角为45的等腰三角形.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如下图,ABC∆是轴对称图形.两个图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如下图,ABC∆关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是A B C∆与'''对称点.对称轴的性质:对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如图,直线l经过线段AB的中点O,并且垂直于线段AB,则直线l就是线段AB的垂直平分线.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如图,点P是线段AB垂直平分线上的点,则PA PB.线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成轴对称的两个图形的对称轴的画法:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.成轴对称的两个图形的主要性质:①成轴对称的两个图形全等②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线轴对称变换的方法应用:轴对称变换是通过作图形关于一直线的对称图形的手段,把图形中的某一图形对称地移动到一个新的位置上,使图形中的分散条件和结论有机地联系起来.常用的辅助线有角平分线条件时的各种辅助线,本质上都是对称变换的思想.轴对称变换应用时有下面两种情况:⑴图形中有轴对称图形条件时,可考虑用此变换;⑵图形中有垂线条件时,可考虑用此变换.联系二者都的关于对称轴对称的重、难点板块一、等腰三角形及轴对称的认识【例1】 下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60,那么这个等腰三角形一定是等边三角形.则以下结论正确的是( )A .只有命题①正确B .只有命题②正确C .命题①、②都正确D .命题①、②都不正确【例2】 如图,在ABC ∆ 中,AD BC ⊥于D .请你再添加一个条件,就可以确定ABC ∆是等腰三角形.你添加的条件是 .DCBA例题精讲重点:探索等腰三角形“等边对等角”和“三线合一”的性质,这两个性质对于平面几何中的计算,以及以后的证明都有很大的帮助难点:等腰三角形关于底和腰,底角和顶角的计算问题,由于等腰三角形底和腰,底角和顶角性质性质特点很容易混淆,而且他们在用法和讨论上很有考究,只能在练习中加以训练。

八年级数学直角三角形全等的判定

八年级数学直角三角形全等的判定
说起采摘油茶果,绝对不是一件轻松的活计。村子周边山间缓坡地开垦的油茶园,成片的油茶林属于集体,由生产队组织劳动力采摘,收益归集体所有。其他野生状态的油茶果,零星分布于苍莽的 山岭间,生长在茂密的丛林里,植根于陡峭的山崖上,允许群众自行采摘,收益归私人所有。我们小时候,经常肩膀上挎一个竹篓子,翻山越岭,爬坡过坎,在山野丛林里钻来钻去,跟着大人们上山摘 茶籽。在山上采摘油茶果的间隙,看到竹篓里泛着红晕的油茶果,就像小孩子通红的脸颊,显得那样俏皮可爱,散逸出一阵阵诱人的清香,常常让我们忘掉饥饿和疲劳,尽情地享受着收获的快乐。我听 过原北大校长周其风写的歌曲《妈妈的油茶果》,贴近实际,如临其境,道出了对于家乡、对于母亲、对于过往岁月的一腔深情,确实是山里人生活的真实写照。网上网上真人赌场网站
Hale Waihona Puke 有资料说明,油茶是世界上四大木本油料之一,生长在中国南方亚热带丘陵地区,是中国特有的纯天然高级油料。茶籽有大果和小果之分,尤以小果榨取的茶油品质为最佳。茶油的色泽清纯,气味 醇香,营养丰富,风味独特,而且耐于贮藏,不易变质,还具有相当高的药用价值,是十分优质的食用油。小时候,我们经常到村头的榨油坊参观,那又是一番别样的劳动场景:几个扎着头巾的壮汉, 吆喝着粗犷的号子,推动粗大的木槌撞击楔子,挤压油槽里裹着茶麸的包箍,压榨出清亮鲜香的山茶油,如同琥珀一般晶莹剔透,散发一阵阵淡雅的清香。

人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳

人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳

第十一章《全等三角形》知识要点归纳一、知识网络二、基础知识梳理 1、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。

2、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。

(2)两边和它们的夹角对应相等的两个三角形全等。

(3)两角和它们的夹边对应相等的两个三角形全等。

⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理A B C D E F 中和在DEF ABC ∆∆⎪⎩⎪⎨⎧===DF AC EF BC DEAB DEF(SSS) ABC ∆∆∴≌ A B C D EF中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB DEF(SAS) ABC ∆∆∴≌ AB CDE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A(4)两角和其中一角的对边对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

注意:①全等三角形问题中,找准对应点,对应边,对应角。

(突出对应) ②题中已知平移、翻折、旋转相当已知全等;③判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

④要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

⑤要善于灵活选择适当的方法判定两个三角形全等。

其中:一般三角形有四 种判定方法 。

直角三角形有五 种判定方法。

3、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上DEF(ASA)ABC ∆∆∴≌ A B C DE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A DEF(AAS)ABC ∆∆∴≌ A C BEFD中和在DEF Rt ABC Rt ∆∆⎩⎨⎧==DF AC DE AB )HL (DEF Rt ABC Rt ∆∆∴ ≌ ·ADP COB角平分线的性质)平分PD(PC OAPD OB PC AOB OP =∴⊥⊥∠ ·ADP CBAOB∠∠=∠∴=⊥⊥平分或:角平分线的判定)OP BOP(AOP PD PC OA PD OB PC注:①性质与判定都是由三个条件推出一个结论,要正确应用; ②会用尺规做一个角的平分线,依据为“边边边”。

初三数学全等三角形知识精讲

初三数学全等三角形知识精讲

全等三角形知识精讲一. 本周教学内容:全等三角形二. 教学过程:图形全等的识别:(1)重叠法:能够完全重合的两个图形是全等图形;(2)形状、大小完全相同的图形是全等图形;(3)相似比为1的两个图形是全等图形。

全等三角形的识别:1. 判定公理:(1)判定公理1 (简称“边角边”或“SAS”)有两边和它们的夹角对应相等的两个三角形全等。

(2)判定公理2 (简称“角边角”或“ASA”)有两角和它们的夹边对应相等的两个三角形全等。

(3)判定公理3 (简称“边边边”或“SSS”)有三边对应相等的两个三角形全等。

(4)判定4(推论,简称为“角角边”或“AAS”)有两角和其中一角的对边对应相等的两个三角形全等。

(5)判定5(斜边、直角边公理,简称“斜边直角边”或“HL”)有斜边和一条直角边对应相等的两个直角三角形全等。

例1. 如图1,△ADE和△ABC是全等的,指出它们的对应边和对应角。

图1分析:依据图形找对应边和对应角,应认真观察图形,较长的边与较长的边对应,较短的边与较短的边对应,较大的角跟较大的角对应。

解:当△ADE≌△ABC时,AD与AB,AC与AE,ED与CB是对应边;∠E与∠C,∠EAD与∠CAB,∠EDA与∠B是对应角。

点拨:认真视图是关键。

例2. 如图2,△ABC≌△ADE,∠1=∠2,∠B=∠D,指出其他的对应边和对应角。

图2分析:可将两个三角形从图形中分离出来,再寻找余下的对应边和对应角。

解:∠BAC 与∠DAE 是另一对对应角;AB 与AD ,AC 与AE ,BC 与DE 是对应边。

点拨:做题时,书写全等三角形要注意它们对应顶点的排列顺序,书写时,对应顶点所确定的对应线段为对应边,对应边所对的角为对应角,这样可有效地防止出错。

例3. 如图3,已知AB =DE ,AB//DE ,AF =DC 。

试说明△ABC ≌△DEF 全等的理由。

图3分析:由图形及已知AB =DE 、AF =DC 可得AC =DF ,而它们的夹角∠A 和∠D 由AB//DE 可得出。

八年级数学全等三角形新课讲义完整版(全8讲)

八年级数学全等三角形新课讲义完整版(全8讲)

八年级数学全等三角形新课讲义全面完整版(全八讲)A B C 1 E DA B C D O 1 2(1) (2) A B D C (1) (2) AB C E D第一讲 全等三角形概念及其性质(一) 知识要点1、 全等三角形的有关概念1)能够完全重合的两个图形叫做 形。

2)能够完全重合的两个三角形叫做全等 形。

把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

3)全等三角形表示方法:“全等”用“≌”表示,读作“全等于”,如△ABC ≌△DEF 。

4)对应元素:①对应顶点:点A 与点D ,点B 与点E ,点C 与点F 是对应顶点 ②对应边:AB 与DE ,AC 与DF ,BC 与EF 是对应边 ③对应角:∠A 与∠D ,∠B 与∠E ,∠C 与∠F 是对应角当两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如右图所示,△ABC 和△DEF 全等,是,记作△ABC ≌△DEF 。

其中,。

2、常见的全等三角形的基本图形有平移型、旋转型和翻折型。

(1)平移型:如下左图,若△ABC ≌△DEF ,则BC=EF 。

将△DEF 向左平移得到下右图,则仍有BC=EF ,在右图中,若知BC=EF ,则可推出BE=CF 。

(2)旋转型:如下左图,两对三角形的全等属于旋转型,图形的特点是:图1的旋转中心为点A ,有公共部分∠1;图2的旋转中心为点O ,有一对对顶角∠1=∠2。

(3)翻折型:如右图,两个三角形的全等属于翻折型,其中图中有公共边AB 3、 全等三角形的性质1) 全等三角形的对应边相等; 2) 全等三角形的对应角相等。

3) 知识延伸:如果两个三角形全等,则三角形的对应边上的中线、高线及对应角的角平分线也相等。

AB C DE F AB C DE FA B C D E FB AC D EEAB C D OA B C DFE 4、规律方法小结:在寻找全等三角形的对应边和对应角时,常用的方法有:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角; (4)全等三角形中一对最短的边(或最小的角)是对应边(或对应角)。

初二数学知识点总结:全等三角形

初二数学知识点总结:全等三角形

初二数学知识点总结:全等三角形
一.定义
1.全等形:形状大小相同,能完全重合的两个图形.
2.全等三角形:能够完全重合的两个三角形.
二.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
以上就是为大家提供的“初二数学知识点总结:全等三角形”希望能对考生产生帮助,更多资料请咨询中考频道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
E F B D C
6
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
7.如图,在菱形 ABCD 中,分别以 AB、AD 为直角边向外作等腰 Rt△ABE 和等腰 Rt△ADF, 连接 BF、DE 交于点 I。 (1)如图 1,若 AB=5,BI=2,求 IE 的长; (2)如图 2,G、H 分别为线段 BE、DF 的中点,连接 GH。求证:BF= 2 GH.
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
1.如图,点 E 为四边形 ABCD 内一点,连接 AE、BE、AC,过点 D 作 DF⊥AE 于点 F,连接 DE 并延长,交 BC 于点 G。已知 AB=AC,AD=AE,∠BAC=∠EAD,GD 平分∠CDF. (1)若 AE=4,CD= 2 3 ,求 AB 的长; (2)求证:BG=CG.
A
F H B D E G C
4
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
5.如图所示,已知△ABC 中,∠ABC=60°,点 D、E 分别在 BC 边和 AC 边上,连接 AD 和 BE 相交于点 F,且满足 BD=BE=AB。 (1)若 BE⊥AD,EF=1,求△ABD 的面积; (2)求证:DF=EF+CD.
A
E F
C
D
B
5
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
6.如图,△ABD 是等腰直角三角形,点 C 是 BD 延长线上一点,F 在 AC 上,AD=AF,E 为 △ADC 内一点,连接 AE、BE,AE 平分∠CAD,AE⊥BE。 (1)若∠EBD=15°,求∠ADF; (2)求证:BE-AE=DF.
A D F
E B G C
1
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
2.如图,在等腰三角形 ABC 中,∠C=90°,D 为 CB 延长线上一点,连接 AD,以 AD 为斜边构 造等腰直角三角形 ADE,连接 BE。 (1)若 AC=4,AE=6,求 BD 的长; (2)证明:BE=DE.
(1)如图①,若 AB= 2 2 ,求 S ∆CBE . (2)如图②,过点 E 作 EQ⊥BD 交 BC 于点 Q,求证:AC=
1 BD+2EQ. 2
C
CБайду номын сангаас
D E
图1
D E
图2
Q
A
B
A
B
1 0
G C E D A
图1
G F C E D B A
图2
B
9
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
10.如图, 等腰直角三角形△ABC 中, ∠ACB=90°,AC=BC, 点 D 是 AC 边上一点, ∠CBD=30°, 点 E 是 BD 边上一点,且 CE=
1 AB。 2
G A E F F B C B C A E
D
图1
D
图2
8
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
9.如图,在 Rt△ABC 中,∠ACB=90°,AC=BC,取边 BC 上一点 D,连接 AD。E 是 AD 延长线上 一点,连结 BE 并延长,交 AC 延长线于点 G。 (1)如图 1,若 BE⊥AE,∠DAB=15°,BD=1,求 BG 的长; (2)如图 2,连结 EC,过点 A 作 AF⊥EC 交 EC 延长线于点 F,且∠FAC=∠BAE, 求证:GE+DE= 2 CE.
E E G B I C D F
图1 图2
A
B I C D H
A
F
7
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
8.已知,如图 1 在锐角△ABC 中,∠ABC=45°,AD⊥BC 于点 D,BE⊥AC 于点 E,BE 与 AD 交于点 F。 (1)若 BF=5,DC=3,求 AB 的长; (2)在图 1 上过点 F 作 BE 的垂线,过点 A 作 AB 的垂线,两条垂线交于点 G,连接 BG,得 如图 2。 ①求证:∠BGF=45°; ②求证:AB=AG+ 2 AF.
E A
C
B
D
2
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
3.如图,在 Rt△BCE 中,∠BCE=90°,以 BC 为斜边作等腰直角三角形 ABC,点 D 为 BE 中点, 连接 AD,过点 E 作 AC 的垂线交 AC 于点 H,交 BC 于点 F。 (1)若 CE=2,AB= 2 2 ,求 CD 的长; (2)求证:BF=2AD.
A
E
D B F
H
C
3
八中 2019 级 初三上 第十八讲 全等三角形
张勋老师编辑整理
4.如图,在△ABC 中,AB=AC,点 D、E 在线段 BC 上,且 BE=CD,连接 AD、AE,过点 D 作 DF⊥AE,垂足为 H,交 AC 于点 F,过点 E 作 EG⊥AC,垂足为 G。 (1)若 DH=4,AD=5,HF=1,求 AF 的长; (2)若∠BAC=90°,求证:AF=2CG.
相关文档
最新文档