55KW变频器配套用制动单元制动电阻

合集下载

变频器制动电阻的选择及安装和配线注意事项

变频器制动电阻的选择及安装和配线注意事项
制动单元与制动电阻的选配
A、首先估算出制动转矩
=((电机转动惯量 电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩
一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;
3、制动电阻器功率大于电动机功率KW/2。(按照公式Pb=8Q*v*η)
4、制动电阻值大小选择公式700/电动机功率KW(采用多个制动单元并联运行时,每个制动单元所配置的电阻器阻值不小于700/电动机功率KW;最小电阻值要按照有关配置表查得);
5、首先依据电动机大小确定变频器的功率大小;
变频器制动电阻的安装和配线注意事项
B、接着计算制动电阻的阻值
=制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)
在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动 单元动作电压值一般为710V。
C、然后进行制动单元的选择
1.制动电阻的安装
制动电阻是一个发热体,因此,安装的要点如下:
(1)安装位置制动电阻不能和变频器装在同一个控制柜内,以免使变频器受热。也不要太靠近其他怕热的设备,以免影响其他设备的正常运行。
制动电阻也不要和变频器离得太远,一般应在5m以内,最多也不要超过10m。
(2)电阻柜的设计电阻柜应充分考虑制动电阻的散热。
制动电阻
制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。

关于变频和伺服制动电阻的选型

关于变频和伺服制动电阻的选型

制动力矩计算 要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。 制动力矩越大,制动能力越强,制动性能约好。但是制动力矩要求越大,设备投资也会越大。
制动力矩精确计算困难,一般进行估算就能满足要求。 按100%制动力矩设计,可以满足90%以上的负载。 对电梯,提升机,吊车,按100% 开卷和卷起设备,按120%计算 离心机100% 需要急速停车的大惯性负载,可能需要120%的制动力矩 普通惯性负载80% 在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器本身。 超过150%的力矩是没有必要的,因为超
一般Kc取值如下:
电梯 Kc=10~15%
油田磕头机 Kc=10~20%
开卷和卷取 Kc=50~60%
最好按系统设计指标核算 离心机 Kc=5~20%
从这个项目中我才认知到制动电阻在某些场合的重要性。
2、在一个机床改造项目中(正在进行),一个进给轴用了蒙德主轴MF5。5KW伺服驱动器(搞机械的副总钦定,这个选型俺没过问),用森力玛主轴伺服电机3。7KW,2000-8000转,厂家发来伺服同时配置了40欧1600W铝壳电阻。
3、在此机床改造项目中,另外一个进给轴为1。5KW6极变频电机,我选了2。2KW伟创矢量变频(据说伟创刚出矢量,俺就拿来当螃蟹吃),制动电阻厂家建议配置250欧300W,咨询伟创之后,对方没有给出非常详细的理论或计算公式。俺不满足,思考后自己配置电阻175欧500W电阻。
下放高度超过100m的吊车 Kc=20~40%
偶然制动的负载 Kc=5% 其它 Kc=10%
电阻计算基准:电机再生电能必须被电阻完全吸收 电机再生电能(瓦)=1000×P×k=电阻吸收功率(V×V/R)

变频器为什么要连接制动电阻

变频器为什么要连接制动电阻

变频器为什么要连接制动电阻从变频器的工作原理可知,改变电机工作电源频率需要经过整流-->逆变的过程,制动电阻就处在整流后的位置,见下图⑧和⑨之间的电阻:那么制动电阻是起什么作用呢?下图示例中:当电机处在减速阶段时,电机开始向变频器反馈能量,即P-brake;然后直流侧电压开始升高,当电压升高到一定阈值后,制动斩波器(BRC)处于ON的状态,此时反馈的能量开始释放到制动电阻上,即Pv由于多余的能量通过制动电阻以热能的形式消耗掉,因此直流侧电压开始降低,当降低到一定阈值后,制动斩波器(BRC)处于OFF的状态,制动电阻不再工作。

以上就是制动电阻工作的原理及流程。

一般情况下,由于各厂家的设计理念不同,直流侧的电容在设计上可能存在差异。

有些产品电容大,在工作时,能够吸收较多的能量,当工况不十分严苛时,可能就不需要制动电阻也能正常工作。

有些产品电容小,无法吸收反馈能量,此时加制动电阻就十分必要的,像SEW的MDX61B或者MC07B不加制动电阻时,如果报警F04或者F07,很有可能就是因为没有制动电阻的原因。

制动电阻的作用1、保护变频器不受再生电能的危害电机在快速停车过程中,由于惯性作用,会产生大量的再生电能,如果不及时消耗掉这部分再生电能,就会直接作用于变频器的直流电路部分,轻者,变频器会报故障,重者,则会损害变频器;制动电阻的出现,很好的解决了这个问题,保护变频器不受电机再生电能的危害。

2、保证电电源网络的平稳运行制动电阻将电机快速制动过程中的再生电能直接转化为热能,这样再生电能就不会反馈到电源电网络中,不会造成电网电压波动,从而起到了保证电源网络的平稳运行的作用。

变频器配制动电阻,主要是想通过制动电阻来消耗掉直流母线电容上的一部分能量,避免电容的电压过高。

理论上如果电容存储的能量多,可以用来释放出来驱动电机,避免能量浪费,但是电容的容量有限,而电容的耐压也是有限的,当母线电容的电压高到一定程度,就可能会损坏电容了,有些还可能损坏IGBT,所以需要及时通过制动电阻来释放电,这种释放,是白白浪费掉的,是一种没有办法的做法。

制动电阻选型

制动电阻选型
22KW CDBR4030 22.5Ω 8KW 150
30KW CDBR4045 16.5Ω 10KW 150
37KW CDBR4030*2 13Ω 15KW 150
45KW CDBR4030*2 10.8Ω 20KW 150
55KW CDBR4045*2 9Ω 20KW 150
75KW CDBR4045*2 6.6Ω 30KW 150
160KW CDBR4220 4.2Ω 40KW 110
185KW CDBR4220 3.6Ω 45KW 110
200KW CDBR4220 3.3Ω 50KW 110
220KW CDBR4220 3Ω 55KW 110
250KW CDBR4220*2 2.6Ω 60KW 110
280KW CDBR4220*2 2.3Ω 70KW 110
220KW CDBR4220*2 2.25Ω 100KW 150
250KW CDBR4220*2 1.95Ω 120KW 150
280KW CDBR4220*2 1.75Ω 120KW 150
315KW CDBR4220*2 1.55Ω 140KW 150
400KW CDBR4220*3 1.2150KW 190
400KW CDBR4220*3 0.95Ω 200KW 190
第二种情况:是典型的位能性负载,在起重和电梯等工况下。并且运行周期在2min以内的工作情况的选配。这种选配也是我们经常用到的1/2配制。这配制的制动功率会比前一个工况的小。所以,K的系数会取大一点,这时候为1.5。
变频器 功 率 制 动 单 元 电 阻 阻 值 电阻功率 (周期为120S) 平 均 制 动 转 矩 %

变频器制动电阻的确定

变频器制动电阻的确定

变频器制动电阻的确定0 引言在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。

传动系统中所储存的机械能经异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。

如果电动机的制动并不快,电容器的电压升高就不十分明显。

相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。

目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。

对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。

反之,则需要选择制动电阻来耗散电动机再生的这部分能量。

1 变频器动力制动原理1.1 变频器电压检测及驱动电路为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。

图1为一种电压检测电路的工作原理图。

电压检测电路主要由电压采样电阻R1、R2、R3,滞环比较器LM399,逻辑转换器件等组成。

电压采样回路直接检测变频器直流侧电容器C 两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0 V,经逻辑转换后,触发制动晶体管V 导通,经过电阻R0释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。

特别强调的是,滞环比较器上下限值的设定很重要。

一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。

1.2 变频器制动单元如图2 虚线框所示为制动单元PW 的实际电路,包括晶体管V、二极管D1、D2和制动电阻RB。

如果回馈能量较大或要求强制动时,还可以选用接于H、G两点间的外接制动电阻REB。

55KW变频器配套用制动单元制动电阻

55KW变频器配套用制动单元制动电阻

Imax=制动单元动作电压(V)/制动电阻(Ω)
平均制动电流 Iav 则可由下式近似计算得出:
Iav=Kc×Imax
得出 Iav 和 Imax 后,只要保证所选取制动单元的额定电流和峰值电流均不小于所计算出的
Iav 和 Imax 即可。
规格型号
制动方式 额定电流 峰值电流(20S)
CDBR-4022C
产品型号
额定 峰值电 最小
电流
流 阻值
CDBR-2022C CDBR-2030C CDBR-4030C CDBR-4045C CDBR-4055C CDBR-4075C
15A 25A 15A 25A 27A 30A
50A 75A 50A 75A 85A 100A
6.8 10 20 13.6 12.5 10
机械等均可使用。
-----以上内容转载自网络仅供参考
1)配置制动单元型号:CDBR-4075C 2)适配变频器功率:55KW 3)制动单元品牌:上海民恩 4)额定电流:30A 5)峰值电流:100A 6)最小阻值:10Ω 7)配置制动电阻型号:CMRX-12KW10RJ 8)斩波电压:DC630V DC660V DC690V DC730V DC760V 9)外形及安装尺寸:见表格
CDBR-4110C 50A
6.8
150A
CDBR-4160C
5
70A 200A
CDBR-4220C
3.2
85A 300A
CDBR-4300C
2.5
110A 450A
CDBR-6045C
40
25A 75A
CDBR-6300C
5
110A 450A
斩波电压
DC380V DC630V DC660V DC690V DC730V DC760V

变频器制动电阻的选择

变频器制动电阻的选择
变频器制动电阻的选择
一.变频器及周边器件的选型(G7)
制动单元、制动电阻选择\起升制动单元、电阻选型步骤
特定选型
制动转矩TB算出
制动电阻选择 功率kW,阻值Ω
制动电阻RB算出
制动单元IB计算
消费电力计算
电阻功率增加率 m
过载耐量OK?
YES
END
NO
制动电阻选择
功率kW,阻值Ω
2
起升机构制动单元、电阻计算公式
k回馈时的机械能转换效率一般k07绝大部分场合适用kc制动频度指再生过程占整个电动机工作过程的比例这事一个估算值要根据负载特点估算电梯kc1015油田磕头机kc1020开卷和卷取kc5060最好按系统设计指标核算离心机kc520下放高度超过100m的吊车kc2040偶然制动的负载kc5其它kc10电机再生电能瓦1000pk电阻吸收功率v1v1r计算得到
计算得到:制动电阻R=700/P (制动电阻值=700/电机 千瓦数)
制动电阻R=V1*V1/700P =260*260/700P=97/P
电阻功率计算基准:
电机再生电能必须能被电阻完全吸收并转为热能释放
Q=P×k×Kc×s=P×0.7×Kc×1.4
17
近似为Q=P×Kc 因此得到: 电阻功率Q=电动机功率P×制动频度Kc 制动单元安全极限: 流过制动单元的电流值为700/R 电阻制动单元的制动电流计算(按100%制动力矩计算) 制动电流I=2.7P=2.7*132=356.4A 制动电阻R=V1*V1/700P =260*260/700P=97/P=0.738 如选:3个135A,2.35欧 制动单元,170KW 则R=2.35/3=0.78欧>0.738欧,3*135A=405A>356.4A 电阻功率Q=电动机功率P×制动频度Kc=132*0.5=66KW 每个40KW 90S制动20S, 21S内允许制动时间T=21*20/90 =4.7S

变频器制动电阻的选择及安装和配线注意事项

变频器制动电阻的选择及安装和配线注意事项

变频器制动电阻的选择及安装和配线注意事项在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。

当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。

电机再生的电能经续流二极管全波整流后反馈到直流电路。

由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。

过高的直流电压将使各部分器件受到损害。

因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。

处理再生能量的方法:能耗制动和回馈制动。

能耗制动的工作方式能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。

这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。

制动单元制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。

制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。

从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。

制动电阻制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。

通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。

变频器制动电阻介绍及阻值和功率计算方法

变频器制动电阻介绍及阻值和功率计算方法

变频器制动电阻介绍及阻值和功率计算方法
1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。

目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。

目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。

2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。

通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。

3 制动电阻的阻值和功率计算 3.1 刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。

刹车使用率ED%定义为减速时间T1 除以减速的周
期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散
除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。

刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。

(其中:制动电压准位电机的额定电流为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。

选择制动电阻的阻值时,不能小于该阻值。

根据以上所叙,制动电阻的阻值的选择范围为:。

变频器外围配置之制动电阻

变频器外围配置之制动电阻

电动机知识变频器外围配置之制动电阻在电压型变频器中通常采用图3-25所示的再生制动电路。

下面介绍制动电阻的选择方法和步骤。

(1)计算制动转矩首先按下式计算制动转矩TB (Nm):(4-16)式中JM――电动机转动惯量,kgm2 ;JL――负载转动惯量(折算到电动机轴的),kgm2;n1――减速开始速度,r/min;n2――减速结束速度,r/min;ts――减速时间,s;TL――负载转矩,Nm。

(2)计算制动电阻的阻值在进行再生制动时,即使不加放电的制动电阻,电动机内部也有20%的铜损被转换为制动转矩。

考虑到这个因素,可以先按下式初步计算制动电阻的预选值。

(4-17)式中Uc――直流电路电压(200V级为380V,400V级为760V),V;TB――制动转矩.Nm;TM――电动机额定转矩,Nm;n1――减速开始速度,r/min。

若在式(4-17)中,TB -0.2 TM <0,则没有必要加制动电阻。

如图4-32所示,放电电路由制动电阻和三极管组成,而电路电流的最大允许值则取决于三极管本身的允许电流Ic,即制动电阻所能选择的最小值Rmin为(4-18)因比,制动电阻RB的阻值应由式(4-19)决定:RminBOB (4-19)有时厂家也为自己的产品给出制动电阻最小值的参考值供用户选择。

(3)计算制动电阻的平均消耗功率Pr。

(kW)如前所述,占电动机额定转矩20%的制动转矩由电动机内部损失产生,因此,可按下式求得电动机制动时制动电阻上消耗的平均功率Domain: 直流减速电机More:2saffa (4―20)(4)计算制动电阻的额定功率Pr(kW)制动电阻的选择根据电动机是否处于反复加减速模式而异。

图4-32给出了减速模式,而图4-33则给出了通常作为制动电阻使用的一种电阻的功率增加率特性示意图。

在选择制动电阻时,应根据电动机的减速模式首先利用图4-33求出功率增加率m,并利用前面求得的制动电阻的平均消耗功率Pr。

变频器制动电阻介绍及阻值和功率计算方法

变频器制动电阻介绍及阻值和功率计算方法

变频器制动电阻介绍及阻值和功率计算方法1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。

目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。

目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。

2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。

通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。

3 制动电阻的阻值和功率计算3.1刹车使用率ED%制动使用率ED%,也就是台达说明书中的刹车使用率ED%。

刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。

刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。

(图1)现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。

3.2制动单元动作电压准位当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。

台达制动电压准位如表1所示。

3.3制动电阻设计(1)工程设计。

实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:其中:制动电压准位电机的额定电流为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。

变频器制动电阻介绍和计算方法

变频器制动电阻介绍和计算方法

变频器制动电阻介绍及计算方法1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。

目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。

目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。

2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。

通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。

3 制动电阻的阻值和功率计算3.1刹车使用率ED%制动使用率ED%,也就是台达说明书中的刹车使用率ED%。

刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。

刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。

(图1)图1刹车使用率ED%定义现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。

3.2制动单元动作电压准位当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。

台达制动电压准位如表1所示。

3.3制动电阻设计(1)工程设计。

实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:其中:制动电压准位电机的额定电流为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。

变频电机制动电阻介绍和计算

变频电机制动电阻介绍和计算

变频电机制动电阻介绍和计算一、变频电机制动电阻的原理变频电机制动电阻是一种电阻变化的装置,它通过改变电阻值,调整电机电流,实现电机制动过程中的电能转换。

其原理主要包括两个方面:一是通过电阻变化,调整电机绕组上的电流,控制电机的制动力矩;二是通过电阻转换,在电机制动过程中吸收并消耗电机绕组中的感应电能。

二、变频电机制动电阻的结构变频电机制动电阻通常由电阻元件、散热器和控制装置等组成。

其中,电阻元件是主要部分,一般由金属材料制成,具有较好的导电性能和散热性能。

散热器用于排散电阻元件产生的热量,保证电阻元件的正常工作。

控制装置用于调节电阻的大小和电机的制动过程。

三、变频电机制动电阻的工作原理在变频电机制动过程中,当电机正常运转时,控制装置将电阻置于一个较小的值,使电机正常运转。

当需要制动时,控制装置将电阻调至较大的值,通过电阻吸收电机绕组中的感应电能,使电机减速并停止运转。

变频电机制动电阻的工作过程主要包括三个阶段:加阻阶段、导通阶段和拖动阶段。

在加阻阶段,电机将电机电流从额定电流逐渐降低到零,实现制动过程。

在导通阶段,电机的电流被制动电阻吸收,转化为电能。

在拖动阶段,电机经过一段时间的冷却后,电阻被恢复到较小的值,电机恢复正常运转。

四、变频电机制动电阻的计算方法1.工艺参数计算:工艺参数计算主要包括额定电流、制动时间、制动扭矩等参数的计算。

其中,额定电流是指在正常运行条件下,电机的额定电流值;制动时间是指电机从正常运行到停止的时间;制动扭矩是指电机在制动过程中产生的扭矩。

2.电阻值计算:电阻值计算主要包括电阻标称阻值和限流电阻值的计算。

电阻标称阻值是指电阻元件在正常工作条件下的阻值;限流电阻值是指电阻元件在高温条件下的阻值,一般为标称阻值的80%左右。

3.功率计算:功率计算主要包括电阻功率和散热功率的计算。

电阻功率是指电阻元件吸收的电能功率;散热功率是指电阻元件产生的热量。

综上所述,变频电机制动电阻是一种实现对电机制动控制的装置,通过改变电路中的电阻值,调整电机的工作状态,实现电能的转换和传导。

5.5KW变频器配套制动电阻CRRB-520W100RJ

5.5KW变频器配套制动电阻CRRB-520W100RJ

5.5KW变频器配套制动电阻CRRB-520W100RJ壹,5.5KW变频器配套波纹电阻的作用当变频器带动的电机或其他感性负载在停机的时候,一般都是采用能耗制动的方式来实现的,就是把停止后电机的动能和线圈里面的磁能都通过一个别的耗能元件消耗掉,从而实现快速停车。

当供电停止后,变频器的逆变电路就反向导通,把这些剩余电能反馈到变频器的直流母线上来,直流母线上的电压会因此而升高,当升高到一定值的时候,变频器的1000W波纹电阻就投入运行,使这部分电能通过电阻发热的方式消耗掉,同时维持直流母线上的电压为一个正常值。

波纹电阻CRRB-520W100RJ型号CRRB- □W/□RJ阻值客户自选功率400W波纹电阻型号5.5KW变频器配套波纹电阻CRRB-520W100RJ参数表名称波纹电阻品牌上海昌日型号CRRB-520W100RJ 材料线绕匹配变频器 5.5KW 类型通用性性能通用外形圆柱形允许偏差±5% 额定功率520W冷却方式自冷产地上海厂家上海昌日电子科技有限公司2、CRRB-520W100RJ波纹电阻技术性能制动方式自动电压跟踪方式反映时间1ms以下有多种噪声电网电压300-460V,45-66Hz动作电压700V直流,误差2V滞环电压20V制动力巨通常130% ,最大150%保护过热,过电流,短路滤波器有噪声滤波器防护等级IPOO3、CRRB-520W100RJ波纹电阻计算方法:制动力矩1000W波纹电阻92% R=780/电动机KW100% R=700/电动机KW110% R=650/电动机KW120% R=600/电动机KW注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件;③制动时间可人为选择;④小容量变频器(≤7.5KW)一般是内接制动单元和1000W波纹电阻的;⑤当在快速制动出现过电压时,说明电阻值过大来不及放电,应减少电阻值.贰,5.5KW变频器配套波纹电阻结构由三部分组成采用陶瓷管作为骨架,用制作成波纹状合金电阻丝均匀地绕制在骨架上,表面有耐高温的绝缘涂料,安装方便,具有良好散热能力,可用于变频器制动,伺服系统,电源灯电器。

【VIP专享】55KW变频器配套用制动单元制动电阻

【VIP专享】55KW变频器配套用制动单元制动电阻

4.255KW 变频器配套用制动单元制动电阻-周期性制动负载的选型
对于周期性制动的负载类型,可以按照以下的方法来近似选择合适的制动单元类型:首先
10)制动方式:能耗式 11)包装:纸箱包装 21)种类:铝壳,波纹 22)设计加工周期:3 个工作日(常规型号现货) 23)售后服务:国家三包 1 年,免费提供技术咨询,技术指导,安装指导 24)产品咨询:(TEL:158 007 23045)
当传动应用中需要电机快速或精确的减速时,为了获得所需的制动转矩,并避免在减速 过程中产生过高的泵升电压影响设备的安全运行,应当使用 CDBR 系列制动单元。CDBR 系列制动单元是采用德国技术生产制造的低成本能耗式制动单元,配合适当的制动电阻后可 以将调速电机在减速过程中所产生的再生电能加以吸收消耗在电阻上,同时获得良好的制动 效果。CDBR 是将电机在调速过程中所产生的再生电能直接消耗在制动电阻上,所需的设备 简单,成本较低。所有的 CDBR 产品,均来自高度可靠的设计和精良的制造技术, CDBR 的每一件产品都能发挥最大的效能。
三 55KW 变频器配套用制动单元制动电阻-电气安装: 3.1 55KW 变频器配套用制动单元制动电阻-安装方式
制动单元要竖直安装在非易燃的坚固固定表面上,即要保证制动单元内部散热片方向是 竖直的,以利空气的自然对流散热。
制动单元在工作过程中会发热,因此安装的制动单元与周围其它部件要空出一定的距离, 视所选配制动单元功率的大小,所空出的距离可以在 150mm-500mm 之间选择。 3.2 55KW 变频器配套用制动单元制动电阻-制动单元与变频器间的接线如下图所示 四 55KW 变频器配套用制动单元制动电阻-制动单元的选型:
质可靠安全,特殊设计,可以使用普通电阻,不必选择无感电阻。 5.经济性:性价比高,品质可与同类进口产品相媲美,功率齐全,每个功率范围都有单台

变频器的制动电阻与制动单元

变频器的制动电阻与制动单元

变频器的制动电阻与制动单元杨德印变频器在运行中有时频繁启动和制动,有时拖动具有位能的负载(例如起重机械在降落时制动),这将导致直流电路的电压UD增高.从而产生过电压,因此必须配接制动电阻,将滤波电容器C上多余的电荷释放掉。

一、制动电路工作原理如图1所示。

图中DR是制动电阻,V是制动单元。

制动单元是一个控制开关,当直流电路的电压UD增高到一定限值时,开关接通,将制动电阻并联到电容器C两端,泄放电容器上存储的过多电荷。

其控制原理如图2虚线框内电路所示。

电压比较器的反向输入端接一个稳定的基准电压.而正向输入端则通过电阻R1和R2对直流电路电压UD 取样,当UD数值超过一定限值时.正向端电压超过反向端,电压比较器的输出端为高。

经驱动电路使IGBT管导通,制动电阻开始放电。

当UD电压数值在正常范围时,IGBT管截止,制动电阻退出工作。

IGBT管是一种新型半导体元件,它兼有场效应管输入阻抗高、驱动电流小和双极性晶体管增益高、工作电流大和工作电压高的优点.在变频器中被普遍使用,除了制动电路外,其逆变电路中的开关管也几乎清一色地选用IGBT管。

图1中的电阻R是限流电阻,可以限制开机瞬间电容器C较大的充电涌流。

适当延时后,交流接触器KM触点接通.将电阻R短路。

有的变频器在这里使用一只晶闸管,作用与此类似。

二、制动电阻的阻值和容量准确计算制动电阻值的方法比较麻烦,必要性也不大。

作为一种选配件,各变频器的制造商推荐的制动电阻规格也不是很严格,而为了减少制动电阻的规格挡次,常常对若干种相邻容量规格的电动机推荐相同阻值的制动电阻。

取值范围如下:的门槛电压,V:由式(2)计算出的制动电阻功率值是假定其持续工作时的值,但实际情况绝非如此,因为制动电阻只有变频器和电动机在停机或制动时才进入工作状态.而有的电动机甚至连续多天运行都不停机.即便是制动较频繁的电动机,它也是间断工作的,因此,式(2)计算出的结果应进行适当修正,根据电动机制动的频繁程度。

变频器制动单元和制动电阻起何作用?

变频器制动单元和制动电阻起何作用?

变频器制动单元和制动电阻起何作用?
答:变频器制动单元又称为斩波器。

当变频器和拖动的电机处于电动状态时变频器制动单元和制动电阻不工作;当变频器和拖动的电机处于制动状态时,变频器采用将负载的机械能通过逆变器转换为电能并储存在储能滤波回路的方法进行制动,变频器制动单元实时监控储能滤波回路的电压值,当其电压值升高到电容器耐压峰值时,说明储能滤波回路再不能储存更多的电能,为保护变频器和确保制动效果,此时变频器制动单元和制动电阻开始工作,将储能滤波回路储存的电能以热能的形式消耗掉一部分,直至储能滤波回路的电压值降到安全水平。

变频器制动电阻选型

变频器制动电阻选型

制动力矩×制动电阻 = 制动单元动作电压值/电动机的额定功率92%×R = 780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW制动性质 =电阻功率一般负荷 W(Kw)电阻KWΧ10℅频繁制动(1分钟5次以上) W(Kw)电阻KWΧ15℅长时间制动(每次4分钟以上) W(Kw) 电阻KWΧ20℅常用制动电阻选配表(10ED,100%制动力矩)(仅适用于380V变频器选配制动电阻时参考)电机功率(kW)电阻值(Ω) 电阻功率(kW)制动力矩(%)7.5kW 100Ω 7kW 100% 11kW 70Ω 1kW 100% 15kW 47Ω 1.5kW 100% 18.5kW 38Ω 2kW 100% 22 kW 32Ω 2.2kW 100% 30kW 23Ω 3kW 100% 37kW 19Ω 3.7kW 100% 45kW 16Ω 4.5kW 100% 55k W 13Ω 5.5kW 100% 75kW 9Ω 7.5kW 100% 90kW 7.5Ω 9kW 100% 110kW 6Ω 11kW 100% 150kW 4Ω 15kW 100% 165-187kW 3.5Ω 20kW 100% 200-220kW 3Ω 25kW 100% 250-300 kW2.5Ω30kW100%制动电阻标称功率 = 制动电阻降额系数×制动期间平均消耗功率×制动使用率% 在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。

交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。

4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。

变频器制动电阻的作用,什么时候配、配多大,如何计算?

变频器制动电阻的作用,什么时候配、配多大,如何计算?

变频器制动电阻的作用,什么时候配、配多大,如何计算?制动电阻器制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。

通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。

一、变频器带制动电阻是做什么用的1、解释1电机减速时,过大的设备惯量会将电动机变成发电机,这是出于发电运行状态,电机反向给变频器供电,这会造成变频器过压报警。

为了释放这部分能量,采用增大电阻功率(适当减小电阻值)的方法来实现的。

也有采用可反向供电到电源回路的,这在共直流母线的变频系统中运用的比较多,可节能。

制动电阻和发电效果是一样的,可防止变频器减速过压,减小减速距离,提高动态性能。

电机内置制动器一般是做最后停车制动的,而不做减速制动,这和电阻制动是有本质区别的,因为电阻制动只有电机减速的过程中有作用,在电机停止后是没有效果的,必须采用刹车才能让电机保持静止(有位能负载)。

2、解释2电机减速时,过大的设备惯量会将电动机变成发电机,这是出于发电运行状态,电机反向给变频器供电,这会造成变频器过压报警。

为了释放这部分能量,采用增大电阻功率(适当减小电阻值)的方法来实现的。

也有采用可反向供电到电源回路的,这在共直流母线的变频系统中运用的比较多,可节能。

制动电阻和发电效果是一样的,可防止变频器减速过压,减小减速距离,提高动态性能。

电机内置制动器一般是做最后停车制动的,而不做减速制动,这和电阻制动是有本质区别的,因为电阻制动只有电机减速的过程中有作用,在电机停止后是没有效果的,必须采用刹车才能让电机保持静止(有位能负载)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在不清楚实际的平均制动功率的情况下,可以简单的将负载分成轻载和重载两类并对照下
表来选择制动单元的型号:表中轻载是指实际负载较小,小于电机额定功率的 60%的场合
或实际制动率较低,在 200 秒的工作周期内制动时间小于 10%的情况,重载是指实际负载
大于电机额定功率的 60%或在 200 秒工作周期内实际制动时间大于 10%的场合。
Imax=制动单元动作电压(V)/制动电阻(Ω)
平均制动电流 Iav 则可由下式近似计算得出:
Iav=Kc×Imax
得出 Iav 和 Imax 后,只要保证所选取制动单元的额定电流和峰值电流均不小于所计算出的
Iav 和 Imax 即可。
规格型号
制动方式 额定电流 峰值电流(20S)
CDBR-4022C
CDBR 能耗制动单元 380 伏电网匹配电阻推荐表(电阻值决定制动力矩,电阻功率取决于
制动频率 Kc;下表制动力矩约 100%,Kc=10%时的电阻功率)
电机 Kw
电阻(大约)
制动力矩(大约)
7.5Kw
75 欧姆 780W
130%
11kW
50 欧姆 1040W
135%
15kW
40 欧姆 1560W
P2 370 250 190 355 210 16-36
一.55KW 变频器配套用制动单元制动电阻-能耗动单元的特点: 1.重载型 CDBR 系列 2.电压、功率范围:220V-690V;15KW-400KW;(内置散热风扇) 3.应用性:适用于各种进口、国产低压变频器(三相异步、永磁同步电机)。 4.安全性:采用先进的电力电子技术和高性能的 IGBT 作为开关器件,电压自动跟踪,品
DC1000V DC1050V DC1100V DC1150V DC1200V
图号 L
尺寸/(mm) W H L1 W1
配线
P1 240 100 153 228 70 4-6 240 100 153 228 70 4-6 240 100 153 228 70 4-6 240 100 153 228 70 4-6 240 100 153 228 70 4-6
1)配置制动单元型号:CDBR-4075C 2)适配变频器功率:55KW 3)制动单元品牌:上海民恩 4)额定电流:30A 5)峰值电流:100A 6)最小阻值:10Ω 7)配置制动电阻型号:CMRX-12KW10RJ 8)斩波电压:DC630V DC660V DC690V DC730V DC760V 9)外形及安装尺寸:见表格
机械等均可使用。
-----以上内容转载自网络仅供参考
开卷和卷取/离心机 Kc=50-60% / Kc=5-20%
下放高度超过 100 米的吊车
Kc=20-40%
偶然制动的负载/其他 Kc=5% / Kc=10%
然后确定系统最大制动电流 Imax 和平均制动电流 Iav。
最大电流应为在保证系统能正常工作、负载获得足够制动转矩时流过制动单元的制动电流。
当制动电阻已经正确的选定后,该电流可以下列公式计算得出:
100%
110kW
6.6 欧姆 30kW
100%
132kW
3.7 欧姆 40kW
140%
160kW
3.7 欧姆 40kW
140%
185kW
3.5 欧姆 50kW
120%
220kW
3.3 欧姆 60kW
110%
*表中额定电流是指制动单元工作时最大电流与制动频率 Kc 乘积的最大允许值,该值并不
表示制动单元一定可以在该电流下持续工作,而是与其工作环境的散热条件有关。
制动单元的选型是以其额定电流和峰值电流为依据的,要保证制动单元正常工作,必须保 证流过制动单元的最大电流小于其峰值电流,且最大电流与制动频率 Kc 的乘积小于其额定 电流。一般情况下,为了选型方便,可以直接根据负载情况按照 4.1 节的说明通过查表来选 择合适的制动单元型号。在要求更准确的情况下,可以参照 4.2 节的内容进行选择。 4.155KW 变频器配套用制动单元制动电阻-一般性负载选型表:
P2 320 187 163 304 120 16-36
320 187 163 304 120 16-36
320 187 163 304 120 16-36
320 187 163 304 120 16-36
370 250 190 355 210 25-50
P1 240 100 153 228 70 4-6
CDBR-4110C 50A
6.8
150A
CDBR-4160C
5
70A 200A
CDBR-4220C
3.2
85A 300A
CDBR-4300C
2.5
110A 450A
CDBR-6045C
40
25A 75A
CDBR-6300C
5
110A 450A
斩波电压
DC380V DC630V DC660V DC690V DC730V DC760V
上海民恩电气有限公司 咨询电话 15800723045,QQ:969827336 刘经理
制动单元
制动电阻箱
波纹电阻器
铝壳电阻器
公司主营变频器配套系列产品:制动单元,制动电阻,输入电抗器,输出电抗器,直流电抗
器,滤波器,变压器等产品;产品质量保证,价格实惠,欢迎来电咨询!
55KW 变频器配套用制动单元、制动电阻技术参数:
125%
18.5kW
30 欧姆 4800W
125%
22kW
27.2 欧姆 4800W
125%
30kW
20 欧姆 6000W
125%
37kW
16 欧姆 9600W
125%Βιβλιοθήκη 45kW13.6 欧姆 9600W
125%
55kW
10 欧姆 12kW
135%
75kW
6.8 欧姆 20kW
145%
90kW
6.6 欧姆 30kW
质可靠安全,特殊设计,可以使用普通电阻,不必选择无感电阻。 5.经济性:性价比高,品质可与同类进口产品相媲美,功率齐全,每个功率范围都有单台
制动单元可选用。也可并联使用. 二.55KW 变频器配套用制动单元制动电阻-详细技术说明:
2.1 55KW 变频器配套用制动单元制动电阻-技术规范 制动方式 电压跟踪方式 反应时间 1ms 以下,有多重噪声过滤算法 电网电压 如 380Vac,45-66HZ 动作电压 690Vdc,误差±2V 滞环电压 10V 保护/散热 过热,过电流,短路/内置散热风扇 噪声滤波 有 防护等级 IP00
4.255KW 变频器配套用制动单元制动电阻-周期性制动负载的选型
对于周期性制动的负载类型,可以按照以下的方法来近似选择合适的制动单元类型:首先
要确定制动频率 Kc,即再生过程占整个的制动周期的时间比例。当制动频率无法准确的确
定时,可以按不同的负载类型近似选取如下:
电梯/油田磕头机 Kc=10-15% / Kc=10-20%
产品型号
额定 峰值电 最小
电流
流 阻值
CDBR-2022C CDBR-2030C CDBR-4030C CDBR-4045C CDBR-4055C CDBR-4075C
15A 25A 15A 25A 27A 30A
50A 75A 50A 75A 85A 100A
6.8 10 20 13.6 12.5 10
10)制动方式:能耗式 11)包装:纸箱包装 21)种类:铝壳,波纹 22)设计加工周期:3 个工作日(常规型号现货) 23)售后服务:国家三包 1 年,免费提供技术咨询,技术指导,安装指导 24)产品咨询:(TEL:158 007 23045)
当传动应用中需要电机快速或精确的减速时,为了获得所需的制动转矩,并避免在减速 过程中产生过高的泵升电压影响设备的安全运行,应当使用 CDBR 系列制动单元。CDBR 系列制动单元是采用德国技术生产制造的低成本能耗式制动单元,配合适当的制动电阻后可 以将调速电机在减速过程中所产生的再生电能加以吸收消耗在电阻上,同时获得良好的制动 效果。CDBR 是将电机在调速过程中所产生的再生电能直接消耗在制动电阻上,所需的设备 简单,成本较低。所有的 CDBR 产品,均来自高度可靠的设计和精良的制造技术, CDBR 的每一件产品都能发挥最大的效能。
三 55KW 变频器配套用制动单元制动电阻-电气安装: 3.1 55KW 变频器配套用制动单元制动电阻-安装方式
制动单元要竖直安装在非易燃的坚固固定表面上,即要保证制动单元内部散热片方向是 竖直的,以利空气的自然对流散热。
制动单元在工作过程中会发热,因此安装的制动单元与周围其它部件要空出一定的距离, 视所选配制动单元功率的大小,所空出的距离可以在 150mm-500mm 之间选择。 3.2 55KW 变频器配套用制动单元制动电阻-制动单元与变频器间的接线如下图所示 四 55KW 变频器配套用制动单元制动电阻-制动单元的选型:
能耗式 12A
45A
CDBR-4030C
能耗式 15A
50A
CDBR-4045C
能耗式 25A
75A
CDBR-4075C
能耗式
30A
100A
CDBR-4110C
能耗式
50A
150A
CDBR-4160C
能耗式
70A
200A
CDBR-4220C
能耗式
85A
300A
五 55KW 变频器配套用制动单元制动电阻-制动电阻的选择:
拖动系统的惯性较大, 此时电动机处于发电状态,机械能快速回馈到直流母 线上,使直流
母线电压迅速上升,从而危及变频器的 安全,因此必须将该回馈能量迅速消耗掉,保持直
相关文档
最新文档