八年级下册数学不等式测试题

合集下载

八年级数学下册2.2不等式的基本性质习题试题

八年级数学下册2.2不等式的基本性质习题试题

不等式的根本性质1、实数a、b、c在数轴上对应的点如下图,那么以下式子中正确的选项是〔〕.A、bc>ab;B、ac>ab;C、bc<ab;D、c+b>a+b.2、△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是〔〕.A、3b<p<3a;B、a+2b<p<2a+b;C、2b<p<2〔a+b〕;D、2a<p<2〔a+b〕.3、假设m>n,且am<an,那么a的取值应满足条件〔〕.A、a>0;B、a<0;C、a=0;D、a 0.4、假设a>b,且m为有理数,那么am2____bm2.5、同桌甲和同桌乙正在对7a>6a进展争论,甲说:“7a>6a正确〞,乙说:“这不可能正确〞,你认为谁的观点对?为什么?6、根据不等式的根本性质,把不等式2x+5<4x-1变为x>a或者x<a的形式.7、如下图,一个已倾斜的天平两边放有重物,其质量分别为a和b,假如在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?1、设a 、b 、c 、d ∈R 、且a >b ,c >d ,那么以下结论中正确的选项是〔 〕.A 、a +c >b +dB 、a -c >b -dC 、ac >bdD 、cb d a > 2、假设a 、b 为实数、那么a >b >0是a 2>b 2的〔 〕. A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既非充分条件也非必要条件 3、假设011<<ba ,那么以下结论正确的选项是〔 〕. A 、22b a < B 、2b ab < C 、ab a <2 D 、b a >4、“a >b 〞是“ac 2>bc 2〞成立的〔 〕. A 、必要不充分条件 B 、充分不必要条C 、充要条件D 、以上均错5、假设b a , 为任意实数且b a >,那么〔 〕.A 、22b a >B 、1>b aC 、0)lg(>-b aD 、b a )21()21(< 6、“1>a 〞是“11<a〞的〔 〕. A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件7、设10<<<a b 、那么以下不等式成立的是〔 〕.A 、12<<b abB 、0log log 2121<<a b C 、222<<a b D 、12<<ab a8、1>ab 是0)(<-b a a 成立的〔 〕. A 、充分不必要条件 B 、充要条件C 、必要不充分条件D 、既不充分不必要条件1、不等式的根本性质1:假如a>b ,那么a+c____b+c ,a-c____b-c .不等式的根本性质2:假如a>b ,并且c>0,那么ac_____bc .不等式的根本性质3:假如a>b ,并且c<0,那么ac_____bc .2、设a<b ,用“<〞或者“>〞填空.〔1〕a-1____b-1;〔2〕a+1_____b+1;〔3〕2a____2b ;〔4〕-2a_____-2b .3、根据不等式的根本性质,用“<〞或者“>〞填空.〔1〕假设a -1>b -1,那么a____b ;〔2〕假设a+3>b+3,那么a____b ;〔3〕假设2a>2b ,那么a____b ;〔4〕假设-2a>-2b ,那么a___b .4、假设a>b ,m<0,n>0,用“>〞或者“<〞填空.〔1〕a+m____b+m ;〔2〕a+n___b+n ;〔3〕m-a___m-b ;〔4〕an____bn ;5、以下说法不正确的选项是〔 〕A 、假设a>b ,那么ac 2>bc 2〔c ≠0〕;B 、假设a>b ,那么b<a ;C 、假设a>b ,那么-a>-b ;D 、假设a>b ,b>c ,那么a>c .6、根据不等式的根本性质,把以下不等式化为x>a 或者x>a 的形式.〔1〕x -3>1;〔2〕3x<1+2x ;〔3〕2x>4.1、假设000><>+ay a y x ,,,那么y x -的值〔 〕. A 、小于0 B 、大于0 C 、等于0 D 、正负不确定2、假设a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④b a 22>中,正确的有〔 〕. A 、1个 B 、2个 C 、3个 D 、4个3、a 、b 、c 满足a b c <<,且0<ac ,那么以下选项里面不一定成立的是〔 〕. A 、 B 、 C 、 D 、0)(<-c a ac4、假设011<<ba ,那么以下不等式①ab b a <+;②;||||b a >③b a <;④02<-ab a 中,正确的不等式有〔 〕.A 、1个B 、2个C 、3个D 、4个 5、设010<<-<b a ,,那么2ab ab a ,,三者的大小关系为 . 6、设R x x x B x A ∈+=+=,,234221且1≠x ,那么B A ,的大小关系为 .7、假如01<<<-b a ,那么2211a b a b ,,,的大小关系为 . 8、设,0>a 0>b ,那么b a >是bb a a 11->-成立的 条件. 励志赠言经典语录精选句;挥动**,放飞梦想。

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题
A. B. Cห้องสมุดไป่ตู้ D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;

八年级下册数学不等式专题

八年级下册数学不等式专题

八年级下册数学不等式专题一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b |(D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <05. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交元.一张彩色底片元,扩印一张相片元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11(B)8 (C)7 (D)5 8. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2(B)k ≥2 (C)k <1 (D)1≤k <2 9. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y .12. 若x 是非负数,则5231x -≤-的解集是______.13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1.19. ⋅-->+22531x x ⋅-≥--+612131y y y20. ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组21. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x 22. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习23. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .24. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.25. 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.26. 适当选择a 的取值范围,使<x <a 的整数解: (1) x 只有一个整数解;(2) x 一个整数解也没有.27. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.28. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.29. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.30. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.31. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.32. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.33. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于1034. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.35. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题36. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方37. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾38.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人宿舍有几间39.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件40.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠41.2008年5月12日,汶川发生了里氏级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1) 二班与三班的捐款金额各是多少元(2) 一班的学生人数是多少42. 某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1) 若学校单独租用这两种客车各需多少钱(2) 若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.43. 在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000m 2的任务.某灾民安置点计划用该企业生产的这批板材搭建A ,B 两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民(1)若不等式组⎩⎨⎧≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组⎩⎨⎧≥≤a x x 2的解集时2≤≤x a ,则a 的取值范围为 (3)若不等式组⎩⎨⎧≥≤a x x 2无解,则a 的取值范围为2.若不等式组⎩⎨⎧≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式1:若不等式组⎩⎨⎧<>ax x 0只含有三个整数1、2和3,则a 的取值范围为 ;变式2:关于x 的不等式组010x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是 ;3.若不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围是( ).A .m<2 B .m≥2 C.m<1 D .1≤m<24. 不等式a ≤x ≤3只有5个整数解,则a 的范围是5、已知a b <<0,那么下列不等式组中有解的是 ( )A .⎩⎨⎧<>b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧>-<bx a x6、已知不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( )A.a ≤1 B.a ≥1 C. a <1 D.a >1 7、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有5个,求a 的取值范围。

苏科版八年级数学下册不等式复习题

苏科版八年级数学下册不等式复习题

苏科版八年级数学下册不等式复习题每一题请写出适当过程1、若a>b ,则下列不等式成立的是( )A 22b a >B bc ac >C 22bc ac >D 0>-b a2、x>y ,且()()y a x a 11-<-,则a 的取值范围3、若0a b <<,则下列式子:①12a b +<+;②1a b >;③a b ab +<;④11a b<中,正确的有( ) A .1个 B .2个 C .3个 D .4个4、已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.5、解不等式(组)255.014.0x x ---≤03.002.003.0x -6、若不等式组⎩⎨⎧><b x a x 无解,则a 、b 的大小关系是 7、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,求a 的取值范围8、若不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是9、已知m>n ,则⎩⎨⎧->-<22n x m x 的解集是10、若不等式组⎩⎨⎧>-≤-01a x a x 的解集不在32≤≤x 之间,求a 的取值范围11、如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为12、写出不等式a x <的有3个正整数解,则a 的取值范围13、函数y =中,自变量x 的取值范围是 . 14、点A (m -4,1-2m )在第三象限,则m 的取值范围是15、若11+-<-<+<a a a a ,则a 的取值范围16、若分式231-+x x 的值为负数,则x 的取值范围 新课标第一网17、已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围18、如果方程组⎩⎨⎧-=++=+my x m y x 13,313的解满足x+y >0,求m 的取值范围19、已知x 、y 的方程组⎩⎨⎧+=-+=+1593a y x a y x 的解均为正数.求(1)a 的取值范围。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(含答案解析)(4)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(含答案解析)(4)

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( ) A . B . C .D .2.若0m n <<,则下列结论中错误的是( ) A .99m n -<-B .m n ->-C .11n m> D .1m n> 3.不等式组211x x ≥-⎧⎨>-⎩的解集是( )A .1x >-B .12x >-C .21x ≥-D .112x -<≤-4.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有( ) A .2种B .3种C .4种D .5种5.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或516.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( )A .67a <≤B .1821a <≤C .1821a ≤<D .1821a ≤≤7.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( )A .0x >B .0x <C .1x >-D .1x <-8.若不等式组010a x x ->⎧⎨+>⎩无解,则a 的取值范围是( )A .a≤-1B .a≥-1C .a<-1D .a>-19.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .1010.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .11.下列各数是不等式271x -≥的解的是( ). A .4 B .3 C .2 D .1 12.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( )A .a <bB .3a <3bC .﹣a >﹣bD .a ﹣2>b ﹣2二、填空题13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x⋅⋅⋅0 1 2 3⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅则关于x的不等式ax b mx n+>+的解集是______.15.已知a为整数,且340218a<+<,则a的值为____________.16.如图,已知一次函数y=kx+b的图象与正比例函数y=mx的图象相交于点P(﹣3,2),则关于x的不等式mx﹣b≥kx的解集为_____.17.不等式组112251xx⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.18.不等式-3x-1≥-10的正整数解为______________19.一张试卷共20道题,做对一题得5分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:70分及以上成绩为优秀),那么小明至少要做_________道题.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.如图,已知有甲、乙两个长方形,它们的边长如图所示(m.为正整数....),面积分别为1S、2S.(1)请比较1S与2S的大小:1S_____2S;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为3S ,试探究:3S 与1S 的差(即31S S -)是否为常数?若为常数,求出这个常数:如果不是,请说明理由;(3)若满足条件120n S S <<-的整数n 有且只有8个,直接写出m 的值.22.解不等式组68491153x x x x +>+⎧⎪+⎨≤-⎪⎩,并把不等式组的解在数轴上表示出来.23.已知一次函数y x b =+的图像经过点(1,3)A -. (1)求该函数的表达式; (2)x 取何值时,0y >?24.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 25.某商场销售A 、B 两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A 型号和1台B 型号计算器,可获利润38元;销售6台A 型号和3台型号计算器,可获利润6元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A 、B 两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A 型号的计算器多少台?最多可购进A 型号的计算器多少台? 26.计算: (1)01(4)2π--- (2)231352x x-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】解出不等式,在进行判断即可; 【详解】251x -+≥,24x -≥-, 2x ≤,解集表示为:;故答案选C . 【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.C解析:C 【分析】分析各个选项是由m <n<0如何变化得到的,根据不等式的性质即可进行判断. 【详解】A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.两边减去9,得到:m-9<n-9;成立;B 、两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以-1得到-m >-n ;成立;C 、m <n <0,若设m=-2 n=-1验证11n m>不成立. D 、由m <n ,根据两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时除以负数n 得到1mn>,成立; 故选:C . 【点睛】利用特殊值法验证一些式子错误是有效的方法.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.C解析:C 【分析】先求出2x≥-1的解集,再确定不等式组的解集即可. 【详解】 解:211x x ≥-⎧⎨>-⎩①②解不等式①得,21x ≥-, 解不等式②得,x>-1,∴不等式组的解集为:21x ≥- 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.B解析:B 【分析】设4人车租x 辆,6人车租y 辆,根据没有空座列出方程,结合至少有1名教师列出不等式,求解即可. 【详解】解:设4人车租x 辆,6人车租y 辆, ∵不得有空座, 则461038x y +=+ ∴283y x =-又∵每辆车上至少有1名教师, ∴10x y +≤ 把283y x =-代入10x y +≤得, 28103x x +-≤ ∴6x ≤ ∵x 、y 都是整数,由283y x =-知x 是3的倍数, 因此,当x=0时,y=8; 当x=3时,y=6; 当x=6时,y=4; 故有3种方案, 故选:B . 【点睛】此题主要考查了二元一次方程与一元一次不等式的应用,关键是根据题目所提供的等量关系和不等量关系,列出方程和不等式求解.5.C解析:C 【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答. 【详解】解:∵在△ABC 中,AC =AM =3, 设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x xx x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6, ③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6, ∴x =5或x =4; 故选C . 【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.6.B解析:B 【分析】此题可先根据一元一次不等式组解出x 的取值,再根据不等式组只有四个整数解,求出实数a 的取值范围. 【详解】解:6234x x a x x +<+⎧⎪⎨+>⎪⎩①②解①得x >2, 解②得x <13a , ∴2<x <13a , ∵不等式组有且只有四个整数解,即3,4,5,6;∴6<13a≤7,即18<a≤21. 故选:B . 【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了7.C【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.故选:C.【点睛】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8.A解析:A【分析】要求出a的值,首先分别求出这两个不等式解,最后根据不等式组无解的情况来确定a的值.【详解】解:10a xx->⎧⎨+>⎩①②解不等式①,得x<a,解不等式②,得x>-1∵原不等式组无解,∴a≤-1故答案为:A.【点睛】本题考查了解一元一次不等式组,关键是知道不等式组的解集是由这两个不等式的解集的公共部分构成的,题目无解说明这两个不等式的解集没有公共部分这是关键.9.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】依题意,得:3126x->,解得:9x>.∵x为整数,∴x的最小值为10.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.10.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.11.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.【详解】x-≥,271≥,x+217x≥28x≥.解得,4故选:A.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.13.1≤x<4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x<4解不等式②得x≥1所以不等式组的解集为:1≤x<4故答案为:1≤x<4【点睛】此题主要考查了求一元一次不解析:1≤x<4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】解:217?311?2xxx-<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x<4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x<4.故答案为:1≤x<4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.14.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x 的增大而增大且两个函数的交点坐标是(21)则当x<2解析:2x<【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,kx+b>mx+n,故答案为:x<2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.15.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.16.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.17.【分析】先解不等式组再求整数解的最大值【详解】解不等式①得解不等式②得故不等式组的解集是所以整数解是:-101最大是1故答案为【点睛】考核知识点:求不等式组的最大整数值解不等式组是关键解析:1x =【分析】先解不等式组,再求整数解的最大值.112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >- 故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键. 18.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键. 19.15【分析】设小明做对x 道题则做错或不做(20−x )道题根据总分=5×做对题目数−1×做错或不做题目数结合总分不少于70分即可得出关于x 的一元一次不等式解之即可得出x 的取值范围再取其中的最小整数值即解析:15【分析】设小明做对x 道题,则做错或不做(20−x )道题,根据总分=5×做对题目数−1×做错或不做题目数,结合总分不少于70分,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中的最小整数值即可得出结论.【详解】解:设小明做对x 道题,则做错或不做(20−x )道题,依题意,得:5x−(20−x )≥70,解得:x≥15,∴小明至少要做对15道题.故答案为:15.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)<;(2)①m+4.5;②为常数,0.25;(3)m=8【分析】(1)根据矩形的面积公式计算即可;(2)①根据矩形和正方形的周长公式即可得到结论;②根据矩形和正方形的面积公式即可得到结论;(3)根据题意得出关于m 的不等式,解之即可得到结论.【详解】解:(1)图甲中长方形的面积S 1=(m+5)(m+4)=m 2+9m+20,图乙中长方形的面积S 2=(m+7)(m+3)=m 2+10m+21,∵S 1-S 2=-m-1,m 为正整数,∴-m-1<0,∴S 1<S 2.故答案为:<;(2)①2(m+5+m+4)÷4=m+4.5;②S 3-S 1=(m+4.5)2-(m 2+9m+20)=0.25,故S 3与S 1的差(即S 3-S 1)是常数;(3)由(1)得|S 1-S 2|=m+1,且m 为正整数,∵0<n <|S 1-S 2|,∴0<n <m+1,由题意得8<m+1≤9,解得:7<m≤8,∵m 为正整数,∴m=8.【点睛】本题主要考查列代数式,整式的混合运算,解题的关键是掌握多项式乘多项式、长方形的性质、正方形的性质等知识.22.12<x≤1,数轴见详解 【分析】 首先解每个不等式,然后在数轴上表示出来,两个不等式的解集的公共部分就是不等式组的解集.【详解】6849...115...3x x x x +>+⎧⎪⎨+≤-⎪⎩①②, 解①得:x >12, 解②得:x≤1,数轴上表示如下:∴不等式组的解是:12<x≤1. 【点睛】 本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.24.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.25.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩ , 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.26.(1)12-;(2)21x ≤- 【分析】(1)由绝对值的意义,算术平方根,零指数幂的运算法则进行计算,即可得到答案; (2)由解一元一次不等式的运算法则进行计算,即可得到答案.【详解】解:(1)01(4)2π--=1212-+ =12-; (2)231352x x -+-, ∴302(23)5(1)x x --≤+, ∴304655x x -+≤+,∴21x ≤-.【点睛】本题考查了解一元一次不等式,零指数幂,绝对值的意义,算术平方根,解题的关键是熟练掌握运算法则进行计算.。

八年数学下册第2章一元一次不等式与一元一次不等式组达标测试卷新版北师大版

八年数学下册第2章一元一次不等式与一元一次不等式组达标测试卷新版北师大版

第二章达标测试卷一、选择题(每题3分,共30分)1.现有以下数学表达式:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.其中不等式有( )A .5个B .4个C .3个D .1个 2.若3x <-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.不等式5x ≤-10的解集在数轴上表示为( )4.如图,直线y =kx +b 交坐标轴于A ,B 两点,则不等式kx +b >0的解集是( )A .x >-2B .x >3C .x <-2D .x <3 5.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个 6.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .|a -c |>|b -c |B .-a <cC .a +c >b +cD .a b <c b7.使不等式x -2≥2与3x -10<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在8.已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )9.不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x -1≤7-32x 的所有非负整数解的和是( ) A .10 B .7 C .6 D .010.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的数量为( )A .13B .14C .15D .16 二、填空题(每题3分,共30分)11.若x >y ,则-3x +2________-3y +2(填“<”或“>”). 12.若(m -2)x|m -1|-3>6是关于x 的一元一次不等式,则m =________.13.小明借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,设以后几天里每天读x 页,所列不等式为____________________. 14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________. 15.函数y =mx +n 和函数y =kx 在同一坐标系中的图象如图所示,则关于x 的不等式mx +n >kx 的解集是____________.16.已知关于x 的不等式2x -a >-3的解集如图所示,则a 的值是________.17.不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是________.18.对于x ,y 定义一种新运算“*”:x *y =3x -2y ,等式右边是通常的减法和乘法运算,如2*5=3×2-2×5=-4,那么(x +1)*(x -1)≥5的解集是__________.19.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是__________.20.游泳池的水质要求三次检验的PH 的平均值不小于7.2,且不大于7.8,前两次检验,PH 的读数分别为7.4和7.9,要使水质合格,设第三次检验的PH 的值为x ,则x 的取值范围是____________. 三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.解不等式2(x +2)3≤7(x -1)6-1,并把解集在数轴上表示出来.22.解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.23.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-a ,3x +y =50+a 的解都是非负数,求a 的取值范围.24.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1),12x ≤8-32x +2a 恰好有两个整数解,求实数a 的取值范围. 25.如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A (2,-1). (1)求k ,b 的值.(2)利用图象求出:当x 取何值时,y 1≥y 2. (3)利用图象求出:当x 取何值时,y 1>0且y 2<0.26.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每名老师带队14名学生,则还剩10名学生没老师带;若每名老师带队15名学生,就有1名老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如下表所示:客车类型 甲型客车 乙型客车 载客量/(人/辆) 35 30 租金/(元/辆)400320学校计划此次研学活动的租金总费用不超过3 000元,为安全起见,每辆客车上至少要有2名老师. (1)参加此次研学活动的老师和学生各有多少名?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为________辆. (3)学校共有几种租车方案?最少租车费用是多少?答案一、1.B 2.C 3.C 4.A 5.C 6.A 7.B 8.C 9.A 点拨:⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x .② 解不等式①得x >-2.5, 解不等式②得x ≤4,∴不等式组的解集为-2.5<x ≤4,∴不等式组的所有非负整数解是0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10. 故选A. 10.C 点拨:设小华要答对x 题.10x +(-5)×(20-x )>120, 10x -100+5x >120. 15x >220,解得x >443,因为x 必须为整数,所以x 的最小值为15,即小华得分要超过120分,他至少要答对15题. 二、11.< 12.0 13.2×5+(10-2)x ≥7214.a <1 15.x <-1 16.1 17.-3 18.x ≥0 19.a ≤-1 20.6.3≤x ≤8.1三、21.解:去分母,得4(x +2)≤7(x -1)-6.去括号,得4x +8≤7x -7-6. 移项、合并同类项,得-3x ≤-21. 系数化为1,得x ≥7. 解集在数轴上表示如图所示.22.解:⎩⎪⎨⎪⎧4(x +1)≤7x +10,①x -5<x -83.② 由①得x ≥-2,由②得x <72,∴不等式组的解集为-2≤x <72.∴不等式组的所有非负整数解为0,1,2,3.23.解:解方程组,得⎩⎪⎨⎪⎧x =10+a ,y =20-2a .依题意有⎩⎪⎨⎪⎧10+a ≥0,20-2a ≥0,解得-10≤a ≤10.24.解:解5x +1>3(x -1),得x >-2;解12x ≤8-32x +2a ,得x ≤4+a . 则不等式组的解集是-2<x ≤4+a . ∵不等式组恰好有两个整数解, ∴0≤4+a <1.解得-4≤a <-3. 25.解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12.将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5. (2)从图象可以看出:当x ≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝ ⎛⎭⎪⎫53,0. 从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.26.解:(1)设参加此次研学活动的老师有x 名,根据题意得:14x +10=15x -6,解得x =16,14x +10=14×16+10=234.答:参加此次研学活动的老师有16名,学生有234名. (2)8(3)设租甲型客车y 辆,则租乙型客车(8-y )辆,根据题意得解得2≤y ≤5.5.∵y 为正整数,∴y 可取2,3,4,5. ∴共有4种租车方案. 设租车费用为W 元,则W =400y +320(8-y )=80y +2 560, ∵80>0,∴W 随y 的增大而增大. ∴当y =2时,W 最小=2 720.答:学校共有4种租车方案,最少租车费用是2 720元.。

苏科版八年级数学下第7章不等式测试卷及答案

苏科版八年级数学下第7章不等式测试卷及答案

八年级数学(下)第七章测试卷班级_______ 姓名____________得分________一、填空题:(每空2分,共30分)1、不等式3(x +2)≥4+2x 的解集为 ;负整数解为________ .2、当x _____ 时,代数式623-x 的值为非负数. 3、函数自变量x 的取值范围是 .4、若不等式(m-2)x>2的解集是x<22-m , 则m 的取值范围是_______. 5、若不等式-3x+n>0的解集是x<2,则不等式-3x+n<3解集是_______ .6、(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .7、点p(x-2,3+x)在第二象限,则x 的取值范围是____________.8、要使函数y=(2m-3)x+(3-m)的图像经过第一、二、四象限,则m 的取值范围是 __________ .9、一个锐角的度数为(5x-35)°,则x 的取值范围是 . 10、n 边形的内角和比它的外角和至少大150度,n 的最小值是 .11、三个连续自然数的和不大于 12,这样的自然数组有____组.12、某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打______折出售此商品.13、弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是______ .14、有人问一位老师,他所教的班级有多少人。

老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位在操场上踢足球”,则这个班共有 个学生.二、选择题:(每题3分,共33分)1、下列式子(1)2x -7≥-3, (2) 01>-x x(3)7< 9, (4)x 2+3x>1,(5) 1)1(22≤+-a a,(6) m -n>3中是一元一次不等式的有 ( )A .1个B .2个 C. 3个 D . 4个 2、如果a >b ,下列各式中错误..的是 ( ) A .a -1>b -2 B .-3a <-3bC .2a >2bD .5-a >5-b3、不等式组的解集在数轴上可以表示为 ( )A .B . C. D .4、一元一次不等式组1x ax >⎧⎨>-⎩的解集为x >a ,且a ≠-1,则a 取值范围是( )A .a >-1B .a <-1C .a >0D .a <0 5、若实数a<1,则实数M=a ,N=23a +,P=213a +的大小关系为 ( ) A .P>N>M B .M>N>P C .N>P>M D .M>P>N6、若 a,b,c 是三角形的三边,则代数式 (a -b)2-c 2 的值是 ( ) A . 正数 B . 负数 C. 等于零 D . 不能确7、关于x 的方程x m x --=-425的解x 满足2<x<10,则m 的取值范围是( ) A .8>m B .32<m C.328<<m D .8<m 或32>m 8、一个三角形的一边长是(x+3)cm ,这边上的高是5cm ,它的面积不大于20cm 2,则 ( )A .x >5B .-3 < x ≤5C .x ≥ -3D .x ≤59、八年级某班级部分同学去植树,若每人平均植树7课,还剩9棵,若每人平均 植树9棵,则有1名同学植树的棵数不到8棵。

人教版初中八年级数学《不等式》章节测试题与答案

人教版初中八年级数学《不等式》章节测试题与答案

人教版初中八年级数学《不等式》章节测试题一、单选题1、若a <b ,则下列各式中不成立的是( )A 、a+2<b+2B 、﹣3a <﹣3bC 、2﹣a >2﹣bD 、3a <3b 2、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为( )A 、○□△B 、○△□C 、□○△D 、△□○3、贵阳市今年5月份的最高气温为27△,最低气温为18△,已知某一天的气温为t△,则下面表示气温之间的不等关系正确的是( )A 、18<t <27B 、18≤t <27C 、18<t≤27D 、18≤t≤274、如果不等式(a ﹣2)x >a ﹣2的解集是x <1,那么a 必须满足( ) A 、a <0 B 、a >1 C 、a >2 D 、a <25、若﹣<﹣,则a 一定满足是( )A 、a >0B 、a <0C 、a≥0D 、a≤06、若a 、b 是有理数,则下列说法正确的是( )A 、若a 2>b 2 ,则a >bB 、若a >b ,则a 2>b 2C 、若|a|>b ,则a 2>b 2D 、若|a|≠|b|,则a 2≠b 27、当1≤x≤2时,ax+2>0,则a 的取值范围是( )A 、a >﹣1B 、a >﹣2C 、a >0D 、a >﹣1且a≠0 8、(2016•大庆)当0<x <1时,x 2、x 、的大小顺序是( ) A 、x 2 B 、<x <x 2 C 、<x D 、x <x 2<二、填空题9、用不等式表示下列关系:x 的3倍与8的和比y 的2倍小: ___. 10、如果2x ﹣5<2y ﹣5,那么﹣x ﹣y (填“<、>、或=”) 11、下列判断中,正确的序号为_ ___ .△若﹣a >b >0,则ab <0; △若ab >0,则a >0,b >0;△若a >b ,c≠0,则ac >bc ;△若a >b ,c≠0,则ac 2>bc 2;△若a >b , c≠0,则﹣a ﹣c <﹣b ﹣c . 12、已知数a 、b 的对应点在数轴上的位置如图所示,则a ﹣3 __ _____b ﹣313、若关于x 的不等式(1﹣a )x >2可化为x >,则a 的取值范围是 。

八年级数学不等式强化训练100题

八年级数学不等式强化训练100题

不等式强化训练100题1、若函数y=2x-6. (1)当函数值y为正数时,求x的范围;(2)当自变量x取正数时,求函数值y 的范围.2、计算:(1)计算:;(2)解不等式组:.3、解不等式:,并把解集表示在数轴上.4、当时,点P(3m-2,m-1)在A、第一象限B、第二象限C、第三象限D、第四象限8、某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部) 4000 2500售价(元/部) 4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.9、一列慢车以时速60km的速度从甲地驶往乙地,2h后,一列快车以时速为100km的速度也从甲地驶往乙地.分别列出慢车和快车行驶的路程ykm与时间xh之间的函数关系式,并画出图象,根据图象回答下列问题:(1)何时慢车在快车前面?(2)何时快车在慢车前面?(3)谁行驶的路程先达到240km?谁行驶的路程先达到360km?11、已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.12、解不等式组14、已知关于x,y的方程组的解满足x>y,求a的取值范围.15、北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)若要求总运费不超过8200元,共有几种调运方案?(2)当老板的您,请设计出总运费最低的调运方案吧!并求出最低总运费是多少元?16、已知x=1是不等式组的解,求a的取值范围.18、2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.19、我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:根据上面的数据回答:(1)若这个发电厂购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为多少千瓦时;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000kW*h,请你提供符合条件的购机方案.20、阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a-b>0时,一定有a>b;当a-b=0时,一定有a=b;当a-b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵=(a+b)(a-b),a+b>0∴与(a-b)的符号相同当时,a-b>0,得a>b当时,a-b=0,得a=b当时,a-b<0,得a<b解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为,李明同学的用纸总面积为.回答下列问题:①=_______________(用x、y的式子表示),=_______________(用x、y的式子表示)②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度=AP+BP.①在方案一中,=_________km(用含x的式子表示);②在方案二中,=_______________km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.21、已知3(5x+2)+5<4x-6(x+1),化简|x+1|-|1-x|.23、国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.24、如图所示,小李决定星期日登A、B、C、D中的某山,打算上午9点由P地出发,尽可能去最远的山,登上山顶后休息1h,到下午3点以前回到P地.如果去时步行的平均速度为3km/h,返回时步行的平均速度为4km/h.试问小李能登上哪个山顶?(图中数字表示由P地到能登山顶的里程)25、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是__________.(写出一个即可)27、“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款_______元,后捐款_______元.(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围.(3)该经销商两次至少共捐助多少元?28、已知方程组的解是负数,试化简|a+3|-|5a-3|.二、计算题31、(1)计算:;(2)解不等式组:32、解不等式组:33、解不等式组:34、求不等式组的正整数解.35、解不等式组:.36、解不等式组:37、解不等式:.38、解不等式:,并把解集表示在数轴上.39、解下列不等式组:40、解不等式组:41、求自变量x的取值范围:.42、解不等式:4x-7<3x-1.43、解不等式组:44、解不等式组:45、解不等式组:46、解不等式组:47、解不等式3(x+1)>4x+2.48、解下列不等式2(x-3)-3(x+1)>0.49、解下列不等式:2x-5≤250、解不等式组:51、解不等式组52、解不等式组53、解不等式:3x≥x+2.54、解不等式组并把解集在数轴上表示出来.55、(1)计算;(2)解不等式组56、已知x,y满足,求.57、解不等式:.58、化简:().59、解不等式组并将其解集在数轴上表示出来.60、求不等式的解集.61、定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.(1)求(-2)⊕3的值.(2)若3⊕x的值小于13,求x的取值范围,并在下图所示的数轴上表示出来.62、计算:(1)化简:;(2)解不等式:.63、解不等式组:64、解不等式组65、(1)计算:(2)解不等式组:.66、解一元一次不等式组,并把解在数轴上表示出来.67、某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售.两种T 恤的相关信息如下表:品牌甲乙进价(元/件)35 70售价(元/件)65 110根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种t恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T 恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.68、解不等式组.69、解不等式组:70、解不等式组并将解集在数轴上表示出来.71、解不等式:2[x-(x-1)+2]<1-x.72、解不等式组并把解集在数轴上表示出来.73、解不等式组:74、解不等式.75、解不等式.76、计算:(1);(2)解不等式77、解不等式组:78、解不等式组.79、解不等式组,并把它的解集在数轴上表示出来.80、化简:,其中0<a<1.81、解不等式:82、求不等式组的正整数解.83、解不等式,并把它的解集在数轴上表示出来:2(x+1)-3(x+2)<0.84、解不等式组85、解不等式:.86、(1)计算:. (2)解不等式组:.87、解不等式.88、解不等式组89、解不等式.90、解不等式,并把它的解集在数轴上表示出来:.91、解不等式,并把它的解集在数轴上表示出来:2[x-3(x-1)]≥5x.92、解不等式组:94、商场出售A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价比A 型冰箱高出10%,但每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算.(按使用期为10年,每年365天,每度电0.40元计算)96、化简:.98、解不等式.100、计算:解不等式:.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。

最新八年级数学下一元一次不等式测试题

最新八年级数学下一元一次不等式测试题

宿州六中八年级(下)数学测试题(一元一次不等式及一元一次不等式组) 班级 姓名 分数一、 填空题(每空2分,共34分)1.不等式6x<11x 成立的条件是 .2.根据“a 的2倍与-5的和是非负数”列出不等式是 .3.设x <y ,用“<”或“>”号填空:(1)4_____4--x y (2)y x 4______4--(3)y x 4_______4 (4)4_______4y x -- 4.不等式2x -1<3的非负整数解是 .5.当x_____时,代数式-3x+5的值不大于4.6.用字母x 表示下图公共部分的范围是 .7.不等式组⎪⎩⎪⎨⎧->->13132x x 的解集是 . 8.如图,已知函数42+-=x y ,观察图象回答下列问题(1)x 时,y>0;(2)x 时,y<0;(3)x 时,y=0;(4)x 时,y>4.9.关于x 的方程2x+3k=1的解是负数,则x 的取值范围是_______.10.若不等式(m-2)x>2的解集是x<22-m ,则x 的取值范围是_______. 11.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________.二、 选择题(每题2分,共16分)1.下列不等式一定成立的是( )A .a a 34>B .a a 2->-C .x x -<-43D .a a 23> 2.不等式9-411x>x +32的正整数解的个数是( ) A .1 B .2 C .3 D .无数个3.下列不等式解法正确的是( )A .如果221>-x ,那么1-<x . B .如果x x 3223->,那么0<x . C .如果33-<x ,那么1->x . D .如果0311<-x ,那么0>x . 4.三个连续自然数的和小于11,这样的自然数组共有( )组A .1B .2C .3D .45.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是( ) A .4≥m B .4≤m C .4<m D .4=m6.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( )A .a>0B .a<0C .a=-2D .a=27.如果不等式 ⎩⎨⎧><mx x 8 无解,那么m 的取值范围是( ) A .m>8 B .m ≥8 C .m<8 D .m ≤88.下列说法正确的是( )A .x=1是不等式-2x<1的解B .x=1是不等式-2x<1的解集C .x=-21是不等式-2x<1的解 D .不等式-2x<1的解是x=1三、 解下列不等式或不等式组,要求在数轴上把解集表示出来.(每题4分,共20分)1.652423-≤+-x x x 2.⎪⎩⎪⎨⎧-<+<-23221x x x 3.545112<-<-x4.⎪⎩⎪⎨⎧-≥+-<-x x x x 321334)1(372 5. 3x(x+1)-(x-1)2>2(x-3)2四、 解答题(每题5分,共30分)1. 求不等式x x 228)2(5-≤+的非负整数解2.已知)1(645)25(3+-<++x x x ,化简:x x 3113--+3.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后所得到的两位数是原两位数的十位数字与个位数字互换的两位数,求原来的两位数4.一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩59个;如果每一个猴子分5个,就都能分得桃子,但剩下一个猴子分得的桃子不够5个,你能求出有几只猴子,几个桃子吗?5.某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠”若全票价是1200元,则:a)设学生数为x,甲旅行社收费y甲,乙旅行社收费y乙,分别写出两家旅行社的收费与学生人数的关系式.b)当学生人数是多少时,两家旅行社的收费是一样的?c)就学生人数讨论那家旅行社更优惠.。

八年级数学不等式练习题及答案

八年级数学不等式练习题及答案

八年级数学不等式练习题及答案本文为八年级数学不等式练习题及答案,按照作文格式进行排版。

一、填空题1. 解不等式x + 3 > 5,答案为x > 2。

2. 解不等式2x - 1 ≥ 9,答案为x ≥ 5。

3. 解不等式2x + 4 < 10,答案为x < 3。

4. 解不等式3x - 5 > 7,答案为x > 4。

二、选择题1. 不等式3x + 2 ≥ 14的解集是:A. x ≥ 4B. x ≥ 3C. x ≤ 4D. x ≤ 3答案:C. x ≤ 42. 不等式4x - 1 < 7的解集是:A. x < 2B. x < 3C. x > 2D. x > 3答案:D. x > 3三、解答题1. 解不等式2x - 5 ≥ 7,写出解集。

解:将不等式中的“≥”符号变为“=”,得到2x - 5 = 7。

进一步计算,得到2x = 12,解得x = 6。

所以原不等式的解集为x ≥ 6。

2. 解不等式3x + 1 < 4,写出解集。

解:将不等式中的“<”符号变为“=”,得到3x + 1 = 4。

进一步计算,得到3x = 3,解得x = 1。

所以原不等式的解集为x < 1。

3. 解不等式2(x - 1) + 4 ≤ 10,写出解集。

解:首先化简不等式的左侧,得到2x - 2 + 4 ≤ 10,即2x + 2 ≤ 10。

再将不等式中的“≤”符号变为“=”,得到2x + 2 = 10。

进一步计算,得到2x = 8,解得x = 4。

所以原不等式的解集为x ≤ 4。

四、证明题证明:对于任意的实数x,不等式-2x + 1 > 0的解集为x < 0.5。

解:我们首先假设一个实数x满足不等式-2x + 1 > 0,即-2x + 1大于0。

对此不等式进行推导,得到-2x > -1,然后除以-2,得到x < 0.5。

下面我们来证明x < 0.5是不等式-2x + 1 > 0的解集。

北师大版数学八年级下册 第二章不等式 同步训练(含答案)

北师大版数学八年级下册 第二章不等式 同步训练(含答案)

北师大版数学八年级下册第二章不等式同步训练1、下列各式中,不是不等式的是()A.2x≠1B.3x2–2x+1C.–3<0 D.3x–2≥12、x=–1不是下列哪一个不等式的解()A.2x+1≤–3 B.2x–1≥–3C.–2x+1≥3D.–2x–1≤33、不等式__________的解集在数轴上的表示如图所示.A.x–3<0 B.x–3≤0C.x–3>0 D.x–3≥04、已知3a>–6b,则下列不等式一定成立的是A.a+1>–2b–1 B.–a<bC.3a+6b<0 D.ab>–25、不等式x≥–1的解在数轴上表示为A.B.C.D.6、“x的2倍与3的差不大于8”列出的不等式是A.238x-≤B.238x-≥C.238x-<D.238x->7、下列不等式中是一元一次不等式的是①2x–1>1;②3+12x<0;③x≤2.4;④1x<5;⑤1>–2;⑥3x–1<0.A .2个B .3个C .4个D .5个8、用不等式表示“x 的2倍与3的和大于10”是___________. 9、若1123x ->-,则x ___________23.10、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 11、用适当的不等式表示下列不等关系: (1)x 减去6大于12; (2)x 的2倍与5的差是负数; (3)x 的3倍与4的和是非负数; (4)y 的5倍与9的差不大于1-; 12、用“>”或“<”填空:(1)如果a –b <c –b ,那么a ( )c ; (2)如果3a >3b ,那么a ( )b ; (3)如果–a <–b ,那么a ( )b ; (4)如果2a +1<2b +1,那么a ( )b . 13、把下列不等式化为“x >a ”或“x <a ”的形式:(1)x +6>5;(2)3x >2x +2;(3)–2x +1<x +7;(4)–22x -<14x +. 14、下列说法中,正确的是( ) A .x =2是不等式3x >5的一个解 B .x =2是不等式3x >5的唯一解C .x =2是不等式3x >5的解集D .x =2不是不等式3x >5的解15、用不等式表示图中的解集,其中正确的是( )A .x >–3B .x <–3C .x ≥–3D .x ≤–316、已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A .x <2B .x >–2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >217、不等式y +3>4变形为y >1,这是根据不等式的性质__________,不等式两边同时加上__________.18、若a <b ,则a +c ( )b +c ;,若mx >my ,且x >y 成立,则m __________0;若5m –7b >5n –7b ,则m ( )n 。

北师大八年级下册数学第二章 不等式计算专项练习(含答案)

北师大八年级下册数学第二章 不等式计算专项练习(含答案)

北师大八下数学第二章 不等式计算专项练习(含答案)一、解答题1.解不等式(组):(1)3-2x<6 (2){2x −1>x +1x +8>4x −1.2.解下列不等式组:(1){2x >x +1,3x <2(x +1); (2){x−22+3≥x +1,1−3(x −1)<8−x;3.解下列不等式,并把解集用数轴表示出来;(1)2x +6>5x −3; (2)2x−13−9x+26≤1;4.(1)已知不等式组{x −3(x −b)≤4a+2x 3>x −1 的解集为1≤x <2,求a 、b 的值.(2)已知关于x 的不等式组{x ≥a −3x ≤15−5a无解,试化简|a +1|﹣|3﹣a |.5.解不等式组{x+2>12(x−1)+4>3x,并判断﹣1,√2这两个数是否是该不等式组的解.6.解不等式组{3(x−1)<5x+1①,x+13≥2x−3②,并求出它所有的非负整数解.7.解不等式组:()2157 {1023x xxx+>-+>.8.已知:关于x的方程2132x m xm+--=的解是非正数,求m的取值范围.9.已知关于x,y的方程组31{+33x y kx y+=+=的解满足-1<x+y<1,求k的取值范围.10.已知不等式x2-1>x与ax-6>5x同解,试求a的值.11.在关于x,y的方程组21{22x y mx y+=-+=①②中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.12.当x的取值范围是不等式组的解时,试化简:.13.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.14.解不等式:.15解不等式组:参考答案1.(1) x>-32;(2) 2<x<32.(1)1<x<2(2)-2<x≤13.(1)x<3;(2)x≥−2.4.(1)a=﹣1,b=2;(2)4.5.﹣1<x<2,-1不是该不等式组的解,√2是该不等式组的解.6.0,1,2.7.x<2.8.34 m .9.-8-k-0.10.a=2.11.m<312,<x2,213,<m<9.14 x≥ 15, ﹣1<x≤2.。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

一、选择题1.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .2.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y+卖出,结果发现自己亏了钱,其原因是( ) A .x y <B .x y >C .x y ≤D .x y ≥3.若关于x 的一元次不等式组2324274(1)x mx x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( )A .2B .7C .11D .104.不等式360+≤x 的解集是( ) A .2x -≤B .2x ≤C .12x ≥D .2x ≥-5.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个7.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 8.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b9.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .10.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米11.已知a<b,下列变形正确的是()A.a﹣3>b﹣3 B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+112.不等式11 2x>-的解集是()A.12x>-B.2x>-C.2x<-D.12x<-二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.一次函数1y ax b与2y mx n=+的部分自变量和对应函数值如下表:x⋅⋅⋅0123⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅x16.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.17.已知一次函数y ax b=+的图象如图,根据图中信息请写出不等式0ax b+≥的解集为___________.18.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.19.某品牌电脑,成本价3000元,售价4125元,现打折销售,要使利润率不低于10%,最低可以打_____折.20.若关于x的不等式2x﹣a≥3的解集如图所示,则常数a=_____.三、解答题21.某通讯公司推出一款针对手机用户的5G收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x(分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y关于x的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?22.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A,B两种钢笔作为奖品,已知A,B两种每支分别为10元和20元,设购入A种x支,B种y支.(1)求y关于x的函数表达式;(2)若购进A种的数量不少于B种的数量,则至少购进A种多少支?23.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?24.解不等式:111 23x x+--≤.25.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】解:根据题意得,他买西瓜每斤平均价是300200500x y+,以每斤2x y+元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y+,解之得,x >y .所以赔钱的原因是x >y . 故选:B . 【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.3.D解析:D 【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可. 【详解】不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数),整理得:3152k m +=≤, 解得:0k ≤≤3,∴0k =或1或2或3,∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=, 故选:D . 【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.A解析:A【分析】利用不等式的性质即可得到不等式的解集.【详解】解:3x+6≤0,3x≤-6,x≤-2,故选:A.【点睛】本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.5.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C.点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.8.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.10.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:150 0815 .x解得x≥24.3cm,∴导火线的长至少为25厘米.故选D.【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选B.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.B解析:B【分析】根据解一元一次不等式基本步骤系数化为1可得.【详解】解:两边都乘以2,得:x>-2,故选:B . 【点睛】本题考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4. 【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可. 【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S Sa b c h ===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6, ∴h=4或h=5, 故答案为:5或4. 【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2 解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断. 【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1). 则当x <2时,kx+b >mx+n , 故答案为:x <2. 【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x a x >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 17.【分析】观察函数图形得到当x≥-1时一次函数y=ax+b 的函数值不小于0即ax+b≥0【详解】解:根据题意得当x≥-1时ax+b≥0即不等式ax+b≥0的解集为x≥-1故答案为:x≥-1【点睛】本题解析:1x ≥-【分析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.【详解】解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x ≥ ,故甲种运输车辆至少需要6辆. 故答案:6. 19.八【分析】设打折由题意得不等关系:售价×打折-进价≥进价×利润率根据不等关系列出不等式再解即可【详解】设打x 折由题意得:4125×-3000≥3000×10解得:x≥8故答案为:八【点睛】本题主要考解析:八【分析】设打x 折,由题意得不等关系:售价×打折-进价≥进价×利润率,根据不等关系列出不等式,再解即可.【详解】设打x 折,由题意得: 4125×10x -3000≥3000×10%,解得:x≥8,故答案为:八.【点睛】本题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,设出未知数,列出不等式.20.-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集再求出所给不等式的解集与已知解集相比较即可求出a的值【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1解不等式:2x﹣a≥3解得:x≥解析:-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1,解不等式:2x﹣a≥3,解得:x≥3+2a,故3+2a=﹣1,解得:a=﹣5.故答案为:﹣5.【点睛】本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.三、解答题21.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y与x的表达式为y=kx+b,则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 22.(1)y =11202x -+;(2)至少购进A 种钢笔80支 【分析】(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式; (2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.23.(1)该厂每天能生产A 型口罩0.8万只或B 型口罩1万只;(2)当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润【分析】(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只,由2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,列出方程组,即可求解;(2)由总利润=A 型口罩的利润+B 型口罩的利润,列出一次函数关系式,由不等式组和一次函数的性质可求解.【详解】解:(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只.根据题意,得23 4.632 4.4x y x y +=⎧⎨+=⎩, 解得0.81x y =⎧⎨=⎩, 答:该厂每天能生产A 型口罩0.8万只或B 型口罩1万只.(2)设该厂应安排生产A 型口罩m 天,则生产B 型口罩(7)m -天.根据题意,得()0.870.87 5.8m m m m ≥-⎧⎨+-≥⎩, 解得3569m ≤≤, 设获得的总利润为w 万元, 根据题意得:0.50.80.31(7)0.1 2.1w m m m =⨯+⨯⨯-=+,∵0.10m =>,∴w 随m 的增大而增大.∴当m =6时,w 取最大值,最大值为0.16 2.1 2.7⨯+=(万元).答:当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润.【点睛】本题主要考查二元一次方程组的应用以及一次函数的应用,根据工作效率×工作时间=工作总量即可列出(1)问的方程;第二问根据总利润=单件利润×数量列出关系式,求解即可.属于基础类应用题.24.1x ≤【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:去分母,得()()31216x x +--≤.去括号,得33226x x +-+≤.移项,得32632x x -≤--.合并同类项,得1x ≤.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 25.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W∴随x的增大而减小,∴当9x=时,W最小,220044000220094400024200=-+=-⨯+=(元)W x∴-=--=4044,207x x y答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

八下数学经典组卷1.8八年级不等式与不等式组复习专用(好题)

八下数学经典组卷1.8八年级不等式与不等式组复习专用(好题)

不等式与不等式组一、填空题1. (2009年北京市)不等式325x +≥的解集是 .2.(2009年泸州)关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是3、.(2009年包头)不等式组3(2)412 1.3x x xx --⎧⎪+⎨>-⎪⎩≥,的解集是 .4、(2009年长沙)已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a的取值范围是 .5、.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6.(2009年孝感)关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .7、(2009年厦门市)已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.8.(2009武汉).如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .9、(2009年凉山州)若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .10、(2009年包头)已知下列命题: ①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个11、(2009青海)不等式组250112x x -<⎧⎪⎨+⎪⎩≥所有整数解的和是 .12、(2008年福州)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm13、 (2009年烟台市)如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .10x -<<14、(2009湖北省荆门市)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a < 15、(2009恩施市)如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a > B .a ≥3 C .a ≤3 D .3a < 16、(2009年益阳市)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.17.(2009眉山)“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如右表所示,⑴用含x、y的代数式表示购进C种玩具的套数;⑵求y与x之间的函数关系式;⑶假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八下数学一元一次不等式(组)测试题
一、选择题(12×3分=36分)
1、若a ≤b ,则(1)a 2 ≤b 2
(2)2c -a ≥2c -b 这两个结论( ) A 、只有(1)正确 B 、只有(2)正确 C 、(1)(2)都正确 D 、(1)(2)全错
2、三个连续自然数的和小于15,这样的自然数组共有( ).
A 、6组
B 、5组
C 、4组
D 、3组
3、点A (m -4,1-2m )在第三象限,则m 的取值范围是( ).
A .m>
B .m<4
C .<m<4
D .m>4
4、一元一次不等式组⎩⎨⎧>>b
x a x 的解集为x>a ,且a ≠b ,则a 与b 的关系是( )
A 、a>b
B 、a<b
C 、a>b>0
D 、a<b<0
5、下列命题中正确的是( ).A 、若m ≠n,则|m|≠|n| B 、若a+b=0,则ab >0
C 、若ab <0,且a <b,则|a|<|b|
D 、互为倒数的两数之积必为正
6、无论x 取什么数,下列不等式总成立的是( ).
A 、x+5>0
B 、x+5<0
C 、-(x+5)2<0
D 、(x-5)2≥0
7、若11
|1|-=--x x ,则x 的取值范围是( ).A 、x >1 B 、x ≤1 C 、x ≥1 D 、x <1 8、解集在数轴上表示为如右图所示的不等式组是( ).
A .
B .
C .
D .
9、关于x 的不等式2x -a ≤-1的解集如右图所示,则a 的取值是( ).
A . -1
B .-3
C .-2
D .0
10、已知关于x 的不等式(1-a)x >2的解集是x <
,则a 的取值范围
( ) .
A .a >0
B .a >1
C .a <0
D .a <1 11、若不等式组⎪⎩⎪⎨⎧≤+≥-a
x x x 2123无解,则a 的取值是( )
A 、a>1
B 、a ≥1
C 、a<1
D 、a ≤1
12、不等式组⎩⎨⎧+<-≥-1
22b a x b a x 的解集为3≤x<5,则b a 的值为( ) A -2 B -12 C -4 D -14
二、填空题(6×3分=18分)
13、不等式组⎩⎨⎧><m
x x 8有解,m 的取值范围是_______.
14、如果a(x-1)>x+1-2a 的解集是x<-1,则a 的取值范围是________.
16、不等式x+52 -1>3x+23 的解集为____________. 17、若点P (1-m ,m )在第二象限,则(m-1)x>1-m 的解集为___________.
18、已知关于x 的不等式组的整数解共有6个,则a 的取值范围是 .
19、一堆玩具分给若干个小朋友,若每人分3件,则剩余3件;若前面每人分5件,则最后一人得到的玩具不足3件.则小朋友的人数为______人.
三、解答题 20、解不等式组 -2≤ <4 , 并写出该不等式组的整数解.
21、已知不等式(x ﹣m )>3﹣m 的解集为x >1,求 m 的值.
22、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.
324x -。

相关文档
最新文档