《导数与微分》PPT课件

合集下载

3-4导数与微分

3-4导数与微分

多个函数相乘和 数u幂 (x)指 v(x)的 函情.形
例4 设y(x1)3 x1,求 y. (x4)2ex
解 等式两边取对数得
ly n ln x 1 ) ( 1 ln x 1 ) ( 2 ln x 4 ) ( x 3
上式两边 x求对导得 y1 1 2 1 y x1 3(x1) x4
2 1 2 1 1
a3 x03 a3 y03
21
21
切线x轴 在和 y轴上的截距 a3x分 03和a别 3y03.是
切线介于两坐标 的轴 线之 段间 长 : 为
21
21
(a3x03)2 (a3y03)2
a.
为一常数.
2
2
2
附录:x曲 3线 y3 a3
其参数方程为
x a cos 3 t
3 3x1
2
3
y'11 2 1 3 1 1 1 x 22x1 33x1 x 2x1 3x1
(3)y(lnx)xexl n(lxn)
y'exl nx ()l(nlnx)(lxn11)(lnx)x(ln(xl)n 1 ).
ln xx
lnx
又 解 l ny: xl n(xl)n两边对x求导,
例3 设 x 4x y y4 1 ,求 y 在 (0 ,1 点 )处.的
解 方程两x边 求对 导得
4 x 3 y x y 4 y 3 y 0
( 1 )
代x入 0, y1 得y
x0 y1

1; 4
将方 (1)两 程边x求 再导 对得
1 x 2 2 2 y x y 1 y 2 ( y ) 2 2 4 y 3 y 0

高中物理课件-高数第二章-导数与微分--课件

高中物理课件-高数第二章-导数与微分--课件
求 f 0
例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x

k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0

《高数四导数与微分》课件

《高数四导数与微分》课件

以通过对弦的长度进行微分得到。
微分在近似计算中的应用
泰勒级数展开
微分可以用来将一个复杂的函数 展开成泰勒级数,从而可以用简 单的多项式来近似复杂的函数。 这在近似计算中非常有用。
误差估计
通过微分,可以估计函数值近似 值的误差大小。例如,在求函数 在某一点的近似值时,可以通过 微分来估计误差的大小。
常数函数的导数
对于常数函数y=c,其导 数为dy/dx=0。
幂函数的导数
对于函数y=x^n,其导数 为dy/dx=nx^(n-1)。
指数函数的导数
对于函数y=a^x,其导数 为dy/dx=a^x*ln(a)。
对数函数的导数
对于函数y=log_a(x),其 导数为dy/dx=(1/x*ln(a)) 。
复合函数的导数
01 复合函数求导法则
对于复合函数y=f(g(x)),其导数为 dy/dx=(dy/du)*(du/dx)。
02 链式法则
对于复合函数y=f(g(x)),其导数为 dy/dx=(dy/du)*(du/dx)。
03 幂函数的链式法则
对于幂函数u=g(x)=x^n,其导数为 du/dx=nx^(n-1)。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函 数图像上某一点处的切线与x轴正方向 的夹角的正切值。
详细描述
对于可导函数f(x),其在任意点x处的 导数f'(x)表示函数图像上该点处的切 线斜率。具体来说,当函数在某点x处 可导时,该点的切线斜率即为f'(x)。
导数的物理意义
总结词
导数的物理意义是描述物理量随时间变化的速率,如速度、加速度等。
THANKS
感谢观看
03

高等数学导数的计算教学ppt

高等数学导数的计算教学ppt

第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
1 1 1 1 (arcsin x )' 2 2 (sin y )' cos y 1 sin y 1 x

dy dx
x x0
f ( u0 ) ( x0 )
即:因变量对自变量求导,等于因变量对中间变量求导 ,乘以中间变量对自变量求导.
16
第二章 导数与微分
第二节 导数的计算
设函数 y = f (u), u = (x) 均可导,则复合函数 y = f ( (x)) 也可导.且
dy dy du . dx du dx
sin x x 1 cos x
15
第二章 导数与微分
第二节 导数的计算
二.复合函数的导数
定理2. 2. 3 设函数 y = f (u) 与u = (x)可以复合 成函数y=f [(x)] ,如果u = (x)在x0可导,而 y = f (u) 在对应的u0= (x0)可导,则函数y=f [(x)]在 可导,且
( C ) 0
1 ( x ) x
( sin x ) cos x
(cos x ) sin x
( arcsin x )
( a x ) a x ln a
( arccos x )
( e ) e
x
x
( arctan x ) ( arc cot x )
9
第二章 导数与微分
第二节 导数的计算

高等数学导数与微分ppt

高等数学导数与微分ppt

h 则 tanα = 500
h
dα = 1 ⋅ 1 ⋅140 故sec α = 2 , ∴ d t 2 500
2
两边对 t 求导 500 1 dh dα 2 = 2 2 sec α ⋅ sec α = 1+ tan α 500 dt dt dh 已知 = 140 , 且h = 500 时, tanα = 1 , dt h=500 ( rad/ m ) in
若上述参数方程中 则由它确定的函数 利用新的参数方程
二阶可导, 二阶可导 且 可求二阶导数 . , 可得 dy ψ′(t ) : = G(t) = dx ϕ′(t )
x = ϕ(t )
d2 y d d = (G(t )) = (G(t )) dx 2 d x dx dt dt ψ′′(t )ϕ′(t ) −ψ′(t )ϕ′′(t ) = ϕ′(t ) ′2 (t ) ϕ
( x −1)( x − 2) 例6. 求 y = 的导数. 的导数 ( x − 3)( x − 4)
可以验证
′ u′( x) (ln | u( x) |) = u( x)
先两边取对数
1 ln y = [ ln(x −1) + ln(x − 2)− ln( x − 3) − ln( x − 4)] 2
由直线的点斜式公式, 由直线的点斜式公式, 得椭圆在点 处的切线方程
化简后得
注意 : 已知
×
t f ′′(t )
x = f ′(t ) d2 y 例如, 例如 y = t f ′(t ) − f (t ) , 且 f ′′(t ) ≠ 0, 求 2 . dx
dy dy / dt = 解: = dx dx / dt
r
πR (h− x)

高数导数与微分 ppt课件

高数导数与微分  ppt课件

(sec) tan x sec x
(csc) cot x cscx
ppt课件
9
• 对数函数 • 指数函数
( log a
x)
1 x
log
a
e
(ln x) 1 (a e时) x
(a x ) a x ln a
(ex ) ex
ppt课件
10
导数的几何意义
• 函数 y = f(x)在点x0处的导数 f (x0) 表示曲 线 y = f(x)上点M(x0,f(x0))的切线斜率 k,k = tan = f (x0 )
1处的连续性与可导性。
连续性 左极限=右极限=函数值
可导性 左导数=右导数
ppt课件
17
第二节函数的和、差、积、商求导法则
一、函数的和、差、积、商的导数
定理2-2 (导数的四则运算的法则) 若函数u = u(x),v
= v(x)都是 x 的可导函数,则
(1)u v也是x的可导函数,且(u v) u v
导,且( y) 0 ,那么它的反函数 y f (x) 在对
应的区间内可导,且有
dy dx
1 dx
,
或f
(
x)
1
( y)
dy
ppt课件
21
结论概括:反函数的导数等于它的原函数导 数的倒数 例2-21 求 y arcsinx 的导数 例2-22 求 y arctanx 的导数
ppt课件
22
基本初等函数的导数公式
lim y
x0 x
f (x0 x) f (x0 ) 存在,则称函数
x
y=
f(x)在点x0处可导,并称此极限为函数y =
f(x)在点x0处的导数,记做 f (x0) ,即

高等数学基础课课件第7讲_导数与微分(3)

高等数学基础课课件第7讲_导数与微分(3)
2015-1-31 4
2 3
2 3
2 3
(2) 参数方程求导法
设函数 y f ( x ) 由参数方程: x (t ) y (t )
1
0
0
2
确定
设 (t ), (t ) 都存在, 且 (t ) 0, x (t )存在可导的反函数 t ( x ). dy 如何求 ? dx
12
化为截距式
Y x X 3 y 3 xy ( x y ) 3 xy a
3
2 3 2 3 2 3

X
3
ax
2

Y
3
a y
2
1
线段长度:
l ( a x ) ( a y) a a
3 2 2 3 2 2 2
常数
2015-1-31 13
微分的简单应用 — 近似计算
当x 1时, 有 y dy 即 f ( x0 x ) f ( x0 ) f ( x0 ) x
t [0, 2 ]
x a( t sint ) [例2] 摆线: ,a 0 y a(1 cost )
a•
2015-1-31
2a
3
x a cos3 t [例3] 星形线: 3 y a si n t
t [0, 2 ]
内旋轮线
a
隐函数方程: x y a ,a0
1
5
2015-1-31
分析函数关系: y (t )
x (t )

t ( x)
1 1
y 通过 t 成为x 的复合函数
y [ ( x )]
利用复合函数和反函数微分法, 得

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节

1
记作
f
(
x),
y,
d2y dx2

d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx

同济版高等数学第二章导数与微分_3高阶导数课件

同济版高等数学第二章导数与微分_3高阶导数课件

阶数 2
分析:
f
(
x)


4x3 2x3
, ,
x0 x0

f
(0)

lim
x 0
2x3 x
0
0
f (0)

lim
x0
4x3 0 x

0

f
(
x)


12x 2 , 6x2,
x0 x0

f
(0)

lim
x0
6x2 x
0
f
(0)

lim
x0
的导数为 f (x) 的二阶导数 , 记作 或

y ( y)

d2 y d x2
d (dy) d x dx
类似地 , 二阶导数的导数称为三阶导数 , 依次类推 ,
n 1 阶导数的导数称为 n 阶导数 , 分别记作

机动 目录 上页 下页 返回 结束
例1. 设

解: y a1 2a2 x 3a3x2 nan xn1 y 2 1a2 3 2a3x n(n 1)an xn2
1
x2
B (x 1) 原式
1
x 1
y 1 1
x 2 x 1
y(n)

(1)n
n!
( x
1 2)n1

(x
1

1)
n1

机动 目录 上页 下页 返回 结束
(4) y sin6 x cos 6 x
解:
sin4 x sin2 x cos 2 x cos 4 x

导数与微分课件

导数与微分课件

导数和微分都与函数的局部性质 有关,它们都可以用来研究函数 的单调性、极值和曲线的形状等

导数与微分的区别
导数主要关注函数在某一点的变化率,而微分则更关注函数在某一点附近的局部变 化趋势。
导数是函数值的增量之比,而微分则是函数值增量的近似值。
导数是一种数学运算,可以通过求导公式或法则进行计算;而微分则是一种近似计 算方法,常常用于近似计算函数的值。
总结词
函数单调性与导数正负相关
详细描述
如果函数在某区间内的导数大于0,则函数在此区间内单调递增;如果导数小于 0,则函数单调递减。导数的正负可以判断函数的增减性。
极值与导数
总结词
导数变化与极值点的关系
详细描述
函数极值点处的一阶导数为0,但一阶导数为0的点不一定是极值点。需要进一步 判断二阶导数的正负来确定是否为极值点。
公式
$f'(x) = lim_{Delta x to 0} frac{Delta y}{Delta x}$
解释
其中$Delta y = f(x + Delta x) - f(x)$,表 示函数在$x$处的变化量,$Delta x$表示 自变量的变化量。
导数的几何意义
总结词
导数的几何意义是切线的斜率, 表示函数图像在该点的切线。
二项式定理
对于多项式函数,可以使 用二项式定理进行近似计 算。
泰勒级数
将函数展开成泰勒级数, 可以用来近似计算函数的 值。
误差估计
导数与误差
导数可以用来估计函数值 的误差大小。
微分中值定理
利用微分中值定理,可以 估计函数在某区间的变化 量。
误差传播
在误差传播过程中,可以 利用微分知识来估计误差 的大小。

高等数学武大社课件第三章导数与微分

高等数学武大社课件第三章导数与微分
ห้องสมุดไป่ตู้
定义2 设函数y=f(x)在点x0的某左(右)邻域内有定义,若
存在,则称y=f(x)在点x0的左(右)导数存在,记作f′-(x0)(f′+(x0)). 函数的左(右)导数,又称函数的单侧导数.
显然,当函数y=f(x)在点x0处导数存在时,有结论:
f′(x0)
f′-(x0)和右导数f′+(x0)存在并且相等.
第一节 导数的概念
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抛开这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.
一、导数概念的两个引例 为了说明微分学的基本概念——导数,我们先讨论以下两 个问题:速度问题和切线问题. 1. 变速直线运动的瞬时速度 我们知道在物理学中,物体做匀速直线运动时,它在任何 时刻的速度可由公式
v=s/t
第一节 导数的概念
来计算,其中s为物体经过的路程,t为时间.如果物体作非匀 速运动,它的运动规律是s=s(t),那么在某一段时间[t0,t1 ]内,物体的位移(即位置增量)s(t1)-s(t0)与所经历的时间(即 时间增量)t1-t0的比,就是这段时间内物体运动的平均速度.我 们把位移增量s(t1)-s(t0)记作Δs,时间增量t1-t0记作Δt,平均 速度记作v,得
高等数学
directories


第三章 导数与微分
• 第一节 导数的概念 • 第二节 函数的求导法则 • 第三节 高阶导数 • 第四节 相关变化率 • 第五节 函数的微分

《高等数学》(同济六版)教学课件★第2章.导数与微分

《高等数学》(同济六版)教学课件★第2章.导数与微分
( 构造性定义 ) 本节内容
( C ) 0 ( sin x ) cos x 证明中利用了 1 两个重要极限 ( ln x ) x
初等函数求导问题
求导法则 其他基本初等 函数求导公式
目录
上页
下页
返回
结束
一、四则运算求导法则
定理1. 函数 u u ( x) 及 v v( x) 都在点 x 可导
第二章 导数与微分
微积分学的创始人:
导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出.
英国数学家 Newton
德国数学家 Leibniz 微分学
导数
微分
描述函数变化快慢
描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
第一节 导数的概念
一、引例 二、导数的定义
第二章
三、导数的几何意义
例6. 设
f ( x0 h) f ( x0 h) . 存在, 求极限 lim h 0 2h
是否可按下述方法作: f ( x ) f ( x0 ) hf)( x0f h (x ) 0 0) 0 解: 原式 lim
令 t x0 0h , 则 h
原式 1 f ( x ) 1 f ( x ) f ( x0 ) 0 0 2 2
返回 结束
线密度 是质量增量与长度增量之比的极限
电流强度 是电量增量与时间增量之比的极限

目录
上页
下页
二、导数的定义
定义1 . 设函数 若
在点
的某邻域内有定义 ,
y f ( x ) f ( x0 ) x x x0
y f ( x ) f ( x0 ) lim lim x x0 x 0 x x x0

《经济数学》课件 第三章 导数与微分

《经济数学》课件 第三章  导数与微分

定 义
在曲线L上点 P0附近,再取一点P,作割线P0 P ,当点P沿曲 线L移动而趋向于P0 时,割线P0 P 的极限位置P0 T 就定义为曲线L
在点 P0处的切线.
3.1
切线的斜率为
k tan lim tan lim y lim f (x0 x) f (x0 )
x x0
x0
x
LOGO 正文.第三章
f(0)
lim
x0
y x
lim
x0
|x| x
lim
x0
x x
1
f(0)
lim
x0
y x
lim
x0
|x| x
lim
x0
x x
1
左、右导数不相等,故函数在该点不可导.由此可见,函数连续是
可导的必要条件而不是充分条件.
目录页
第 15 页
第二节 函数的求导法则和基本求导公式
• 一、 函数求导的四则运算法则 • 二、 复合函数的求导法则 • 三、 基本初等函数的求导公式
dx du dx
设 y f (u) ,u (v) ,v (x) ,则复合函数 y f {[ (x)]}
对 的导数是
yx yu uv vx
以上复合函数求导公式又称为链式法则,可以推广到更
多层的复合函数.
第 19 页
LOGO 正文.第三章
第 20 页
求第
导二
公节
式 函
数复
的合
求函
导 法 则

∣△t ∣很小时, v可作为物体在 t0时刻瞬时速度.即

概 念
v(t0 )
lim v
t 0
lim
t 0

微积分教学课件第2章导数与微分

微积分教学课件第2章导数与微分
原式 h l12 if0m f(x(t0)22h 12h)f(fx(0t))hlf i(m 0x0f)(t)f(x0)
微积分
三、 导数的几何意义
y y f(x)
曲线 y f (x)在点 (x0 , y0)的切线斜率为
tan f(x0)
CM
T
若 f(x0)0,曲线过 (x0 , y0)上升;
o x0
nan1
说明:
微积分
对一般幂函数 y x ( 为常数)
(x)x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
微积分
例3. 求函数 f(x)sixn的导数.
解: 令hx,则
f (x) lim f(xh)f(x) lim sin x(h)sixn
u(xh)vu (x()x u)v(ux((x)vxv)2)( (vxxu ())x(x)vh)(x)
故结论成立.
推论h: v(xCvh)v(x)vC2v ( C为常数 )
微积分
例2. 求证 (tax)n se2c x,(c x )s c cx s cc x o . t 证: (tanx)csoinsxx(six)ncocxos s2sxixn(cx o)s
h h
1, 1,
h0 h0
lim f(0h)f(0)不存在 ,即x在x0不可. 导
h 0
h
例6. 设
f
(x0)
存在,
求极限
lim f(x0h)f(x0h).

高中数学(人教版)第5章导数和微积分求导法则课件

高中数学(人教版)第5章导数和微积分求导法则课件
cos 2 x sin2 x 1 2 sec x. 2 2 cos x cos x
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
2!
y ' lim y nx n1 x0 x
即: (x n )' nxn1
导数与微分
对于n为任意实数时,上式也成立。
例7:正弦函数 y sin x 的导数
y sin(x x) sin x 2cos(x x) sin x
2
2
y

2 c os(x
f
' (x0 ) 0 0
逆命题不成立。
例:例3 p24 结论:连续是可导的必要条件,但不是充分条 件。即可导一定连续,连续不一定可导。
三、导数的基本公式 :
导数与微分
例4:常数函数的导数 y C
设自变量增量 x ,恒有 y C C 0
则 y 0
x
因此 lim y lim 0 0 x0 x x0
定理1 如果u 、v都是x的可导函数,则函数
y u v 也是x的可导函数,
y ' (u v)' u ' v '
可以推广到有限多个函数的代数和。
二、可导与连续的关系

函数在点 x0
连续,指
lim y 0
x0
存在。
,可导是
lim
x0
y x
定理:如果y=f(x) 在点x0处可导,则它在点x0 处一定连续。
导数与微分
lim y
x0
lim y x lim y lim x
x0 x
x0 x x0
物理意义:各种物理量的变化率。如:速度、加 速度、电流、角加速度、感应电动势等。
求 求导方法:
y
(1)求出函数的增量
B
M T
y f (x0 x) f (x0 )
Mo A αφ
x0
△y dy △x X0+△x x
导数与微分
2、作出比值: y
x
y
3、求出 x 0 时 x 的极限。
x0 x x0
x
记为:y' xx0 f ' (x0 ) y' ( x0 )
dy dx xx0
变化率:函数在点 x0 的变化速度。
定义2:导函数的概念: 如果函数f(x) 在区间 (a,b) 内都可导,则区间 (a,b) 内每一点
x,都有一个导数值与之对应,就定义了一个新的函数,即函 数 f(x) 在区间 (a,b) 内对 x 的导函数derived function。
导数与微分
左导数和右导数
lim
x 0
f (x0 x) x
f (x0 )
f ' ( x0 )
lim
x 0
f (x0 x) f (x0 ) x
f ' ( x0 )
f’(x0) 存在的充分必要条件是左右导数存在 并相等。
导数与微分
几何意义:f ' (x0 ) 是曲线在点 (x0 , y0 ) 的切线斜率。
y' C' 0
导数与微分
例5:幂函数 y x n (n为正整数)的导数
y (x x)n xn [xn nxn1x n(n 1) xn2 (x)2 L (x)n ] xn 2!
y nxn1 n(n 1) xn2 x (x)n1
导数与微分
2、 质量非均匀分布的细杆线密度 已知质量m=m(x),求某点的线密度。
( x0 )

lim
x 0

lim
x0
m x
抽象为数学概念: 平均变化率:y 当 x 0 时的极限称为x0
处的导数。 x
导数与微分
导数 derivative 定义1 p24
lim y lim f (x0 x) f (x0 )
在x 0处,要求 lim f ( x) lim f ( x) f (0) 3
x0
x0
lim f ( x) lim ( x2 2x 3) 3
x0
x0
lim f ( x) lim (ax b) b f (0) 3
x0
x0
在x

0处可导,必须f
'
(0)

f ' (0)
f
'
(0)

lim
x0
f ( x) f (0)
x2 2x 3 3
lim
2
x0
x0
x0
f
'
(0)

lim
x0
ax b 3 x0

lim
x0
ax x

a

a

2
导数与微分
§2-2 导数的运算法则 一、导数的四则运算
log
a
(1

x
)
x x
x
y'
(loga
x)'

1 x
log
a
e

1 x ln a
特别地,当 a e 时,有
(ln x)' 1 x
导数与微分
例:用导数定义求导数。
f ( x) ax2 b(a, b是常数),x x0
解:f
' ( x0 )

lim [a( x0
x 0
x
解:A lim x 0
f ( x0 x) x
f ( x0 )
f ' ( x0 )
导数与微分
求a,
b的值,使函数

x
2

2x

3 __
x

0
ax b ______ x 0
在(, )内连续、可导。
解:在(, 0)、(0, ), f ( x)为多项式,连续、可导。

x)
sin
x 2
x
2 x
导数与微分
y' (sin x)' lim y cosx x0 x
(cos x)' sin x
例6:对数函数 y log a x(a 0, a 1) 的导数
y

log a
(1
x ) x
导数与微分
y x

1 x
导数与微分
第二章
导数与微分
导数与微分 §2-1导数的概念
导数与微分1
一、导数的定义 问题的提出
1、变速直线运动的速度 已知物体的运动方程S=S(t),求t时刻的瞬时 速度。

(t0
)

lim
t 0
S lim
t0 t
lim S(t0 t) S(t0 )
t 0
t

x)2 b] (ax02 x
b)

2ax0
f ( x) x , x x0
解:f
' ( x0 )

lim
x 0
x0 x x
x0 1 2 x0
设f ' ( x0 )存在,A表示什么。
lim f ( x0 x) f ( x0 ) A
x 0
相关文档
最新文档