人教版必修二高中数学笔记讲义

合集下载

人教A版高中数学必修二全书知识点讲解电子书

人教A版高中数学必修二全书知识点讲解电子书
得)……
判断棱柱、棱锥、棱台形状的方法 (1)棱柱:①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行. (2)棱锥:①只有一个面是多边形,此面即为底面; ②侧棱相交于一点. (3)棱台:①两个互相平行的面,即为底面; ②侧棱延长后相交于一点.
1.判一判(正确的打“√”,错误的打“×”) (1)棱柱的侧面可以不是平行四边形.( ) (2)各面都是三角形的多面体是三棱锥.( ) (3)(教材改编,P8,T1(2))棱台的上下底面互相平行,且各侧棱延 长线相交于一点.( ) 答案 (1)× (2)× (3)√ 2.做一做(请把正确的答案写在横线上) (1)面数最少的多面体的面的个数是________. (2)三棱锥的四个面中可以作为底面的有________个. (3)四棱台有________个顶点,________个面,________条边. 答案 (1)四 (2)四 (3)八 六 十二 3.(教材改编,P7,T2)有两个面平行的多面体不可能是( ) A.棱柱 B.棱锥 C.棱台 D.以上都错 答案 B
解 将各平面图折起来的空间图形如下图所示.
1.正确理解多面体的概念 对多面体概念的理解,注意以下两个方面: (1)多面体是由平面多边形围成的,不是由圆面或其他曲面围 成,也不是由空间多边形围成. (2)我们所说的多边形包括它内部的部分,故多面体是一个“封 闭”的几何体. 2.正确理解棱柱的定义 可以从以下三个方面理解棱柱: (1)棱柱的两个主要结构特征: ①有两个面平行; ②各侧棱都平行,各侧面都是平行四边形. 通俗地讲,棱柱“两头一样平,上下一样粗”.
课堂达标自测 1.下列说法中,正确的是( ) A.棱柱中所有的侧棱都相交于一点 B.棱柱中互相平行的两个面叫做棱柱的底面 C.棱柱的侧面是平行四边形,而底面不是平行四边形 D.棱柱的侧棱相等,侧面是平行四边形 答案 D 解析 A 选项不符合棱柱的特点;B 选项中,如图①,构造四棱 柱 ABCD-A1B1C1D1,令四边形 ABCD 是梯形,可知平面 ABB1A1∥ 平面 DCC1D1,但这两个面不能作为棱柱的底面;C 选项中,如图

高二数学知识点复习笔记必修二

高二数学知识点复习笔记必修二

高二数学知识点复习笔记必修二1.高二数学知识点复习笔记必修二篇一1.向量可以形象化地表示为带箭头的线段。

箭头所指:代表向量的方向;线段长度:代表向量的大小。

2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。

具有方向和长度的线段叫做有向线段。

3.向量的模:向量的大小,也就是向量的长度(或称模)。

向量a的模记作|a|。

注:向量的模是非负实数,是可以比较大小的。

因为方向不能比较大小,所以向量也就不能比较大小。

对于向量来说“大于”和“小于”的概念是没有意义的。

4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

5.长度为0的向量叫做零向量,记作0。

零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

2.高二数学知识点复习笔记必修二篇二棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的的性质:(1)侧棱交于一点。

侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(2)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

3.高二数学知识点复习笔记必修二篇三直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。

其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

人教A版(2019)高一数学必修第二册 讲义 6

人教A版(2019)高一数学必修第二册 讲义 6

6.3 平面向量基本定理及坐标表示一、平面向量基本定理1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底:若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.二、用基底表示向量用基底表示向量的一般方法(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.三、平面向量基本定理的应用(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.四、平面向量的坐标表示1.把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.在平面直角坐标系中,设与x轴、y轴方向相同的两个单位向量分别为i,j,取{i,j}作为基底.对于平面内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j,则有序数对(x,y)叫做向量a的坐标.3.坐标表示:a=(x,y).4.特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).五、平面向量加、减法的坐标表示设向量a=(x1,y1),b=(x2,y2),则有下表,符号表示加法a+b=(x1+x2,y1+y2)减法a-b=(x1-x2,y1-y2)重要结论已知A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)六、平面向量坐标运算的应用坐标形式下向量相等的条件及其应用(1)条件:相等向量的对应坐标相等.(2)应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可以求出某些参数的值或点的坐标.七、数乘运算的坐标表示已知a=(x,y),则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.八、向量共线的判定设a=(x1,y1),b=(x2,y2),其中b≠0.向量a ,b 共线的充要条件是x 1y 2-x 2y 1=0.向量共线的判定应充分利用向量共线定理或向量共线的坐标表示进行判断,特别是利用向量共线的坐标表示进行判断时,要注意坐标之间的搭配. 九、 利用向量共线的坐标表示求参数 利用向量平行的条件处理求值问题的思路 (1)利用向量共线定理a =λb (b ≠0)列方程组求解. (2)利用向量共线的坐标表示直接求解.提醒:当两向量中存在零向量时,无法利用坐标表示求值. 十、有向线段定比分点坐标公式及应用对任意的λ(λ≠-1),P 点的坐标为⎝ ⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ. 注意点:(1)λ的值可正、可负.(2)分有向线段的比与线段长度比不同. 十一、平面向量数量积的坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2), 则a·b =x 1x 2+y 1y 2.进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系 (1)|a |2=a ·a .(2)(a +b )·(a -b )=|a |2-|b |2. (3)(a +b )2=|a |2+2a ·b +|b |2. 十二、平面向量的模1.若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.2.若A(x1,y1),B(x2,y2),则|AB|=x2-x12+y2-y12.求向量a=(x,y)的模的常见思路及方法(1)求模问题一般转化为求模的平方,即a2=|a|2=x2+y2,求模时,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2=x2+y2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.十三、平面向量的夹角、垂直问题设a,b都是非零向量,a=(x1,y1),b=(x2,y2),a与b的夹角为θ.1.cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.2.a⊥b⇔x1x2+y1y2=0.考点一 平面向量的基本定理【例1】(2021·陕西)下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e == B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=- ⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底;对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B.【练1】(2020·广东云浮市·高一期末)下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e =C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B考点二 加减数乘的坐标运算【例2】(2020·咸阳百灵学校高一月考)已知点M (-3,3),N (-5,-1),那么MN 等于( ) A .(-2,-4) B .(-4,-2) C .(2,4) D .(4,2)【答案】A【解析】M (-3,3),N (-5,-1),()=2,4MN ∴--.故选:A【练2】(2020·苍南县树人中学高一期中)已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1 C .()2,2-- D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C. 考点三 共线定理的坐标表示【例3】(2020·全国高一)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2- C .6- D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- ,若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B【练3】(2020·新绛县第二中学高一月考)已知()13A ,,()41B -,,则与向量AB共线的单位向量为( )A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫⎪⎝⎭, 【答案】B【解析】因为()13A ,,()41B -,,所以向量()3,4AB =-, 所以与向量AB 共线的单位向量为3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭,.故选:B 考点四 向量与三角函数的综合运用【例4】(2021·湖南)已知向量(cos 2sin ,2)a θθ=-,(sin ,1)b θ=,若a //b ,则tan 2θ的值为( )A .14B .34C .815D .415【答案】C【解析】因为a //b ,故可得22cos sin sin θθθ-=,故可得14tan θ=,又22284211tan 15116tan tan θθθ===--.故选:C【练4】(2020·平凉市庄浪县第一中学高一期中)若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 【答案】3π【解析】∵a //b ,∴3sin 3cos 0αα-=,又α为锐角,cos 0α≠,∴tan 3α=,3πα=.故答案为:3π.考点五 奔驰定理解三角形面积【例5】(2020·河南安阳市·林州一中高一月考)已知O 为ABC ∆内一点,且有23OA OC BC +=,则OBC ∆和ABC ∆的面积之比为( ) A .16B .13C .12D .23【答案】C【解析】设D 是AC 的中点,则2OA OC OD +=, 又因为23OA OC BC +=,所以223OD BC =,3BC OD =,//OD BC , 所以12OBC DBC ABC ABC S S DC S S AC ∆∆∆∆===故选:C 【练5】(2020·江西)在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( )A .14B .13C .23 D .16【答案】B【解析】设AC 的中点为点E ,则有2BA BC BE +=,又3BA BC BP +=,所以23BP BE =,则点P 在线段BE 上,因为D 为BC 的中点,所以得点P 为ABC 的重心,故ABP △与ABC 面积之比为13.故选:B考点六 数量积的坐标运算【例6】(2020·银川市·宁夏大学附属中学高一期末)向量()()2112a b =-=-,,,,则()2a b a +⋅=( ) A .1 B .1- C .6- D .6【答案】D【解析】因为()()2112a b =-=-,,,所以()()23,0(2,1)3206a b a +⋅=⋅-=⨯+=故选:D【练6】(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16 C .17 D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C考点七 巧建坐标解数量积【例7】(2020·山东济南市·)在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-2【答案】C【解析】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【练7】(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值. 【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=. 考点八 数量积与三角函数综合运用【例8】向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( ) A .1 B .2 C .12D .3【答案】A【解析】由题意可得 sin 2cos 0a b θθ⋅=-=,即 tan 2θ=.∴222222sin cos cos 2tan 1sin 2cos 1cos sin 1tan θθθθθθθθθ+++===++,故选A . 【练8】(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( )A .1B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 考点九 数量积与几何的综合运用【例9】(2020·陕西渭南市·高一期末)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---.(1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值. 【答案】(1)12m ≠;(2)74m =. 【解析】(1)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---, 若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与BC 不共线.()3,1AB =,()2,1AC m m =--,故知()312m m -≠-,∴实数12m ≠时,满足条件.(2)若ABC 为直角三角形,且A ∠为直角,则AB AC ⊥,∴()()3210m m -+-=,解得74m =. 【练9】(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值.(2)若点A、B、C能构成三角形,求实数λ应满足的条件.【答案】(1)λ=2;(2)λ≠−2.【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A、B、C能构成三角形,则A、B、C不共线∴−7(3λ−2)≠7(6−λ)∴实数λ应满足的条件是λ≠−2课后练习1. (2021·内江模拟)已知空间三点 O(0,0,0) , A(−1,1,0) , B(0,1,1) ,在直线 OA 上有一点 H 满足 BH ⊥OA ,则点 H 的坐标为. A.(12,−12,0) B.(−12,12,0) C.(−2,2,0) D.(2,−2,0) 【答案】 B【考点】平面向量数量积的运算【解析】由O (0,0,0),A (﹣1,1,0),B (0,1,1), ∴ OA ⃗⃗⃗⃗⃗ = (﹣1,1,0),且点H 在直线OA 上,可设H (﹣λ,λ,0), 则 BH ⃗⃗⃗⃗⃗⃗ = (﹣λ,λ﹣1,﹣1), 又BH ⊥OA , ∴ BH⃗⃗⃗⃗⃗⃗ • OA ⃗⃗⃗⃗⃗ = 0, 即(﹣λ,λ﹣1,﹣1)•(﹣1,1,0)=0, 即λ+λ﹣1=0, 解得λ =12 ,∴点H ( −12 , 12 ,0). 故答案为:B .【分析】根据已知中空间三点O(0,0,0),A(−1,1,0),B(0,1,1),根据点H 在直线OA上,我们可以设出H点的坐标(含参数λ) ,进而由BH⊥OA,根据向量垂直数量积为0,构造关于λ的方程,解方程即可得到答案.2.(2021高二上·辽宁月考)若a=(2,2,0),b⃗=(1,3,z),<a ,b⃗>=π3,则z等于()A. √22B. −√22C. ±√22D. ±√42【答案】C【考点】数量积表示两个向量的夹角【解析】由空间向量夹角的余弦公式得cos<a ,b⃗>=a⃗ ⋅b⃗|a⃗ |⋅|b⃗|=2×1+2×3+0×z2√2×√12+32+z2=2√2√10+z2=12,解得z=±√22。

高中数学人教版必修2知识点总结

高中数学人教版必修2知识点总结

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当[) 90,0∈α时,; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

高中数学必修二最全完整笔记

高中数学必修二最全完整笔记

高中数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系第一章空间几何体1.1 空间几何体的结构一、空间几何体:占据着空间的一部分,只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫空间几何体。

1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。

(1)面:围成多面体的各个多边形叫做多面体的面。

(2)棱:相邻两个面的公共边叫做多面体的棱。

(3)顶点:棱与棱的公共顶点叫做多面体的顶点。

2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何,叫做旋转体。

(1棱3.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

(1)底面:两个互相平行的面叫做棱柱的底面(简称底)。

(2)侧面:其余各面叫做棱柱的侧面。

(3)侧棱:相邻侧面的公共边。

(4)顶点:侧面与底面的公共顶点。

(5)简单性质:1.侧棱都相等,侧面都是平行四边形。

2.两个底面与平行于底面的截面是全等的。

3.各不相邻的侧棱所形成的斜面是平行四边形。

(6)棱柱的分类:1.按底面边多少分:n棱柱(n≥3)2.按侧棱与底面的关系分:垂直:直棱柱、正棱柱(底面为正多边形) 三棱柱四棱柱不垂直:斜棱柱1.底面为直角三角形 1.直平行六面体2.底面为等边三角形 2.正四棱柱3.底面为等腰直角三角形 3.正方体(非棱柱)4.棱锥:有一个面是多边形,其余各面都是有一公共点的三角形。

(1)底面:多边形面。

新教材人教版高中数学必修第二册 知识点梳理

新教材人教版高中数学必修第二册 知识点梳理

高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

人教版高二数学必修二知识点讲解2022

人教版高二数学必修二知识点讲解2022

人教版高二数学必修二知识点讲解2022在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。

以下是小编整理的有关高考考生必看的人教版高二数学必修二知识点,希望能够帮助到需要的高考考生。

人教版高二数学必修二知识点1导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数。

寻找已知的函数在某点的导数或其导函数的过程称为求导。

实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以倒过来求原来的函数,即不定积分。

微积分基本定理说明了求原函数与积分是等价的。

求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

人教版高二数学必修二知识点2一、随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解
人教版高二数学必修二主要包括以下知识点:
1.数列和数列的极限:包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、通项公式等内容。

同时,还要了解数列的极限概念,以及数列极限的性质和计算方法。

2.函数的概念和性质:包括函数的定义、函数的性质和图像、函数的分类、函数的运算,以及函数的图像变换等内容。

3.三角函数的知识:包括三角函数的定义、三角函数的基本性质、三角函数的图像、三角函数的逆函数,以及三角函数的复合函数等。

4.三角函数的应用:包括解三角函数方程和不等式、解三角形、用三角函数表示复合运动等内容。

5.平面向量的运算:包括向量的概念、向量的加法、减法、数量乘法、点乘、向量的模、向量的夹角、向量的共线性和垂直等内容。

6.平面向量的坐标表示和空间向量:包括向量的坐标表示、向量的共线性和垂直、点到直线的距离,以及空间中向量的概念、向量的共线性和垂直等。

7.空间中的平面和直线:包括平面的点法式方程、平面的一般方程、平面的交线,以及直线的方向向量、直线的参数方程、直线的点向式和直线的位置关系等。

8.解析几何中的应用:包括平面的相关应用,如平面与平面的位置关系、平面与直线的位置关系;直线与直线的位置关系、直线与平面的位置关系等。

以上是人教版高二数学必修二的主要知识点,希望对你有帮助。

如有其他问题,请继续提问。

人教版高一数学必修二知识点总结

人教版高一数学必修二知识点总结

人教版高一数学必修二知识点总结
一、函数的概念
1、定义:函数是将一些特定的元素映射成另外一些特定的元素的规律性变化。

2、概念:可以把一组值一一对应起来,并具有相同的规律性的数列称为函数,函数的概念可以用计算、图示、代数表达式等方法表达。

3、函数的特性:函数的特性有唯一性和对称性,即任意一个自变量对应唯一的因变量,而且两个自变量互换,两个因变量也一定会互换。

二、一元函数的图象
1、一元函数的图像:一元函数的图象反映函数的变化规律,是比较直观的表示形式,可以根据函数的表达式,画出函数的图像。

2、特殊的图像:当函数关系是y=x时,则函数的图像是一条直线,当函数关系是y=(1/x)时,则函数的图像是一个反比例曲线,当函数关系是y=k时,则函数的图像是一条水平线。

三、函数的特殊性
1、单调性:函数f(x)在定义域内有且仅有一个最值,称为该函数关系的单调性,当函数f(x)在定义域内单调递增时,称为单调递增;当函数f(x)在定义域内单调递减时,称为单调递减。

2、连续性:在定义域内,任意一点处的函数值之差都可以接近于零,则该函数关系称为连续的。

3、奇偶性:函数f(x)的奇偶性,是指函数f(x)在x=a处的值与函数f(-a)
在x=-a处的值是否有关联性。

如果f(a)=f(-a),则说明函数f(x)具有奇偶性,此时函数的图像关于y轴是对称的。

人教版必修二数学知识点

人教版必修二数学知识点

人教版必修二数学知识点人教版必修二数学知识点两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

数学二次函数的性质(1)二次函数的图像是抛物线,抛物线是轴对称图形。

对称轴为直线x=-b/2a。

(2)二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线开口向上;当a0时,抛物线开口向下。

|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

(3)一次项系数b和二次项系数a共同决定对称轴的位置。

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左侧;当a与b异号时(即ab0),对称轴在y轴右侧。

(4)常数项c决定抛物线与y轴交点。

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总结

(完整版)高中数学人教版必修二知识点总

高中数学人教版必修二知识点总结
本文档总结了高中数学人教版必修二的知识点,帮助学生进行复和总结。

以下是各个章节的重点内容:
第一章函数与导数
- 函数的概念和性质
- 函数的图像与奇偶性
- 导数的定义和性质
- 函数的单调性与极值
第二章三角函数
- 正弦、余弦、正切函数的定义和性质
- 三角函数的基本关系式
- 三角函数的图像和性质
- 三角恒等式的运用
第三章数列与数学归纳法- 数列的定义和性质
- 数列的通项公式和通项求和- 数学归纳法的原理和应用
第四章二次函数与其应用- 二次函数的定义和性质
- 二次函数的图像和性质
- 二次函数的最值问题
- 二次函数在实际问题中的应用
第五章平面向量
- 向量的定义和运算
- 向量共线与共面的判定
- 向量的数量积和性质
- 向量的应用
第六章概率
- 概率的基本概念和性质
- 随机事件与概率
- 条件概率和乘法定理
- 排列与组合的应用和概率计算
第七章统计与回归分析
- 统计的基本概念和性质
- 数据的收集和整理
- 统计图表的制作和分析
- 回归分析的原理和应用
以上是高中数学人教版必修二的主要知识点总结,希望对学生的复有所帮助。

详细内容以教材为准。

人教版高中数学必修二知识点归纳 PPT课件 图文

人教版高中数学必修二知识点归纳 PPT课件 图文
点p在一个半平面上点p在二面角内定义法三垂线定理法44从几何直观到代数表示建立直线的方程坐标倾斜角斜率直线二元一次方程两点式一般式从代数表示到几何直观通过方程研究几何性质和度量两条直线的位置关系平行和垂直的判定相交一个交点平行无交点距离两点间的距离点到直线的距离两条平行线间的距离第三章直线与方程45第三章直线与方程311直线的倾斜角和斜率教学目标
我们把一个半径为R的圆分成若干等分,然后如上图重新拼接起来,把一个圆近
似的看成是边长分别是
R和R的矩形 .
那么圆的面积就近似等于R2 .
球的体积
当所分份数不断增加时,精确程度就越来越高;当份数无穷大时,就 得到了圆的面积公式.
分割
求近似和
化为准确和
下面我们就运用上法述导方出球的体积公式
即先把半球分割成n部分,再求出每一部分的近似体积,并将这些近似值 相加,得出半球的近似体积,最后考虑n变为无穷大的情形,由半球的近似体
积推出准确体积.
球的体积 A
O
A
C2
O
B2
r1 R2 R,
r2
R2 (R)2 , n
r3
R2 (2R)2, n
A
球的体积
ri
O
R (i 1)
n
R
O
第i层“小圆片”下底面的半径:
ri
R 2[R(i1)2 ],i1,2 ,n . n
球的体积
ri
R 2[R(i1)2 ],i1,2, ,n n
难点:异面直线所成角的计算。
三、主要知识点
1、公理4:平行于同一条直线的两条直线互相平行。
2、等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互
补。

人教版高中数学必修2知识点归纳总结

人教版高中数学必修2知识点归纳总结

必修2数学知识点1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、空间几何体的三视图和直观图射下的投影叫平行投影,平行投影的投影线是平行的。

3、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面⑷体积公式: h S V ⋅=柱体;h S V ⋅=31锥体; ()h S S S S V 下下上上台体+⋅+=31 ⑸球的表面积和体积:32344R V R S ππ==球球,. 第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、公理4:平行于同一条直线的两条直线平行.5、定理:6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。

8、面面位置关系:平行、相交。

9、线面平行:⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

10、面面平行:⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

11、线面垂直:⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

⑶性质:垂直于同一个平面的两条直线平行。

12、面面垂直:⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。

⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

第三章:直线与方程1、倾斜角与斜率:1212tan x x y y k --==α 2、直线方程:()00x x k y -=-⑵斜截式:b kx y += ⑶两点式:121121x x x x y y y y --=-- ⑷一般式:0=++C By Ax 3、对于直线:222111:,b x k y l b l +=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠;⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l . 4、对于直线:0:,022221111=++=+C y B x A l C l 有:⑴⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ; ⑵1l 和2l 相交1221B A B A ≠⇔;⑶1l 和2l 重合⎩⎨⎧==⇔12211221C B C B B A B A ;⑷0212121=+⇔⊥B B A A l l .51P6d 第四章:圆与方程1、圆的方程:⑴标准方程:()()222r b y a x =-+- ⑵一般方程:022=++++F Ey Dx y x .2、两圆位置关系:21O O d = ⑴外离:r ; ⑵外切:r R d +=;⑶相交:r R d r R +<<-; ⑷内切:r R d -=; ⑸内含:r R d -<.3、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-=。

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)

高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。

棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。

根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。

棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。

根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。

棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。

底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。

底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。

上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。

球的截面是圆,球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。

俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。

斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_提高

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_提高

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1 .利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2 .重点掌握平面的基本性质.3 .能利用平面的性质解决有关问题.【要点梳理】[空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1 .平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1) “平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3) “平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2 .平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45 ,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画:3 .平面的表示法:(1)用一个希腊字母表示一个平面,如平面a、平面0、平面7等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD ;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD ;4 .点、直线、平面的位置关系:(1)点A在直线a上,记作Awa;点A在直线a外,记作Ac a ;⑵点A在平面a上,记作Asa ;点A在平面a外,记作A氏a ;(3)直线I在平面a内,记作lua:直线I不在平面a内,记作l(za.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1 .公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;⑵符号语言表述:AeI , B G I , Awa, Bea =>I ca ;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”2 .公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面:(2)符号语言表述:A、B、C三点不共线=有且只有一个平面a ,使得Awa, Bea, Cea;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把^间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面:②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3 .公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线:(2)符号语言表述:Pwa nPnanP = l且P E I;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、点线共面的证明所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1 .证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1):②经过不在同一条直线上的三点,有且只有一个平面(公理2及期隹论).2 .证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;20辅助平面法:先证明有关的点、线确定平面。

高中数学必修二笔记

高中数学必修二笔记

高中数学必修二笔记一、平面向量1.1 向量的概念在平面直角坐标系中,我们将有向线段叫做向量,一般用小写字母表示,如a、b等。

1.2 向量的运算1.2.1 向量的加法向量的加法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。

1.2.2 向量的数乘向量的数乘满足分配律,即λ(a+b)=λa+λb。

1.2.3 向量的数量积向量的数量积等于向量模的乘积与夹角的余弦值,即a·b=|a||b|cosθ。

1.2.4 向量的夹角两个向量的夹角θ满足a·b=|a||b|cosθ。

1.2.5 向量的共线如果向量a与向量b共线,那么a=λb。

1.2.6 向量的线性运算向量的线性运算包括加法和数乘运算。

1.3 平面向量的坐标表示平面向量a的坐标表示为a=(x, y)。

1.4 向量的应用向量在几何、物理等领域有着广泛的应用,如力的合成、几何图形的平移等。

二、平面向量的几何应用2.1 向量的基本定理平面向量的基本定理包括平行四边形定理、三角形的共顶点定理、三角形的向量形状定理等。

2.2 向量的垂直如果两个向量a、b的数量积为0,即a·b=0,则称a与b垂直。

2.3 向量的平行如果两个向量a、b夹角为0或180°,则称a与b平行。

2.4 点到直线的距离点P到直线l的距离为点P到直线l的垂线段的长度。

2.5 直线的方程直线l上的点A的坐标为(x1, y1),向量a的坐标为(x, y),则直线l 的方程为ax+by+c=0。

2.6 直线的性质如直线的倾斜角、斜率、截距等。

三、平面向量的解析几何3.1 点的坐标点在直角坐标系中的坐标表示。

3.2 点到直线的距离点P(x0, y0)到直线ax+by+c=0的距离为d=|ax0+by0+c|/√(a²+b²)。

3.3 直线的方程直线l上有一个点A(x1, y1)和一个方向向量a(x, y),则直线l的方程为(x-x1)/x=(y-y1)/y。

人教版必修二高中数学笔记讲义

人教版必修二高中数学笔记讲义
解:根据公理2的推论3,可知两条平行直线确定一个平面,又由公理1可知,与两条平行直线相交的第三条直线在这个平面内,所以一条直线与两条平行直线都相交时,这三条直线是共面的关系.
【例2】空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EF和GH交于P点,求证:EF、GH、AC三线共点.(同P58B组3题)
¤例题精讲:
【例1】有一种空心钢球,质量为 ,测得外径等于 ,求它的内径(钢的密度为 ,精确到 ).
解:设空心球内径(直径)为 ,则钢球质量为

∴ ,∴ ,
∴直径 ,即空心钢球的内径约为 .
【例2】表面积为 的球,其内接正四棱柱的高是 ,求这个正四棱柱的表面积.
解:设球半径为 ,正四棱柱底面边长为 ,则作轴截面如图, , ,
C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形
分析:多面体至少应有四个顶点组成(否则至多3个顶点,而3个顶点只围成一个平面图形),而四个顶点当然必须围成四个面,所以A正确;棱柱侧面为平行四边形,其侧棱和侧面的个数与底面多边形的边数相等,所以B正确;长方体、正方体都是棱柱,所以C正确;三棱柱的侧面是平行四边形,不是三角形,所以D错误.
其侧面积为 .
下部分圆柱体的侧面积为 .
所以,搭建这样的一个蒙古包至少需要的篷布为
(m2).
点评:正确运用锥体和柱体的侧面积计算公式,解决制作壳形几何体时的用料问题.注意区分是面积计算,还是体积计算.
第6讲§1.3.1柱体、锥体、台体的体积
¤学习目标:了解棱柱、棱锥、台体的体积的计算公式(不要求记忆公式);能运用柱、锥、台的体积公式进行计算和解决有关实际问题.
¤例题精讲:
【例1】已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.

高三年级数学必修二知识点笔记

高三年级数学必修二知识点笔记

高三年级数学必修二知识点笔记【导语】数学和语文这一学科其实也差不多,数学也有很多知识点是要背的。

为各位同学整理了《高三年级数学必修二知识点笔记》,希望对你的学习有所帮助!1.高三年级数学必修二知识点笔记篇一垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.2.高三年级数学必修二知识点笔记篇二空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交.异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.3.高三年级数学必修二知识点笔记篇三两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·si nγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中sint=B/(A2+B2)^(1/2)cost=A/(A2+B2)^(1/2)tant=B/AAsinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan(2α)=2tanα/[1-tan2(α)]三倍角公式:sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)tan(3α)=tana·tan(π/3+a)·tan(π/3-a)半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin2(α)=(1-cos(2α))/2=versin(2α)/2cos2(α)=(1+cos(2α))/2=covers(2α)/2tan2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan2(α/2)]cosα=[1-tan2(α/2)]/[1+tan2(α/2)]tanα=2tan(α/2)/[1-tan2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos2α1-cos2α=2sin2α1+sinα=(sinα/2+cosα/2)24.高三年级数学必修二知识点笔记篇四平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα5.高三年级数学必修二知识点笔记篇五一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点6.高三年级数学必修二知识点笔记篇六二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 第1章 §1.1.1 柱、锥、台、球的结构特征¤学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述生活中简单物体的结构.逐步培养观察能力和抽1.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形分析:多面体至少应有四个顶点组成(否则至多3个顶点,而3个顶点只围成一个平面图形),而四个顶点当然必须围成四个面,所以A 正确;棱柱侧面为平行四边形,其侧棱和侧面的个数与底面多边形的边数相等,所以B 正确;长方体、正方体都是棱柱,所以C 正确;三棱柱的侧面是平行四边形,不是三角形,所以D 错误. 答案:D2.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为___________ cm.分析:n 棱柱有2n 个顶点,由于此棱柱有10个顶点,那么此棱柱为五棱柱,又因棱柱的侧棱都相等,五条侧棱长的和为60 cm ,可知每条侧棱长为12 cm. 答案:123.在本节我们学过的常见几何体中,如果用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是___________. 分析:棱锥、棱柱、棱台、圆锥等几何体的截面都可以是三角形,因此本题答案是开放的,作答时要考虑周全. 答案:棱锥、棱柱、棱台、圆锥第2讲 §1.1.2 简单组合体的结构特征¤学习目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.¤知识要点:观察周围的物体,大量的几何体是由柱、锥、台等组合而成的,这些几何体称为组合体.¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ).A. 1个B. 2个C. 3个D. 4个解:在长方体''''ABCD A B C D -中,取四棱锥'A ABCD -,它的四个侧面都是直角三角形. 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R +r = 第3讲 §1.2.2 空间几何体的三视图¤学习目标:能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型.¤知识要点:1. “视图”是将物体按正投影法向投影面投射时所得到的投影图. 光线自物体的前面向后投影所得的投影图成为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的图形称为“俯视图”. 用这三种视图即可刻划空间物体的几何结构,称为“三视图”.苦心人,天不负,卧薪尝胆,三千越甲可吞吴 22. 画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从几何体的正前方、左侧(和右侧)、正上方三个不同的方向看几何体,画出所得到的三个平面图形,并发挥空间想象能力. 在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分用虚线表示出来.¤例题精讲:【例1】画出下列各几何体的三视图:解:这两个几何体的三视图如下图所示.【例2】画出下列三视图所表示的几何体.解:先画几何体的正面,再侧面,然后结合三个视图完成几何体的轮廓. 如下图所示.【例3】如图,图(1)是常见的六角螺帽,图(2)是一个机器零件(单位:cm ),所给的方向为物体的正前方. 试分别画出它们的三视图.解:图(1)为圆柱和正六棱柱的组合体. 图(2)是由长方体切割出来的规则组合体.从三个方向观察,得到三个平面图形,绘制的三视图如下图分别所示. 第第4讲 §1.2.3 空间几何体的直观图¤学习目标:会用斜二侧法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的直观图. 了解空间图形的不同表示形式.¤知识要点:“直观图”最常用的画法是斜二测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法. 基本步骤如下:(1) 建系:在已知图形中取互相垂直的x 轴和y 轴,得到直角坐标系xoy ,直观图中画成斜坐标系'''x o y ,两轴夹角为45︒.(2)平行不变:已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ’或y ’轴的线段.(3)长度规则:已知图形中平行于x 轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半. ¤例题精讲:【例1】下列图形表示水平放置图形的直观图,画出它们原来的图形.解:依据斜二测画法规则,逆向进行,如图所示. 【例2】(1)画水平放置的一个直角三角形的直观图;(2)画棱长为4cm 的正方体的直观图. 解:(1)画法:如图,按如下步骤完成.第一步,在已知的直角三角形ABC 中取直角边CB 所在的直线为x 轴,与BC 垂直的直线为y 轴,画出对应的x '轴和y '轴,使45x O y '''∠=.第二步,在x '轴上取''O C BC =,过'C 作'y 轴的平行线,取1''2C ACA=. 第三步,连接''AO ,即得到该直角三角形的直观图.(2)画法:如图,按如下步骤完成.第一步,作水平放置的正方形的直观图ABCD ,使45,BAD ∠=4,2A B c m A D c m==. 第二步,过A 作z '轴,使90BAz '∠=. 分别过点,,B C D 作z '轴的平行线,在z '轴及这组平行线上分别截取4AA BB CC DD cm ''''====.第三步,连接,,,A B B C C D D A '''''''',所得图形就是正方体的直观图.点评:直观图的斜二测画法的关键之处在于将图中的关键点转化为坐标系中的水平方向与垂直方向的坐标长度,然后运用“水平长不变,垂直长减半”的方法确定出点,最后连线即得直观图. 注意被遮挡的部分画成虚线.第5讲 §1.3.1 柱体、锥体、台体的表面积¤学习目标:了解棱柱、棱锥、台的表面积的计算公式(不要求记忆公式);能运用柱、锥、台的表面积进行计算和c 直截面周长S +解:设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上,圆台的上底面面积为2525S ππ=⋅=下, 所以圆台的底面面积为29S S S π=+=下上.又圆台的侧面积(25)7S l l ππ=+=侧, 于是725l ππ=,即297l =为所求. 【例2】一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积. 解:由三视图知正三棱柱的高为2mm .由左视图知正三棱柱的底面三角形的高为. 设底面边长为a = ∴ 4a =. ∴正三棱柱的表面积为2123422424)2S S S mm =+=⨯⨯+⨯⨯⨯=+侧底. 【例3】牧民居住的蒙古包的形状是一个圆柱与圆锥的组合体,尺寸如右图所示,请你帮助算出要搭建这样的一个蒙古包至少需要多少平方米的篷布?(精确到0.01 m 2)解,其侧面积为152S π=⨯下部分圆柱体的侧面积为 15 1.8S π=⨯⨯.所以,搭建这样的一个蒙古包至少需要的篷布为1155 1.850.052S S S ππ=+=⨯⨯⨯≈(m 2).点评:正确运用锥体和柱体的侧面积计算公式,解决制作壳形几何体时的用料问题. 注意区分是面积计算,还是体积计算. 第6讲 §1.3.1 柱体、锥体、台体的体积¤学习目标:了解棱柱、棱锥、台体的体积的计算公式(不要求记忆公式);能运用柱、锥、台的体积公式进行计算h 高S h 底高'S S ++图2-3-1212m 18m5m苦心人,天不负,卧薪尝胆,三千越甲可吞吴 4''2. 柱、椎、台之间,可以看成一个台体进行变化,当台体的上底面逐渐收缩为一个点时,它就成了锥体;当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系:13V S h =锥 '0S =←−−− 1(')3V S S h =台 'S S=−−−→ V S h =柱. ¤例题精讲:【例1】一个长方体的相交于一个顶点的三个面的面积分别是2、3、6,则长方体的体积是 .解:设长方体的长宽高分别为,,a b c ,则2,3,6ab ac bc ===,三式相乘得2()36abc =.所以,长方体的体积为6.【例2】一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x 的函数关系式,并求出函数的定义域.解:如图,设所截等腰三角形的底边边长为xcm .在Rt EOF ∆中,15,2EF cm OF xcm ==,所以EO =于是13V x =依题意函数的定义域为{|010}x x <<.【例36,现将该容器盛满水,然后平稳缓慢地将容器倾斜让水流出,当容器中的水是原来的56时,圆柱的母线与水平面所成的角的大小为 . 解:容器中水的体积为22618V r l πππ==⨯⨯=.流出水的体积为5'(1)36V V π=-=,如图,22''2V l r π===. 设圆柱的母线与水平面所成的角为α,则tan α==,解得60α=︒. 所以,圆柱的母线与水平面所成的角的大小为60°.点评:抓住流水之后空出部分的特征,它恰好是用一个平面去平分了一个短圆柱. 从而由等体积法可计算出高度,解直角三角形而得所求角.第7讲 §1.3.2球的体积和表面积¤学习目标:了解球的表面积和体积的计算公式(不要求记忆公式);能运用球的表面积和体积公式进行计算和解决有关实际问题.¤知识要点:1. 表面积:24S R π=球面 (R :球的半径). 2. 体积:343V R π=球面. ¤例题精讲:【例1】有一种空心钢球,质量为142g ,测得外径等于5cm ,求它的内径(钢的密度为27.9/g cm ,精确到0.1cm ). 解:设空心球内径(直径)为2x cm ,则钢球质量为334547.9[()]142323x ππ⋅⋅⋅-=,∴3351423()11.327.94 3.14x ⨯=-≈⨯⨯, ∴ 2.24x ≈, ∴直径2 4.5x≈,即空心钢球的内径约为4.5cm.【例2】表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.解:设球半径为R ,正四棱柱底面边长为a ,则作轴截面如图,14AA '=,AC =, 又∵24324R ππ=,∴9R =,∴AC ==,∴8a =,∴6423214576S =⨯+⨯=表.【例3】(04年辽宁卷.10)设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB =BC =CD =DA =3,球心到该平面的距离是球半径的一半,则球的体积是( ).A .B .C .D. 【解】由已知可得,A 、B 、C 、D 在球的一个小圆上.∵ AB=BC =CD =DA =3, ∴ 四边形ABCD 为正方形. ∴ 小圆半径r =.由222R r h =+得222(()22RR =+,解得R ∴球的体积334433V R ππ===. 所以选A.点评:解答球体中相关计算,一定要牢记球的截面性质222R r h =+,体积和表面积公式.第8讲 §2.1.1 平面¤学习目标:能够从日常生活实例中抽象出数学中所说的“平面”;理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解可以作为推理依据的三条公理.¤知识要点:1. 点A 在直线上,记作A a ∈;点A 在平面α内,记作A α∈;直线a 在平面α内,记作a α⊂.l l β=∈ 推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面. ¤例题精讲:【例1】如果一条直线与两条平行直线都相交,那么这三条直线是否共面?(P 56A 组5题)解:根据公理2的推论3,可知两条平行直线确定一个平面,又由公理1可知,与两条平行直线相交的第三条直线在这个平面内,所以一条直线与两条平行直线都相交时,这三条直线是共面的关系.【例2】空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,已知EF 和GH 交于P 点,求证:EF 、GH 、AC 三线共点. (同P 58 B 组3题)解:∵P ∈EF ,EF ⊂面ABC ,∴P ∈面ABC . 同理P ∈面ADC . ∵ P 在面ABC 与面ADC 的交线上,又 ∵面ABC ∩面ADC =AC , ∴P ∈AC ,即EF 、HG 、AC 三线共点. 【例3】求证:两两相交且不过同一个点的三条直线必在同一平面内. 已知:直线,,AB BC CA 两两相交,交点分别为,,A B C , 求证:直线,,AB BC CA 共面.证明:因为A ,B ,C 三点不在一条直线上,所以过A ,B ,C 三点可以确定平面α. 因为A ∈α,B ∈α,所以AB α. 同理BC α,AC α. 所以AB ,BC ,CA 三直线共面.点评:先依据公理2, 由不共线的三点确定一个平面,再依据公理1, 证三条直线在平面内. 注意文字语言给出的证明题,先根据题意画出图形,然后给出符号语言表述的已知与求证. 常根据三条公理,进行“共面”问题的证明.【例4】在正方体1111ABCD A B C D -中,(1)1AA 与1CC 是否在同一平面内?(2)点1,,B C D 是否在同一平面内? (3)画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线. 解:(1)在正方体1111ABCD A B C D -中,∵11//AA CC , ∴由公理2的推论可知,1AA 与1CC 可确定平面1AC , ∴1AA 与1CC 在同一平面内.(2)∵点1,,B C D 不共线,由公理3可知,点1,,B C D 可确定平面1BC D ,∴ 点1,,B C D 在同一平面内. (3)∵ACBD O =,11D C DC E =, ∴点O ∈平面1AC ,O ∈平面1BCD ,苦心人,天不负,卧薪尝胆,三千越甲可吞吴 6又1C ∈平面1AC ,1C ∈平面1BC D , ∴ 平面1AC 平面1BC D 1OC =,同理平面1ACD 平面1BDC OE =.点评:确定平面的依据有公理2(不在同一条直线上的三点)和一些推论(两条平行直线、两条相交直线、直线和直线外一点). 对几条公理的作用,我们必须十分熟练.第9讲 §2.1.2 空间中直线与直线之间的位置关系¤学习目标:了解空间两条直线的三种位置关系,理解异面直线的定义,掌握平行公理,掌握等角定理,掌握两条异面直线所成角的定义及垂直.¤知识要点:1. 空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点. 2. 已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). ,a b ''所成的角的大小与点O 的选择无关,为了简便,点O 通常取在异面直线的一条上;异面直线所成的角的范围为(0,90]︒,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作a b ⊥. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.¤例题精讲:【例1】已知异面直线a 和b 所成的角为50°,P 为空间一定点,则过点P 且与a 、b 所成角都是30°的直线有且仅有( ).A. 1条B. 2条C. 3条D. 4条解:过P 作a '∥a ,b '∥b ,若P ∈a ,则取a 为a ',若P ∈b ,则取b 为b '.这时a ',b '相交于P 点,它们的两组对顶角分别为50°和130°.记a ',b '所确定的平面为β,那么在平面β内,不存在与a ',b '都成30°的直线. 过点P 与a ',b '都成30°角的直线必在平面β外,这直线在平面β的射影是a ',b '所成对顶角的平分线.其中射影是50°对顶角平分线的直线有两条l 和l ',射影是130°对顶角平分线的直线不存在.故答案选B.【例2】如图正方体1111ABCD A B C D -中,E 、F 分别为D 1C 1和B 1C 1的中点,P 、Q 分别为AC 与BD 、A 1C 1与EF 的交点. (1)求证:D 、B 、F 、E 四点共面;(2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线. 证明:(1)∵ 正方体1111ABCD A B C D -中,1BB //1DD ,∴BD //11B D .又 ∵ 111B D C 中,E 、F 为中点,∴ EF //1112B D . ∴ //EF BD , 即D 、B 、F 、E 四点共面. (2)∵ 1Q AC ∈平面,Q BE ∈平面,1P AC ∈平面,P BE ∈平面,∴ 1AC BE PQ =平面平面.又 1AC BE R =平面, ∴ 1R AC ∈平面,R BE ∈平面, ∴ R PQ ∈. 即P 、Q 、R 三点共线【例3】已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面. 证明:因为a //b ,由公理2的推论,存在平面α,使得,a b αα⊂⊂. 又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂. 假设c α⊄,则c C α=, 在平面α内过点C 作//c b ', 因为b //c ,则//c c ',此与c c C '=矛盾. 故直线c α⊂.综上述,a 、b 、c 、d 四线共面.点评:证明一个图形属于平面图形,需要紧扣公理2及其三条推论,寻找题中能确定平面的已知条件. 此例拓展的证明先构建出一个平面,然后从假设出发,推出矛盾,矛盾的原因是假设不成立,这就是证明问题的一种反证法的思路.【例4】如图中,正方体ABCD —A 1B 1C 1D 1,E 、F 分别是AD 、AA 1的中点. (1)求直线AB 1和CC 1所成的角的大小; (2)求直线AB 1和EF 所成的角的大小. 解:(1)如图,连结DC 1 ,∵DC 1∥AB 1,E 1A 1C A∴ DC 1 和CC 1所成的锐角∠CC 1D 就是AB 1和CC 1所成的角. ∵ ∠CC 1D =45°, ∴ AB 1 和CC 1所成的角是45°. (2)如图,连结DA 1、A 1C 1,∵ EF ∥A 1D ,AB 1∥DC 1,∴ ∠A 1DC 1是直线AB 1和EF 所成的角.∵ΔA 1DC 1是等边三角形, ∴ ∠A 1DC 1=60º,即直线AB 1和EF 所成的角是60º.点评:求解异面直线所成角时,需紧扣概念,结合平移的思想,发挥空间想象力,把两异面直线成角问题转化为与两相交直线所成角,即将异面问题转化为共面问题,运用化归思想将难化易. 解题中常借助正方体等几何模型本身的性质,依照选点、平移、定角、计算的步骤,逐步寻找出解答思路.第10讲 §2.1.3 直线与平面、平面与平面位置关系¤学习目标:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系.¤知识要点:1. 直线与平面的位置关系:(1)直线在平面内(有无数个公共点);(2)直线与平面相交(有且只有一个公共点);(3)直线与平面平行(没有公共点). 分别记作:l α⊂;l P α=;//l α.2. 两平面的位置关系:平行(没有公共点);相交(有一条公共直线).分别记作//αβ;l αβ=.¤例题精讲:【例1】已知空间边边形ABCD 各边长与对角线都相等,求异面直线AB 和CD 所成的角的大小.解:分别取AC 、AD 、BC 的中点P 、M 、N 连接PM 、PN ,由三角形的中位线性质知PN ∥AB ,PM ∥CD ,于是∠MPN 就是异面直线AB 和CD 成的角(如图所示).连结MN 、DN ,设AB =2, ∴PM =PN =1.而AN =DN=MN ⊥AD ,AM =1,得MN∴MN 2=MP +NP 2,∴∠MPN =90°.∴异面直线AB 、CD 成90°角.【例2】在空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 的中点,若AC + BD = a ,AC ⋅BD =b ,求22EG FH +.解:四边形EFGH 是平行四边形,22EG FH +=222()EF FG +=22211()(2)22AC BD a b +=-. 【例3】已知空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G分别是BC 、CD 上的点,且23CF CG CB CD ==.求证:(1)E 、F 、G 、H 四点共面;(2)三条直线EF 、GH 、AC 交于一点.证明:(1) 在△ABD 和△CBD 中,∵ E 、H 分别是AB 和CD 的中点, ∴ EH //12BD . 又 ∵23CF CG CB CD ==, ∴ FG //23BD . ∴ EH ∥FG . 所以,E 、F 、G 、H 四点共面.第11讲 §2.2.1 直线与平面平行的判定¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的判定,掌握直线与平面平行判定定理,掌握转化思想“线线平行⇒线面平行”.¤知识要点:1. 定义:直线和平面没有公共点,则直线和平面平行. 2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 符号表示为:,,////a b a b a ααα⊄⊂⇒. 图形如右图所示. ¤例题精讲:【例1】已知P 是平行四边形ABCD 所在平面外一点,E 、F 分别为AB 、PD 的中点,求证:AF ∥平面PEC证明:设PC 的中点为G ,连接EG 、FG .∵ F 为PD 中点, ∴ GF ∥CD 且GF =12CD . ∵ AB ∥CD , AB =CD , E 为AB 中点,∴ GF ∥AE , GF =AE , 四边形AEGF 为平行四边形.A BCD EFGHABCDEFGMO ∴EG∥AF,又∵AF⊄平面PEC,EG⊂平面PEC,∴AF∥平面PEC.【例2】在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、C1D1的中点. 求证:EF∥平面BB1D1D.证明:连接AC交BD于O,连接OE,则OE∥DC,OE=12DC.∵DC∥D1C1,DC=D1C1,F为D1C1的中点,∴OE∥D1F,OE=D1F,四边形D1FEO为平行四边形. ∴EF∥D1O.又∵EF⊄平面BB1D1D,D1O⊂平面BB1D1D,∴EF∥平面BB1D1D.【例3】如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG.证明:如右图,连结DM,交GF于O点,连结OE,在BCD∆中,G、F分别是BD、CD中点,∴//GF BC,∵G为BD中点,∴O为MD中点,在AMD∆中,∵E、O为AD、MD中点,∴//EO AM,又∵AM⊂平面EFG,EO⊂平面EFG,∴AM∥平面EFG.点评:要证明直线和平面平行,只须在平面内找到一条直线和已知直线平行就可以了. 注意适当添加辅助线,重视中位线在解题中的应用.【例4】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN//平面P AD;(2)若4MN BC==,PA=P A与MN所成的角的大小.解:(1)取PD的中点H,连接AH,由N是PC的中点,∴NH//=12DC. 由M是AB的中点,∴NH//=AM,即AMNH为平行四边形. ∴//MN AH.由,MN PAD AH PAD⊄⊂平面平面,∴//MN PAD平面.(2)连接A C并取其中点为O,连接OM、ON,∴OM//=12BC,ON//=12P A,所以ONM∠就是异面直线P A与MN所成的角,且MO⊥NO. 由4MN BC==,PA=得OM=2,ON=所以030ONM∠=,即异面直线P A与MN成30°的角点评:已知中点,牢牢抓住中位线得到线线平行,通过线线平行转化为线面平行. 求两条异面直线所成角,方法的关键也是平移其中一条或者两条直线,得到相交的线线角,通过解三角形而得.第12讲§2.2.2 平面与平面平行的判定¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的判定,掌握两个平面平行的判定定理与应用及转化的思想.¤知识要点:面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.用符号表示为:,,////,//a b a b Pa bβββααα⊂⊂=⎫⇒⎬⎭.¤例题精讲:【例1】如右图,在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.证明:连结B1D1,∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN不在平面A1BD上,∴PN∥平面A1BD.同理,MN∥平面A1BD. 又PN∩MN=N,∴平面PMN∥平面A1BD.【例2】正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明:(1)由B1B//=DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD ⊄平面B1D1C,B1D1⊂平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C.而A1D∩BD=D,∴平面A1BD∥平面B1CD.A1苦心人,天不负,卧薪尝胆,三千越甲可吞吴(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.取BB 1中点G ,∴AE∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD .∴AG ∥DF .∴B 1E ∥DF . ∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD . 【例3】已知四棱锥P-ABCD 中, 底面ABCD 为平行四边形. 点M 、N 、Q 分别在P A 、BD 、PD 上, 且PM :MA =BN :ND =PQ :QD .求证:平面MNQ ∥平面PBC .证明: PM :MA =BN :N D=PQ:QD . ∴ MQ //AD ,NQ //BP , 而BP ⊂平面PBC ,NQ ⊄平面PBC , ∴ NQ //平面PBC . 又ABCD 为平行四边形,BC //AD, ∴ MQ //BC ,而BC ⊂平面PBC ,MQ ⊄平面PBC , ∴ MQ //平面PBC .由MQ NQ =Q ,根据平面与平面平行的判定定理, ∴ 平面MNQ ∥平面PBC .点评:由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面面平行. 一般证“面面平面”问题最终转化为证线与线的平行.第13讲 §2.2.3 直线与平面平行的性质¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的性质,掌握直线和平面平行的性质定理,灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.¤知识要点:线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 即:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭.¤例题精讲:【例1】经过正方体ABCD -A 1B 1C 1D 1的棱BB 1作一平面交平面AA 1D 1D 于E 1E ,求证:E 1E ∥B 1B 证明:∵ 11111111//,,AA BB AA BEE B BB BEE B ⊄⊂平面平面,∴ 111//AA BEE B 平面. 又 11111111AA ADD A ADD A BEE B EE ⊂=平面,平面平面, ∴ 11//AA EE .则111111//////AA BB BB EE AA EE ⎫⇒⎬⎭. 【例2】如图,//AB α,//AC BD ,C α∈,D α∈,求证:AC BD =. 证明:连结CD ,∵//AC BD ,∴直线AC 和BD 可以确定一个平面,记为β, ∵,C D α∈,,C D β∈,∴CD αβ=,∵//AB α,AB β⊂,CD αβ=∴//AB CD , 又∵//AC BD ,∴ 四边形ACDB 为平行四边形, ∴AC BD =.第14讲 §2.2.4 平面与平面平行的性质¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的性质,掌握面面平行的性质定理,灵活运用面面平行的判定定理和性质定理,掌握“线线”“线面”“面面”平行的转化.¤知识要点:1. 面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 用符号语言表示为://,,//a b a b αβγαγβ==⇒.2. 其它性质:①//,//l l αβαβ⊂⇒; ②//,l l αβαβ⊥⇒⊥;③夹在平行平面间的平行线段相等. ¤例题精讲:【例1】如图,设平面α∥平面β,AB 、CD 是两异面直线,M 、N 分别是AB 、CD 的中点,且A 、C ∈α,B 、D ∈β. 求证:MN ∥α.1A β a αb βαEN MDBCA苦心人,天不负,卧薪尝胆,三千越甲可吞吴 10证明:连接BC ,取BC 的中点E ,分别连接ME 、NE ,则ME ∥AC ,∴ ME ∥平面α,又 NE ∥BD , ∴ NE ∥β,又M E ∩NE =E ,∴平面MEN ∥平面α,∵ MN ⊂平面MEN ,∴MN ∥α.【例2】如图,A ,B ,C ,D 四点都在平面α,β外,它们在α内的射影A 1,B 1,C 1,D 1是平行四边形的四个顶点,在β内的射影A 2,B 2,C 2,D 2在一条直线上,求证:ABCD 是平行四边形.证明:∵ A ,B ,C ,D 四点在β内的射影A 2,B 2,C 2,D 2在一条直线上, ∴A ,B ,C ,D 四点共面.又A ,B ,C ,D 四点在α内的射影A 1,B 1,C 1,D 1是平行四边形的四个顶点, ∴平面ABB 1A 1∥平面CDD 1C 1.∴AB ,CD 是平面ABCD 与平面ABB 1A 1,平面CDD 1C 1的交线.∴AB ∥CD .同理AD ∥BC . ∴四边形ABCD 是平行四边形.第15讲 §2.3.1 直线与平面垂直的判定¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定,掌握直线与平面垂直的定义,理解直线与平面垂直的判定定理,并会用定义和判定定理证明直线与平面垂直的关系. 掌握线面角的定义及求解.¤知识要点:1. 定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足.(线线垂直→线面垂直)2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 符号语言表示为:若l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,则l ⊥α3. 斜线和平面所成的角,简称“线面角”,它是平面的斜线和它在平面内的射影的夹角. 求直线和平面所成的角,几何法一般先定斜足,再作垂线找射影,然后通过解直角三角形求解,可以简述为“作(作出线面角)→证(证所作为所求)→求(解直角三角形)”. 通常,通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线是产生线面角的关键.¤例题精讲:【例1】四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且EF AC =,90BDC ∠=,求证:BD ⊥平面ACD .证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG 12//AC =,12//FG BD =. 又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +==, ∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C =, ∴BD ⊥平面ACD .【例2】已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.解:取CD 的中点F ,连接EF 交平面11ABC D 于O ,连AO .由已知正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求. 在Rt EOA ∆中,11122EO EF A D ==,AE =sin EO EAO AE ∠==. 所以直线AE 与平面11ABC D. 【例3】三棱锥P ABC -中,PA BC PB AC ⊥⊥,,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的垂心.证明:连接OA 、OB 、OC ,∵ PO ⊥平面ABC , ∴ ,PO BC PO AC ⊥⊥.又 ∵ PA BC PB AC ⊥⊥,, ∴ BC PAO AC PBO ⊥⊥平面,平面,得AO BC BO AC ⊥⊥,, ∴O 为底面△ABC的垂心.。

相关文档
最新文档