概率论与数理统计总结之第三章
概率论与数理统计第三章
二维离散型随机变量的边缘分布密度
设(X,Y)为离散型随机变量,
P( X ai , Y b j ) pij ,
条件分布是一种概率分布,它具有概率 分布的一切性质. 正如条件概率是一种概率, 具有概率的一切性质.
例如:P ( X xi | Y y j ) 0, i=1,2, …
P( X x
i 1
i
|Y yj) 1
例1 已知(X,Y)的分布密度如下,分别求在 X=1和X=0条件下,Y的分布密度。 Y 1 0 X
若对于不同的(ai,bj),Z ( X , Y ) 有相同的值,则应取这些相同值对应的概率之和。
例1:设(X,Y)联合概率分布为: X Y -1 2
-1
0
1
2
1/5 3/20 1/10 3/10 1/10 0 1/10 1/20
求X+Y,XY的概率分布。
例2:设(X,Y)相互独立,其分布密度为
常见的二维随机变量的分布
◆均匀分布 设G为平面区域, G的面积为A(0 A ), 若( X , Y )的分布密度为
1 ( x, y ) G A f ( x, y ) 其它 0 则称( X , Y )在G上服从均匀分布。
例2:设(X,Y)在区域G(0≤y≤2x,0 ≤x ≤2)上 服从均匀分布,求 (1)(X,Y)的分布密度、分布函数。 (2)概率P(Y>X2)
一般地,我们称n个随机变量的整体 X=(X1, X2, …,Xn)为n维随机变量或随 机向量.
高等教育出版社《概率论与数理统计统计》第3章
pi j 0, p 1 i j ij
Y X y1 y2
1 11 12
分布列 X 和Y 的 联合分布列 可表示为 表格形式
… yj p1j p2j . . . pij . . .
P ( X xj ) p j
pj 0; p 1 . j j
y
规范性) 0 F( x, y)1 且 ) (, ) 0lim (, y ) 20 (非负性) 即,对任意固定的 y,F(,x, y F是单调不减函数F ( x ,) 1; x, F 对任意固定的 x,F( x, x,)F ( x,) 0, y, F (, y ) 0. y 是单调不减函数, 30 (右连续性)
2. 二维随机变量的分布函数 定义1设(X, Y)是二维随机变量,
x , y R , 二元函数
F ( x,) y ) P{ ( X x ) (Y y ) } P ( X x ,)Y y )
称为二维随机变量(X ,Y )的分布函数,也称为随机变量 X 与 Y 的 联合分布.
0.375 0.3875 0.2000
3
pi
0.0375
0.3750
0
0.3875
0
0.2000
0
0.0375
0.0375
三、二维连续型随机变量
二维随机变量(X,Y)的分布函数F(x,y) 随机变量X 的分布函数F(x) 类比 若 f ( x ) 0 若 f ( x, y ) 0 x (-, +) 实数 x, y P87 定义4
xi x y j y { X {iX i }j {Y{ j )i } {Y j } P( , Y } X } P( Y j X i ) P( X i ) F(2, 2) pij
概率论与数理统计第三章课后习题答案
概率论与数理统计第三章课后习题答案概率论与数理统计第三章课后习题答案习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:(2)随机变量(X ,Y )的分布函数;(3)P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===??得 A =12(2)由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=??(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--??-->>?==?? 其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈?5.设随机变量(X ,Y )的概率密度为f (x ,y )=<<<<--.,0,42,20),6(其他y x y x k(1)确定常数k ;(2)求P {X <1,Y <3};(3)求P {X <1.5};(4)求P {X +Y ≤4}. 【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==??故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=??130213(6)d d 88k x y y x =--=?? (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=如图 1.542127d (6)d .832x x y y =--=?(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=如图b 240212d (6)d .83xx x y y -=--=??题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2)P {Y ≤X }.题6图【解】(1)因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ?<而55e ,0,()0,.y Y y f y -?>=?其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --<<>?==??且其他.5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x-==-+≈7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度. 【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+?>>?==?其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=4.8(2),01,0,0,.y x x y x -≤≤≤≤??求边缘概率密度.【解】()(,)d X fx f x y y+∞-∞=?x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ??--≤≤?=??其他()(,)d Y f y f x y x+∞-∞=?12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ?-?-+≤≤?=??其他题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=<<-.,0,0,其他e y x y求边缘概率密度.【解】()(,)d Xf x f x y y +∞-∞=?e d e ,0,=0,.0,y x x y x +∞--??>?=??其他()(,)d Y f y f x y x+∞-∞=?0e d e ,0,=0,.0,yy x x y y --??>?=??其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=≤≤.,0,1,22其他y x y cx(1)试确定常数c ;(2)求边缘概率密度. 【解】(1) (,)d d (,)d d Df x y x y f x y xy+∞+∞-∞-∞如图2112-14=d d 1.21xx cx y y c ==??得214c =.(2)()(,)d X f x f x y y+∞-∞=?212422121(1),11,d 840,0,.x x x x x y y ??--≤≤??==其他()(,)d Y f y f x y x+∞-∞=?522217d ,01,420,0,.y y x y x y y -??≤≤??==其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=?<<<.,0,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d Xf x f x y y +∞-∞=?1d 2,01,0,.x x y x x -?=<111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞=+-<<??其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ?<其他, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y<<?-?==-<<?+其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===?=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.XYX Y14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1)因1,01,()0,Xx fx <21e ,1,()20,yY y f y -?>?==其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -?<<>?=g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ?=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=??21/2001d e d 212[(1)(0)]0.1445.x yx yπ-==-Φ-Φ=??15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2)当0<="" p="">)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==??33610231010=d 2z zy yzy +∞-=题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==??336231010101=d 12y yzy z +∞-=-即11,1,2(),01,20,.Z z z zf z z ?-≥=<<??其他故21,1,21(),01,20,.Z z z f z z ?≥=<<??其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<="" p="">44144180160[1{180}]120[1(1)](0.158)0.00063.P X ?-=-<=-Φ=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-= ? ?-= ???-??= ???∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0};(2)求V =max (X ,Y )的分布律;(3)求U =min (X ,Y )的分布律;(4)求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 (4)类似上述过程,有26 3 9 4 9 2 520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1)求P {Y >0|Y >X };(2)设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R+≤?=其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=> 0(,)d (,)d y y xy xf x y f x y σσ>>>=π2π/405π42π/401d d π1d d πRR r r R r r R θθ=??3/83;1/24==(2){0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=??21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===?(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x≤≤<≤?=其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x=≤≤?=其他所以1(2).4Xf=22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余。
概率论与数理统计第3章
试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②
f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x
概率论与数理统计总结之第三章
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
概率论与数理统计第三章课后习题及参考答案
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
概率论与数理统计第3章课后题答案
概率论与数理统计第3章课后题答案第三章连续型随机变量3.1 设随机变数 的分布函数为F(x),试以F(x)表示下列概率:(1)P( a);(2)P( a);(3)P( a);(4)P( a) 解:(1)P( a) F(a 0) F(a);(2)P( a) F(a 0);(3)P( a)=1-F(a);(4)P( a) 1 F(a 0)。
3.2 函数F(x) 11 x2是否可以作为某一随机变量的分布函数,如果(1) x(2)0 x ,在其它场合适当定义;(3)- x 0,在其它场合适当定义。
解:(1)F(x)在(- , )设随机变数 具有对称的分布密度函数p(x),即p(x) p( x),证明:对任意的a 0,有(1)F( a) 1 F(a)12ap(x)dx;(2)P( a) 2F(a) 1;(3)P( a) 2 1 F(a) 。
证:(1)F( a)ap(x)dx 1ap(x)dx=1ap( x)dx 1ap(x)dx=1 F(a) 1 (2)P( ap(x)dxap(x)dxa12a0ap(x)dx;ap(x)dx 2 p(x)dx,由(1)知1-F(a)故上式右端=2F(a) 1;12ap(x)dx。
(3)P( a) 1 P( a) 1 [2F(a) 1] 2[1 F(a)]3.5 设F1(x)与F2(x)都是分布函数,又a 0,b 0是两个常数,且a b 1。
证明F(x) aF1(x) b F2(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型?证:因为F1(x)与F2(x1) F2(x2),于是F(x1) aF1(x1) b F2(x1) aF1(x2) b F2(x2) F(x2)F2(x都是分布函数,当x1 x2时,F1(x1) F1(x2),又xlimF(x) lim[aF1(x) b F2(x)] 0xlimF(x) lim[aF1(x) b F2(x)] a b 1xxF(x 0) aF1(x 0) b F2(x 0) aF1(x) b F2(x) F(x)所以,F(x)也是分布函数。
经管类概率论与数理统计第三章多维随机变量及概率分布
3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。
例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。
又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。
定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。
定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。
记作(X,Y)~F(x,y)。
(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。
因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。
3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。
设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。
(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。
概率论与数理统计 第三章
(1 e 2 x )(1 e y ), x 0, y 0, 其它, 0,
例2-续3
(3)求概率P{Y≤X}. 只需在概率密度f的非零 区域与事件区域 G={(x,y)|y≤x} 的交集D上积分. 由公式
0 F ( x, y) 1; ;
F ( x, y )关于x、y均单调不减右连续.
分布函数与离散型二维随机变量分布律、连 续型二维随机变量概率密度的关系[见后].
三、离散型二维随机变量
1、二维均匀分布
两种常见的二维连续型分布
设G为一个平面有界区域,其
二维均匀分布
面积为A.如果二维连续型随机变量(X,Y)的概率密
度为
1 , ( x, y ) G , f ( x, y ) A 0, 其它,
则称(X,Y)服从区域G上的均匀分布,记为(X,Y)~U(G).
2、二维正态分布
域”的概率.
分布函数具有下列基本性质:
对任意点 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 均有:
随机向量落在矩 形区域的概率
P{x1 X x2 , y1 Y y2 }
F ( x1 , y1 ) F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) 0;
D
x
例2-续4
2 e
0
2 x
(1 e )dx [e
x
2 x
2 3 x 2 1 e ] |0 1 . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计算 的方法。特别是会根据不同形状的概率密度非零区域 与所求概率的事件区域G来处理这类问题。 就P.73:例3来共同考虑如何分段?应分几段?怎 样计算各段值?(板书)
概率论与数理统计第三章
研究方法与一维类似,用分布函数、分布律、 或概率密度来描述其统计规律
二. 联合分布函数
X和Y的联合分布函数
F(x, y) P{(X x) (Y y)}
P{X x,Y y}
dx
6e(2 x3 y)dy
0
0
1 7e6
(III)两个常用的二维连续型分布
(1)二维均匀分布 若二维随机变量(X, Y)的密度函数为
f
(
x,
y)
1 SD
,
(x, y) D R2
0, 其它
则称(X, Y)在区域D上(内) 服从均匀分布.
易见,若(X, Y)在区域D 上(内) 服从均匀分布, 对
则称(X,Y)服从参数为1, 2 ,1, 2 , 的二维正态分布.
记作(
X,Y
)~N(
1 ,
2
,
2 1
,
2
2
,
)
五. 分布函数的概念推广到n维随机变量的情形
事实上, 对n维随机变量(X1, X2, … , Xn), F(x1, x2, … , xn)=P{X1 x1, X2 x2, … , Xn xn} 称为的n维随机变量(X1, X2, … , Xn)的分布函数, 或随机变量X1, X2, … , Xn的联合分布函数.
...
xi pi1 pi2 ... pij ... pi .
...
p .j p .1 p .2 ... p .j
例1. 已知(X,Y)的分布律为右图 X Y 1 0
概率论与数理统计总结之第三章
第三章 多维随机变量及其分布 二维随机变量:一般,设E 是一个随机试验,它的样本空间是S={e}.设X=X(e)和Y=Y(e)是定义在S 上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。
设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:)}(){(),(y Y x X P y x F ≤⋂≤=),(y Y x X P ≤≤=称为二维随机变量(X,Y )的分布函数,或称随机变量X 和Y 的联合分布函数分布函数F(x,y)具有以下基本性质: 1.F (x,y)是变量x 和变量y 的不减函数,即对于任意固定的y ,当);,(),(,1212y x F y x F x x ≥> 对于任意固定的x ,当),(),(,1212y x F y x F y y ≥> 2.0≤F(x,y)≤1,且对于任意固定的y ,F (-∞,y)=0, 对于任意固定的x, F (x ,-∞)=0, F (-∞,-∞)=0,F (∞,∞)=13.F(x,y )=F(x+0,y ),F(x,y+0),即F(x,y )关于x 右连续,关于y 也右连续4.对于任意,,),,(),,(21212211y y x x y x y x <<下述不等式成立 0),(),(),(),(21111222≥-+-y x F y x F y x F y x F离散型随机变量:如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y )是离散型随机变量称,2,1,,},{====j i p y Y x X P ij i i ……为二维离散型随机变量(X,Y )的分布律,或随机变量X 和Y 是联合分布律 表格形式表示联合分布律: Y X1x… i x… 1y11p … 1i p… ………j yj p 1… ij p… ………离散型随机变量X 和Y 的联合分布函数为∑∑≤≤=x x yy ij i i p y x F ),(,其中和式是对一切满足y y x x i i ≤≤,的i,j 来求和的连续型随机变量:对于二维随机变量(X,Y )的分布函数F (x,y),如果存在非负的函数f(x,y)使得对于任意x,y 有 ⎰⎰∞-∞-=y xdudv v u f y x F ),(),(,则称(X,Y )是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度概率密度的性质: 1.f(x,y)≥0 2.⎰⎰∞∞-∞∞-=∞∞=1),(),(F dxdy y x f3.设G 是xOy 平面上的区域,点(X,Y )落在G 内的概率为 ⎰⎰=∈Gdxdy y x f G Y X P ),(}),{(4.若f(x,y)在点(x,y )连续,则有),(),(2y x f y x y x F =∂∂∂一般,设E 是一个随机试验,它的样本空间是S={e},设),(),(2211e X X e X X ==…),(,e X X n n =是定义在S 上的随机变量,由它们构成的一个n 维向量,,(21X X …),n X 叫做n 维随机向量或n 维随机变量对于任意n 个实数n x x x n ,,^,,21元函数},^,{),^,(111n n n x X x X P x x F ≤≤=称为n 维随机变量,,(21X X …),n X 的分布函数或随机变量n X X X ,^,,21的联合分布函数。
概率论与数理统计第3章重点知识整理2
第三章 二维随机变量及其概率分布3.1 二维随机变量与联合分布函数一、二维随机变量1.定义:若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量。
二、二维随机变量的分布函数1. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的分布函数或称为随机变量X 和Y 的联合分布函数。
2. 联合分布函数的性质: (1)0≤F(x,y)≤1 , 且(a )对任意固定的y ,F(-∞,y)=0; (b )对任意固定的x ,F(x,-∞)=0; (c )F(-∞,-∞)=0, F(∞,∞)=1 .(2)F(x,y)关于x 和y 均为单调非减函数,即(a )对任意固定的y ,当x 1>x 2时,F(x 1,y)≤F(x 1,y); (b )对任意固定的x ,当y 2>y 1时,F(x,y 1)≤F(x,y 1).(3)F(x,y)关于x 和y 均为右连续,即F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数a 1<a 2 , b 1<b 2,有F(a 2,b 2)- F(a 2,b 1)- F(a 1,b 2)+ F(a 1,b 1)≥0三、二维离散型随机变量及其概率分布1. 定义:若随机变量(X,Y)只能取有限个或可数个值,则称(X,Y)为二维离散型随机变量。
若二维离散型随机变量(X,Y)所有可能取值为(x i ,y i ),i ,j =1,2,…,则称P{X= x i ,Y= y j }= p i j (i ,j =1,2,…)为二维离散型随机变量(X,Y)的概率分布.3. p ij 满足下列性质:(1)0≤p ij ≤1 .(2)∑∑=ijij p 1 .4. (X,Y)的联合分布函数: F(x,y)=P{X ≤ x ,Y ≤ y}∑∑≤≤x x yy ij i j p . 5. 关于X 和Y 的边缘分布:关于X 的边缘分布律P{X= x i }=∑∞=1j ijp= p i · ( i =1,2,…) ,1.1=∑∞=i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ijp= p ·j ( j =1,2,…) ,11.=∑∞=j j p .四、二维连续型随机变量及其联合概率密度 1. 定义:如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdsdt t s f ),(,则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的概率密度或X 和Y 的联合概率密度函数. 2. 概率密度函数f(x,y)的性质:(1)f (x,y)≥0 . (2)1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则有yx y x F y x f ∂∂∂=),(),(2 (4)若D 为xoy 平面上一个区域,点(X,Y )落入D 内的概率为⎰⎰=∈Ddxdy y x f D y x P ),(}),{(.3. 二维连续型随机变量(X,Y)X 的边缘概率密度函数为:f X (x)=⎰∞∞-dy y x f ),(Y 的边缘概率密度函数为:f Y (y)=x d y x f ⎰∞∞-),(3.2条件分布与随机变量的独立性一、离散型随机变量的条件分布与独立性1.定义:设(X ,Y )是二维离散型随机变量,当,0}{>=j y Y P,2,1,,}{},{}{========∙j i p p y Y P y Y x X P y Y x X P jij j j i j i称其为在j y Y =条件下随机变量X 的条件概率分布. 类似的,定义在i x X =条件下随机变量X 的条件概率分布为,2,1,}{},{}{========∙j p p x X P y Y x X P X X y Y P i iji j i i j2. 独立性:若对(X,Y )的所有可能取值(x i ,y j ),有}y }P{Y {},{j =====i j i x X P y Y x X P则称X 和Y 相互独立。
概率论与数理统计第三章
称为二维随机变量(X,Y)的联合分布函数, 简称为(X,Y)的分布函数。
几何意义:F(x,y)表示随机点 落入以(x,y)为顶点而位于 该点左下方的无穷矩形区 域D内的概率。(如图阴 影部分)
随机点(X,Y) 落在矩形区域:x1 x x2, y1 y y2 内的概率为
设二维随机变量 (X,Y) 的分布函数为 F(x,y),分别记关 于 X 和 Y 的边缘分布函数为 Fx(x)和 Fy(y),由于 Fx(x)=P(X≤x,Y<+∞ )=F(x,+∞ ), 同理,有 Fy(y)=F(+∞ ,y). 由此看出,边缘分布函数Fx(x),Fy(y)完全由联合分布 函数 F(x,y) 来确定。
y)
1/ 0
A ,
,
(x, y)G 其他
则称( X, Y )服从区域G上的均匀分布
与第2章中服从区间[a, b]上的均匀分布类似,服从区域 G 上的均 匀分布 (X, Y) 落在 G 中任一区域 D的概率只与的 D 面积成正比,
而与 D 的位置和形状无关。 P(X ,Y ) D m(D)
m(G)
第三章 多维随机变量及其分布
我们开始学习——多维随机变量 它是第二章内容的推广. 一维随机变量及其分布
多维随机变量及其分布 由于从二维推广到多维一般无实质性的 困难,我们重点讨论二维随机变量 .
到现在为止,我们只讨论了一维r.v及其分布. 但 有些随机现象用一个随机变量来描述还不够,而需 要用几个随机变量来描述.
y
.
(1)求(X, Y)的分布函数 F(x, y); (2)求 P(0<X≤3,0<Y≤4)。
解 (1)F (x, y)
概率论与数理统计第三章章节总结
概率论与数理统计第三章章节总结
概率论与数理统计的第三章主要介绍了随机变量及其分布、随机变量的离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容。
以下是本章的总结:
1. 随机变量及其分布
第三章第一小节介绍了随机变量的定义和性质,并介绍了离散型和连续型随机变量的区别。
然后,章节第二小节介绍了随机变量的分布,其中包括概率分布、密度函数、期望和方差的计算方法。
这些内容对于理解随机变量的分布非常重要。
2. 随机变量的离散概率和连续概率
第三章第三小节介绍了随机变量的离散概率和连续概率。
离散概率讨论的是离散型随机变量在某一范围内的取值概率,而连续概率讨论的是连续型随机变量在某一区间内的概率。
这些概念对于理解随机变量的性质和分布非常重要。
3. 期望和方差的计算
第三章第四小节介绍了期望和方差的计算方法。
期望是指一个随机变量的平均值,可以通过计算各个取值的概率和总和来实现。
方差是指一个随机变量在各个取值之间的差异,可以通过计算各个取值的差值和总和来实现。
这些内容对于计算随机变量的期望和方差非常重要。
4. 贝叶斯统计学
第三章第五小节介绍了贝叶斯统计学的原理和应用。
贝叶斯统计
学可以用来预测未来事件的概率,也可以用于概率模型的建模和优化。
这些内容对于实际应用非常有帮助。
综上所述,概率论与数理统计的第三章主要介绍了随机变量的分布、离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容,是学习概率论和统计学的重要基础。
《概率论与数理统计》第三章
§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,
第三章概率论与数理统计——矿大版
解 ⑴ 由性质
A dx
0 1
f ( x, y )dxdy 1 可得
y yx
G 0
x
xy dy 1 A 15
2
0
1 x
上页 下页 返回 结束
机动
目录
所以
15 xy , f ( x, y ) , 0
2
0 y x 1, others.
⑵ 由于 F ( x, y )
则 FX (x) P{ X x} P{ X x , Y } F ( x,)
同理可得 FY ( y) F (, y )
研究问题:已知联合分布,怎样求 X,Y 的边缘分布。
例1: 已知 ( X , Y )的分布函数为
(1 e F ( x, y )
P{ X xi , Y y j } pi j
(i , j 1 , 2 , )
称为二维随机变量 ( X , Y ) 的分布律。 性质:1)
pi j 0
2)
p
i 1 j 1
ij
1
机动
目录
上页
下页
返回
结束
将骰子抛两次,X—第一次出现的点数, 例1、 Y—第二次出现的点数,求(X , Y)的分布律。 解: X 1 2 3 4 5 6 Y 1 2 3 4 5 6
2 2
f ( x, y )dydx
12 dydx
பைடு நூலகம்
0
3
4
( x 9)( y 16)
2
.
例6 已知 ( X , Y ) 的概率密度为
Axy , f ( x, y ) , 0
概率论与数理统计教程(茆诗松)第三章
华东师范大学
第三章 多维随机变量及其分布
第13页 13页
列表为:
X1 0 1 X2 0 0.0455 0 1 0.2719 0.6826
29 March 2012
华东师范大学
第三章 多维随机变量及其分布
第14页 14页
课堂练习
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
p11 p12 L p1 j L p21 p22 L p2 j L M M M M M pi1 pi 2 L pij L M M M M M p⋅1 p⋅2 L p⋅ j L
pi ⋅
p1⋅ p2⋅ M pi ⋅ M
x1 x2 M xi M
p⋅ j
29 March 2012
华东师范大学
第三章 多维随机变量及其分布
P(X1=0, X2=0) = P(|Y|≥1, |Y|≥2) = P(|Y|≥2) = 2− 2Φ(2) = 0.0455 P(X1=0, X2=1) = P(|Y|≥1, |Y|<2) = P(1≤|Y|<2) = 2[Φ(2) − Φ(1)] = 0.2719 P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0 P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
−3 y 0
1
x
− 1 e−2x 2 × − 1 e−3y 1 = (1 − e−4 )(1 − e−3 ) = 6 2 0 3 0
29 March 2012
概率论与数理统计第3章
i
31
二维离散型随机变量的边缘分布
关于X的边缘分布列
X
x1
x2
x3
…
概率 P1.
P2.
P3.
…
pi P{X xi} pij
关于Y的边缘分布列
j
Y
y1
y2
y3
…
概率 P.1
P.2
P.3
…
p j P{Y y j} pij
32
i
16
2019-9-16
例1 设二维离散型随机变量(X,Y)的联合分布律为
30
15
2019-9-16
二维离散型随机变量的边缘分布
Y
X
y1
y2
y3
…
Pi.
x1
p11
p12
p13
…
P1.
x2
p21
p22
p23
…
P2.
x3
p31
p32
p33
…
P3.
…………… …
p.j p.1 p.2 p.3 …
关于X的边缘分布律 关于Y的边缘分布律
pi P{X xi} pij
j
p j P{Y y j} pij
22
11
2019-9-16
第4节 常见多维随机变量
23
1. 多项分布
在独立重复试验中,设每次实验必有A1, A2 , , Ar 之一发生,且事件Ai在每次实验中发生的概率为pi, 记Xi为Ai出现的次数,则 X1, X 2 , , X r 的分布律为
P{X1 n1, X 2 n2 , , X r nr}
20
10
2019-9-16
(4) P{X Y} f (x, y)dxdy y x 0, y 0
《概率论与数理统计》三
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)
性
1 0 pij 1,
质
2
pij 1.
j1 i1
分
布
函 F ( x, y) pij
数
xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
如;1234与,-X X X X 相互独立(没有相同项)放回抽样:样本总数为n x ,样本点为:正有几种选法,次有几种取法。
不放回抽样:样本总数为(1)(2)....--x x x ,样本点为:正有多少种取法,次有多少种取法第三节两个随机变量的函数的分布1.离散弄随机变量的函数分布2.两个连续型随机变量之和的概率 Z=X+Y 的分布设(X,Y)的概率密度为f(x,y),则Z=X+Y 的分布函数为(){}{}(,)+≤=≤=+≤=⎰⎰Z x y zF z P Z z P X Y z f x y dxdy这里的积分区域:x+y ≤z 是直线x+y=z 及其左下方的半平面()(,)[(,)]∞∞-∞-∞-∞-∞=-=-⎰⎰⎰⎰zz Z F z f u y y dudy f u y y dy du公式法:令x=z-y(y =z-x),得分布函数:()(,)()(,)∞-∞∞-∞=-=-⎰⎰Z Z F z f x z x dxF z f z y y dy如果两个变量独立:()()()()()()(),()∞-∞∞-∞'==-'==-⎰⎰Z Z X Y Z Z X Y f z F z f z y f y dy f z F z f x f z x dx对分布函数求导得Z 的概率密度为()()(,)()()(,)∞-∞∞-∞'==-'==-⎰⎰Z Z Z Z f z F z f z y y dyf z F z f x z x dx适用用两个变量的线性组合:注:结论:假于X,Y 都服从正态分布,并X,Y相互独立,那221212()(u u ,)σσ+++X Y N ,212()(,)σ+k X k Y N u 有限个相互独立的正态随机变量的线性组合仍然服从正态分布联合密度函数已知,二维连续性随机变量在一个区域上取值的概率我们转换成对联合密度函数作一个二重积分.。