2018年我爱数学初中生夏令营数学竞赛试卷(含答案)

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

我爱数学初中生夏令营数学竞赛试卷-初中二年级数学试题练习、期中期末试卷-初中数学试卷

我爱数学初中生夏令营数学竞赛试卷-初中二年级数学试题练习、期中期末试卷-初中数学试卷

我爱数学初中生夏令营数学竞赛试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载2001我爱数学初中生夏令营数学竞赛试卷(第一试)一.在锐角ΔABC中,AD⊥BC,D为垂足,DE⊥AC,E为垂足。

O为ΔABC的外心。

求证:(1)ΔAEF~ΔABC;(2)AO⊥EF。

二.给定代数式–x3+100x2+x中的字母x只允许在正整数范围内取值。

当这个代数式的值达到最大值时,x的值等于多少?并证明你的结论。

三.(1)证明存在非零整数对(x,y), 使代数式11x2+5xy+37y2 的值为完全平方数;(2) 证明存在六个非零整数a1,b1,c1,a2,b2,c2,其中a1:a2≠b1:b2,使得对于任意自然数n, 当x=a1n2+b1n+c1,y=a2n2+b2n+c2时,代数式11x2+5xy+37y2的值都是完全平方数。

2001我爱数学初中生夏令营数学竞赛试卷(第二试)一.=。

二.在长方形ABCD中,EF⊥AB,GH⊥AD,EF与GH相交于O,HC与EF相交于I。

已知AH:HB=m:n, ⊥COI的面积为1平方厘米,那么矩形ABCD的面积等于平方厘米。

三.将三个数:用两个不等号“>”连接起来,正确的结果应该是:。

四.点D,E分别在⊥ABC的边AC和BC上,⊥C为直角,DE⊥AB,且3DE=2AB,AE=13,BD=9,那么AB的长等于。

五.知:x,y,z是正整数,并且满足那么,x-y+z 的值等于。

六.已知点D,E,F分别在⊥ABC的三边BC,CA,AB上,G为BE与CF的交点,并且BD=DC=CA=AF,AE=EC=BF,那么的值等于。

七.如果满足x2-6x-16-10= a的实数x 恰有6个,那么实数a的值等于。

八.已知⊥ABC为等腰直角三角形,⊥C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于。

“我爱数学”初中生夏令营数学竞赛试题(含答案)

“我爱数学”初中生夏令营数学竞赛试题(含答案)

我爱数学初中生夏令营数学竞赛说明:第一试每题50分,共150分;第二试每题15分,共150分.第一试1、已知当x 的值分别为2、m 1、m 2时,多项式ax 2+bx+c 的值分别为0、p 1、p 2.如果a>b>c,并且p 1p 2-cp 1+ap 2-ac=0,那么,能否保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数?证明你的结论.2、在△ABC 中,∠A=75°,∠B=35°,D 是边BC 上一点,BD=2CD. 求证:AD 2=(AC+BD)(AC -CD).3、(1)写出四个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数(2)写出六个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数,说明你的计算方法.第二试1、若2 008=a n (-3)n +a n -1(-3)n -1+…+a 1(-3)+a 0(a i =0,±1,±2,i=0,1,…,n),则a n +a n -1+…+a 1+a 0= .2、能使关于x 的方程x 2-6x -2n =0(n ∈N+)有整数解的n 的值的个数等于 .3、如果函数y=b 的图像与函数y=x 2-3|x -1|-4x -3的图像恰有三个交点,则b 的可能值是 .4、已知a 为整数,关于x 的方程1||41224+-+x x x x +2-a=0有实数根.则a 的可能值是 . 5、如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”.那么,在1,2,…,2 008中,和谐数的个数是 .6、已知某种型号的汽车每台的售价是23万元.某工厂在一年中生产这种汽车的总成本由固定成本和生产成本两部分组成.一年的固定成本为7000万元.在这一年中生产这种汽车x 辆时,生产每一辆车的生产成本为x3x-70万元(0<x<1 000).要使该厂一年中生产的这种汽车的销售收入不低于总成本,则至少需要生产这种汽车 辆. 7、若2008个数a 1,a 2,…,a 2008满足a 1=2,20081)12008(112++---n n n n a a a a =0,其中,n=2,3,…,2 008,那么,a 2008可能达到的最大值是.8、已知⊙O 与直线l 切于点M,⊙O 外一定点A 和⊙O 都在直线l 的同一侧.点A 到直线l 的距离大于⊙O 的直径,点B 在⊙O 上.过点A 作直线l 的垂线AN,过点B 作直线l 的平行线BC,直线AN 与BC 交于点C.则当点B 的位置在 时,ACAB 2的值达到最小.9、在底角等于80°的等腰△ABC 的两腰AB 、AC 上,分别取点D 、E,使得∠BDC=50°,∠BEC=40°.则∠ADE=10、从1, 2,…, 2 008中选出总和为1009000的1004个数,并且这1 004个数中的任意两数之和都不等于2 009.则这1 004个数的平方和等于 . 参考公式:12+22+…+n 2=61n(n+1)(2n+1).参考答案第一试1、由已知得ax 2+bx+c=a(x -2)(x -c/2a), 且 4a+2b+c=0.又由a>b>c 得a>0,c<0,c/2a<0.因此,仅当c/2a≤x≤2时,该多项式的值不是正数. 由已知得(p 1+a)(p 2-c)=0. 则p 1+a=0或p 2-c=0. 解得p 1=-a<0或p 2=c<0.因此,存在i(i=1或2)使得p i <0,m i >c/2a.由已知得c=-4a -2b>-6a,则c/a>-6,c/2a>-3,m i +5>2.当x=mi+5时,该多项式的值是正数.因此,可以保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数. 2、由已知得∠C=70°.延长BC 至E,使AC=CE.联结AE.则∠CEA=∠CAE=21∠ACB=35°=∠ABC.故△CAE ∽△AEB.从而,AE 2=AC·BE,即AB 2=AC(AC+BC).①设F 是BD 的中点,联结AF.则CD=DF=FB.在△ACF 、△ADB 中,由中线的性质分别得 AC 2+AF 2=2CD 2+2AD 2,② AD 2+AB 2=2DF 2+2AF 2.③由式②、③得2AC2+AB 2=6CD 2+3AD 2.④ 将式①代入式④得3AC 2+AC·BC=6CD 2+3AD 2. 将BC=3CD 代入上式得AC 2+AC·CD=2CD 2+AD 2.故AD 2=AC 2+AC·CD -2CD 2=(AC+2CD)(AC -CD)=(AC+BD)(AC -CD).3、(1)242、243、244、245是四个连续的正整数,242是112的倍数、243是32的倍数、 244是22的倍数、245是72的倍数.(2)2 348 124、2 348 125、2 348 126、2 348 127、2 348 128、2 348 129是六个连续的正整数,其中,2 348 124是22的倍数、2 348 125是52的倍数,2 348 126是112的倍数、2 348 127是32的倍数、2 348 128是22的倍数、2 348 129是72的倍数. 计算方法如下:记A=4×9×121×49k(k ∈N+). 由(1)可知,A+240是22的倍数, A+242是112的倍数, A+243是32的倍数, A+244是22的倍数, A+245是72的倍数. 设A+241是52的倍数. 则当k=11时,上式成立. 此时,A=2 347 884.A+240=2 348 124是22的倍数, A+241=2 348 125是52的倍数, A+242=2 348 126是112的倍数, A+243=2 348 127是32的倍数, A+244=2 348 128是22的倍数, A+245=2 348 129是72的倍数.第二试1、0或±4或±8.2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=0;2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-4;2 008=-(-3)7-(-3)6-2(-3)5-2(-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-8;2 008=2(-3)6-2(-3)5+(-3)4+(-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=4;2 008=(-3)8+2(-3)7+(-3)5+(-3)4+(-3)3+(-3)2+1, 此时,a n +a n -1+…+a 0=8. 注意到将(-3)n 变为(-1)(-3)n+1-2(-3)n , 将2(-3)n 变为(-1)(-3)n+1-(-3)n , 将3(-3)n 变为(-1)(-3)n+1的时候, a n +a n -1+…+a 0的值都增加或减少4,并且当n>8时, a n +a n -1+…+a 0的绝对值不大于8.因此,a n +a n -1+…+a 0=0或±4或±8. 2、1.x=3±n 223+,其中, n223+是完全平方数.显然,n≥2.当n≥2时,可设2n +32=(2k+1)2(k ∈N+,k≥2), 即 2n -2=(k+2)(k -1).显见k -1=1,k=2,n=4.能使原方程有整数解的n 的值的个数等于1. 3、-6、-25/4.令y=x 2-3|x -1|-4x -3.则y=x 2-x -6=425)21(2--x ,x≤1; y=x 2-7x=449)27(2--x ,x>1.当x=1时,y=-6; 当x=12时,y=-25/4.由图像知,所求b 的可能值是-6、-25/4.4、0、1、2. 令y=1x |x |2+.则0≤y<1.由y 2-4y+2-a=0 (y -2)2=2+a 1<2+a≤4 -1<a≤2. 因此,a 的可能值是0、1、2. 5、2 007.注意到91=7×13.数字和为1的数不是91的倍数. 1 001,10 101,10 011 001,101 011 001, 100 110 011 001,1 010 110 011 001,… 都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,….因此,在1,2,…,2 008中,能够表示成91的某个倍数的数字和的数的个数是2 007. 6、318.若该厂一年中生产的这种汽车的销售收入不低于总成本,则 23x -[7000+x xx370-]≥0x -x -300≥0 x ≥22011 1+ x≥234.6601+ x≥318. 因此,在一年中至少需要生产这种汽车318辆.7、2008 20062 .由已知得2008a a 1-n n =①或1-n n a 1a =②,1只能经过第①类变换或第②类变换变为an(n=2,3,…,2 008),从a1开始连续经过2 007次这样的变换变为a2 008. 连续两次第②类变换相互抵消,保持原数不变.连续三次变换依次是“第①类变换、第②类变换、第①类变换”时,其中两次第①类变换相互抵消,相当于只对原数进行了一次第②类变换.因此,对2的连续2 007次变换相当于对2连续进行m 次第①类变换或第②类变换,而且只有在第一次和最后一次变换中才可能是第②类变换.而对2连续2 007次变换:“前2 006次为第①类变换、最后一次为第②类变换”时,a 2008达到最大值2008 20062 .8、线段AM 内.设直线AB 与⊙O 的另一交点为D,不妨设点B 在点A 和D 之间.过点D 作直线AC 的垂线DE,垂足为E.则AB·AD=k(k 是一个不变的常数), △ABC ∽△ADE,AB/AC=AD/AE,AB 2/AC=AB·AD/AE=k/AE.当AE 达到最大值,即点B 的位置在线段AM 内时,AB 2/AC 的值达到最小. 9、50°.由已知∠BAC=20°,∠BCD=50°,故BC=BD,① ∠CBE=60°,∠ABE=20°.在CE 上取一点F 使∠CBF=20°,则∠EBF=40°,BF=FE,② ∠DBF=60°,∠BFC=80°,BC=BF.③由式①、③得BD=BF,知△BDF 是正三角形.于是,BF=DF.④ 由式②、④得DF=FE,知△DFE 是等腰三角形.又∠BFD=60°,知∠DFE=40°.从而,∠FED=70°,∠ADE=50°. 10、1 351 373 940.将1,2,…,2 008分成1 004组: {1,2 008},{2,2 007},…,{1 004,1 005}.由题设,各组中恰取出一个数.将2,4,…,2 008中的1 004,1 006,1 008,1 010分别换成同一组的1 005,1003,1001,999,其余各数不变,就是所选出的符合题目要求的1 004个数.2+4+…+2 008-(1 004+1 006+1 008+1 010)+(1 005+1 003+1 001+999) =1 009 020-(-1+3+7+11)=1 009 000,22+42+…+2 0082-(1 0042+1 0062+1 0082+1 0102)+(1 0052+1 0032+1 0012+9992) =4(12+22+…+1 0042)-2 009(-1+3+7+11) =2/3×1 004×1 005×2 009-2 009×20 =2 008×335×2 009-40 180=1 351 373 940. 答案与选法无关.。

2018年初中数学联赛试题及参考答案_一_

2018年初中数学联赛试题及参考答案_一_

则使得(x@y)@z+(y@z)@x+(z@x)@y=0 的 整
数 组 )(x,y,z)的 个 数 为 ( ).
(A)1 (B)2 (C)3 (D)4
答 (D).
(x@y)@z= (x+y-xy)@z= (x+y-xy)+z
- (x+y-xy)z=x+y+z-xy-yz-zx+xyz,
由 对 称 性 ,同 样 可 得
+3ab]=0,
又a-b=2,所 以 2-2[4+4ab]+2[4+3ab]=
0,解得ab=1.所 以a2+b2= (a-b)2 +2ab=6,a3 -
b3=(a-b)[(a-b)2+3ab]=14,a5 -b5 = (a2 +b2)
(a3-b3)-a2b2(a-b)=82.
5.对任意的 整 数 x,y,定 义 x@y=x+y-xy,
(y@z)@x=x+y+z-xy-yz-zx+xyz,(z
@x)@y=x+y+z-xy-yz-zx+xyz.
所以,由已知可得 x+y+z-xy-yz-zx+xyz
=0,即 (x-1)(y-1)(z-1)= -1.
所以,x,y,z 为整数时,只能有以下几种情况:
烄x-1=1, 烄x-1=1, 烅y-1=1, 或烅y-1=-1, 烆z-1=-1, 烆z-1=1,
2018 5 > 33 =6133.
又 M = (20118+20119+ … +20130)+ (20131+
1 2032+

+20150)>20130×13+20150×20=813324350,
所以
1 M
<813324350=6111138455,故
1 M
的填空题 (本题满分28分,每小题7分)
4.若实数a,b 满 足a-b=2,(1-a)2 - (1+b)2

我爱数学少年夏令营数学竞赛试卷

我爱数学少年夏令营数学竞赛试卷

我爱数学少年夏令营数学竞赛试卷1.由三个非零数字组成的三位数与这三个数字之和的商记为k,假如k为整数,那么k的最大值是____。

2.下式是通过四舍五入得到的一个等式:其中每一个△代表一个数字,那么这三个△所代表的三个数字分别是_ ___。

余下废料是总量的____。

4.如下左图中给出6×6=36个点,请一笔画出一条折线,使得这条折线通过36个给定点中的每点至少一次,而且组成这条折线的直线段的条数最少。

那么你所画出的折线中直线段的条数是___。

5.如下右图中所有不同的三角形的个数是______。

6.甲、乙二人从周长250米的环形跑道上一点p同时、同向动身沿着次在点p相遇所用去的时刻是____分钟。

7.在下面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,每个△代表一个数字,当算式成立时,乘积是____。

8.五个连续偶数之和为完全平方数,中间三个偶数之和为完全立方数(即一个整数的三次方)。

那么如此一组数中的最大数的最小值是____。

9.一张8×8的方格纸,每个方格都涂上红、蓝两色之一。

能否适当涂色,使得每个3×4(不论横竖)的12个方格中都恰有4个红格和8个蓝格?假如能行,请在下面的表格中画出来?10.甲、乙、丙三堆石子共196块,先从甲堆分给另外两堆,使得后两堆石子数增加一倍;再把乙堆照样分配一次;最后把丙堆也照样分配一次。

_____。

11.在右图中,ae∶ec=1∶2,cd∶db=1∶4,bf∶fa=1∶3,△abc的面积s=1,那么四边形afhg的面积safhg=______。

12.兄弟二人骑自行车同时动身从甲地到乙地,弟弟在前一半路程每小哥哥比弟弟早到20分钟。

那么甲、乙两地的距离是____千米。

运算竞赛试题(1)202-192+182-172+…+22-12=_____。

(2)(112233-112.233)÷(224466-224.466)=_____。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

数学竞赛试卷(初赛、决赛及答案)

数学竞赛试卷(初赛、决赛及答案)

2.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是 。

3.将60分成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是 。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.右面残缺算式中已知三个“4”,那么补全后它的乘积是 。

6.有A 、B 两个整数,A 的各位数字之和为35,B 的各位数字之和为26,两数相加时进位三次,那么A+B 的各位数字之和是 。

7.苹果和梨各有若干只,如果5只苹果和3只梨装一袋,还多4只苹果,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只,那么苹果和梨共有______只。

8.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。

9.在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是 。

10.高中学生的人数是初中学生的56,高中毕业生的人数是初中毕业生的1217,高、初中毕业生毕业后,高、初中留下的人数都是520人,那么高、初中毕业生共有 人。

11.如图,一个长方形的纸盒内,放着九个正方形的纸片,其中正方形A 和B 的边长分别为4和7,那么长方形(纸盒)的面积是 。

12.甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。

摩托车开始速度是50千米/d,时,中途减速为40千米/小时。

汽车速度是80千米/小时。

汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的_________小时。

3.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是_________。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,…,⑩=9×10×11,…如果,那么方框代表的数是________。

2018年全国初中数学竞赛(初一组)初赛试题参考答案

2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D二、7.-18.30°9.3或-110.221三、11.(1)19×11=12×æèöø19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12×æèöø12n -1-12n +1;…………………………………………………………………………………………………………10分(3)a 1+a 2+a 3+…+a 100=12×æèöø1-13+12×æèöø13-15+12×æèöø15-17+12×æèöø17-19+⋯+12×æèöø1199-1201=12×æèöø1-13+13-15+15-17+17-19+⋯+1199-1201……………………………………………15分=12×æèöø1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分(2)∠APC =∠α+∠β.理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD ,所以AB ∥PE ∥CD .所以∠α=∠APE ,∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分(3)当点P 在BD 延长线上时,∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时,∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =æèöø120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分(2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.…………………………………………………………………………………………………………10分根据题意,得2∙x -x 50∙550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 “《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a ,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )12+2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92 <D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若y a ,最为b ,则22a b +的值为 .小值10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.<第12题)13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60o ,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC内,且52PA PB PC ===,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案一、选择题 1.A解:由于1a =-,1a +=, 262a a =-, 所以 2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C解:由题设可知1y y x -=,于是341y y x yx x -==,<第13题)<第14题)所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.由于11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,由于()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即2<,164m ∆=-≥0,所以2<, 164m ∆=-≥0,解之得 3<m ≤4.7.19解:在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=. 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 由于点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又由于2BD AC =,于是 所以 22224826a b c d ab cd +-+=-=()(), 即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC=,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(),解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又由于[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. 由于AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. 又由于点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- 又由于P Q x PC QD x =-,所以BC PCBD QD=. 由于∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC,BD,所以 AC2-,AD=2.由于PC ∥DQ ,所以△ACP ∽△ADQ . 于是PC ACDQ AD=,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是可求得2a b ==将b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得k = 所以直线PQ的函数解读式为1y =+. 根据对称性知,所求直线PQ的函数解读式为13y x =-+,或13y x =+. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得P x = 从而2()3P Q k x x =+=.所以,直线PQ的函数解读式为1y =+,或1y +. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP .由于2AB AC =,所以相似比为2. 于是224AQ AP BQ CP ====.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是3PQ ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒.于是222()28AB PQ AP BQ =++=+ .故 21sin 602ABC S AB AC AB ∆=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年全国初中七年级数学联合竞赛答案

2018年全国初中七年级数学联合竞赛答案

2018年全国初中数学联合竞赛(初一年级)参考答案与评分标准一、选择题(1)B ;(2)C;(3)A;(4)C ;(5)A ;(6)B ;(7)B;(8)D.二、填空题(9)3-;(10)3;(11)d b a c >>>;(12)36.(13)14-;(14)9.第二试一、(本题满分15分)解:设A B 、两地间的距离为x km,根据题意得4224x -+=⨯解得=10x …………………………………………………………………12分答:A B 、两地间的距离为10km.………………………………………………………15分二、(本题满分15分)解:30(1)410(2)a b c a b c =⎧⎨=-⎩K K +2-2+-6由(2)×2—(1)得=24a c -(3)…………………………………………………3分把(3)代入(2)得=62b c -…………………………………………………6分因为a b c 、、均为非负数,所以240200a c b c c =-≥⎧⎪=-≥⎨⎪≥⎩6,23c ≤≤.……………………10分336S a b c c ==--+-7………………………………………………………………12分max 12S =-,min 15S =-,xy =180…………………………………………………15分三、(本题满分20分)解:设每船可装a 升汽油,则每升油可行驶300a 海里,设两船用了x 升汽油返回,根据题意得22a x a x a x a -+-+-=…………………………………………………………12分解得25a x =.……………………………………………………………………………14分12300()21025a a a⨯+⨯=………………………………………………………………19分答:第3艘船最远可巡逻至210海里处.………………………………………………20分四、(本题满分20分)解:不妨设a b c >>,则111a b c<<,因为6665ab bc ca abc ++=,所以11156a b c ++=,………………………………………………………………………5分所以11113c a b c c<++<,……………………………………………………………………8分所以1536c c <<,所以61855c <<,所以=2c 或3.…………………………………12分当=2c 时,111=3a b +,1112b a b b <+<,所以1123b b <<,所以36b <<,所以=4b 或5.若=4b ,则=12a ;若=5b ,则15=2a (舍).…………………………………16分当=3c 时,111=3a b +,1112b a b b <+<,……………………………………………18分所以1122b b<<,所以24b <<,所以=4b (舍).所以=18a b c ++.……………20分。

2018年初中数学联赛试题(含答案)

2018年初中数学联赛试题(含答案)

12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。

2018-2019学年七年级学科竞赛数学试题(含答案) (4)

2018-2019学年七年级学科竞赛数学试题(含答案) (4)

2018-2019学年七年级学科竞赛数学试题(含答案)一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.503.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40二.填空题(共5小题)7.关于x的方程:≠0,则x=.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款元.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需小时.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.2018年08月19日136****0321的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分【分析】根据题意假设该手表从4时30分走到10时50分所用的实际时间为x 小时,该手表的速度为57分/小时,再进行计算.【解答】解:慢表走:57分钟,则正常表走:60分钟,即如果慢表走:6小时20分(即380分),求正常表走了x分钟,则57:60=380:x,解得x=400,400分钟=6小时40分,所以准时时间为11时10分.故选:A.【点评】本题要注意手表的实际时间和准确时间的关系,然后找出其中关联的等量关系,得出方程求解.2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.50【分析】根据题中所给的关系,找到等量关系,由于共交电费56元,可列出方程求出a.【解答】解:∵0.50×100=50<56,∴100>a,由题意,得0.5a+(100﹣a)×0.5×120%=56,解得a=40.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.此题的关键是要知道每月用电量超过a度时,电费的计算方法为0.5×(1+20%).3.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=﹣0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.故选:C.【点评】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号【分析】因为12月份有31天,故他们最多相差28天.又小明和小莉的出生日期都是星期五,故他们的出生日期相差7的整数倍.故他们的出生日期可能相差7、14、21、28天.【解答】解:设小明的出生日期为x号.(1)若他们相差7天,则小莉的出生日期为x+7,应有x+7+x=22,解得x=7.5,不符合题意,舍去.(2)若他们相差14天,则小莉的出生日期为x+14,应有x+14+x=22,解得x=4,符合题意;所以小莉的出生日期是14+4=18号;(3)若相差21天、28天显然不合题意.故选:D.【点评】本题用到的知识点为:都在周五出生,他们的出生日期可能相差7、14、21、28.应分情况讨论.5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个【分析】先把原方程变形为(k﹣1999)x+2000x=2001,得出x=,然后求出2001的因数有16个.【解答】解:原方程变形得:(k﹣1999)x+2000x=2001,∴x=,∵k为整数,∴2001的因数有:1,3,23,29,69,87,667,2001,﹣1,﹣3,﹣23,﹣29,﹣69,﹣87,﹣667,﹣2001.∴共有16个.故选:D.【点评】本题主要考查了二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题主要用的是排除法.6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40【分析】此题可以用淘汰的方法,把度数设为未知数X,从4点到五点这段时间时针走的为30×(),分针走的为360×().【解答】解:设走了X分钟则得到方程:360×()﹣120﹣30×()=90解得:X=38答:共经过38分钟.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.二.填空题(共5小题)7.关于x的方程:≠0,则x=a+b+c.【分析】观察等式发现x所处的位置相同,因而要将x 从分式中分解出来,并且、、因而将3分解为这三个形式,因而原等式转化为.再提取公因式,化简为.最后判断出x与a、b、c的关系.【解答】解:∵⇒∵是一元一次方程的系数∴必然是∴只能是x=a+b+c故答案为a+b+c【点评】本题考查因式分解的应用、解一元二次方程.本题同学们需注意“1”的妙用,有时为了解题的需要将1写成分式的形式,如本题中的、、.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款204元.【分析】先求出第一次购书时的实际定价,再根据第二次购书节省的钱数列出方程,再求解即可.【解答】解:第一次购书付款72元,享受了九折优惠,实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为230﹣26=204元.【点评】解答本题需注意第二次所购的书有九折的部分,有八折的部分,需清楚找到这两部分实际出的钱.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需24小时.【分析】根据顺流时:行驶速度+水流速度=总路程÷总时间,逆流时:行驶速度﹣水流速度=总路程÷总时间,可得到两个关于行驶速度和水流速度的方程组,解得水流速度,即可得漂流所需时间.【解答】解:设总路程为1,轮船行驶速度为x,水流速度为y,根据题意得:,解得y=,木阀漂流所需时间=1÷=24(小时).故答案填:24.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解,准确的找到等量关系并用方程组表示出来是解题的关键.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是49.【分析】设右下方两个相等的正方形的边长为x,则根据题意知,正方形A的边长为x+3,此色块图为一个长方形,可根据长=长列方程.【解答】解:设右下方两个相等的正方形的边长为x,则根据题意知,正方形A 的边长为x+3,此色块图为一个长方形,则(x+2)+(x+3)=(x+1)+x+x,2x+5=3x+1,x=4,正方形A的边长为x+3=4+3=7,故正方形A的面积为7×7=49.【点评】本题考查理解题意和识别图形的能力,关键是设出左上角正方形的边长,然后表示出其他正方形的边长,根据正方形的性质,列出方程,最后求出面积.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.【分析】根据不论x取何数值,分式的值都为同一个定值,即可求得分式的定值,进而把x=1代入求得a,b的关系,从而求解.【解答】解:设=k,则ax+3=k(bx+5),∵x不论取何值该等式都成立,∴a=bk,5k=3,∴=.故答案是:【点评】本题主要考查了分式的求值,根据条件求得a,b之间的关系是解决本题的关键.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?【分析】首先用A、B、C、D、E分别表示这五所小学的位置,并设A向B调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,进而表示出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,利用函数最值求出即可.【解答】解:如图,用A、B、C、D、E分别表示这五所小学的位置,并设A向B 调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,依题意有:7+x1﹣x2=11+x2﹣x3=3+x3﹣x4=14+x4﹣x5=15+x5﹣x1=50÷5=10,所以,x2=x1﹣3,x3=x1﹣2,x4=x1﹣9,x5=x1﹣5,设调动的电脑的总台数为y,则y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,这样,这个实际问题就转化为求y的最小值问题,并由上面所得结论知:当x1==3时,y的最小值为|3|+|3﹣3|+|3﹣2|+|3﹣9|+|3﹣5|=12,即调动的总台数为12.因为x1=3时,x2=0,x3=1,x4=﹣6,x5=﹣2,故一小就向二小调3台电脑,二小不调出,三小向四小调一台电脑,五小向四小调6台电脑,一小向五小调2台电脑.【点评】此题主要考查了函数的最值问题,根据已知得出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,进而利用绝对值性质求出是解题关键.13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.【分析】(1)从出故障地到把人都送到考场需要时间是×3;(2)汽车送第一批人的同时,第二批人先步行,可节省一些时间.【解答】解:(1)(分钟),∵45>42,∴不能在限定时间内到达考场.(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后先步行的4人相遇,5t+60t=13.75,解得.汽车由相遇点再去考场所需时间也是.所以用这一方案送这8人到考场共需.所以这8个人能在截止进考场的时刻前赶到.方案2,8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需,汽车从出发点到A处需先步行的4人走了,设汽车返回t(h)后与先步行的4人相遇,则有,解得,所以相遇点与考场的距离为:.由相遇点坐车到考场需:.所以先步行的4人到考场的总时间为:,先坐车的4人到考场的总时间为:,他们同时到达则有:,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.【点评】此题在设计方案的基础上,这样设计方案会更节省时间,汽车送第一批人的同时,第二批人先以5千米/时速度步行,汽车把第一批人送到距考场S千米的A处后,回来接第二批人.同时,第一批人也以5千米/时的速度继续赶往考场,使两批人同时到达考场,在汽车来回接人的过程中,多了第一批人在步行,显然所用时间比设计方案少,故此方案这8人都能赶到考场,且最省时间.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.【分析】设甲、乙两地的距离为x,汽车以每小时60千米的速度行驶了4小时30分钟,共行驶了60×4.5=270千米;车行驶了4小时30分钟后速度变为每小时40千米,则实际行驶的时间=(x﹣270)÷40+4.5小时;若按每小时60千米的速度由甲地驶往乙地需要的时间=甲、乙两地的距离÷60;由题意得:实际行驶的时间﹣按每小时60千米的速度由甲地驶往乙地需要的时间=小时.【解答】解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:+1=,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得:x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.。

2018初中数学竞赛试卷精选题10套含答案(华师大版)

2018初中数学竞赛试卷精选题10套含答案(华师大版)

2018初中数学竞赛试卷精选题10套含答案一一、选择题(每小题6分,共30分)1.如图,三个图形的周长相等,则()(A)c<a<b (B)a<b<c (C)a<c<b (D)c<b<a2a2aa abc c2.已知a<b,那么)()(3bxax++--的值等于()(A)))(()(bxaxax+++-(B)))(()(bxaxax+++(C))()()(bxaxax++-+-(D)))(()(bxaxax++-+3.若关于x的方程||x-2|-1|=a有三个整数解,则a的值是()(A)0 (B)1 (C)2 (D)34.AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()(A)69°(B))9623((C))13900((D)不能确定5.已知正数a,b满足a3b+ab3-2a2b+2ab2=7ab-8,a2-b2=()(A)1 (B)3 (C)5 (D)不能确定二、填空题(每小题6分,共30分)6.如图,三角形数表第82行的第3个数是_____________.7.如图,16×9的矩形分成四块后可拼成一个正方形,该正方形的周长为_________.8.已知naaa,,,21是正整数,且n aaa≤≤≤21,,1021=+++naaa,2422221=+++naaa则=),,,(21naaa______________________________.9.今天是星期日,若明天是第一天,则第20033-20023+20013-20003+…-23+13天是星期__________________.10.在2×2的正方形表中填入4个不同的非零平方数,使每一行、每一列的和都是平方数。

(注:平方数是指一个整数的平方)三、解答题(每小题20分,共60分)11.数学集训队教练要将一份资料复印给23名队员,校内复印店规定300页以内每页1角5分,超过部分每页1角,这23份资料一起复印的费用正好是单份复印时的20倍,问这份ABCDE……12345678910111213141516(第6题)953351016第7题复印资料共有几页?12.在△ABC 中,∠ACB=90°,是AB 上一点,M 是CD 的中点,若BMD AMD ∠=∠,求证:ACD CDA ∠=∠2。

中学2018年暑期命题大赛初中数学试题1(附答案)

中学2018年暑期命题大赛初中数学试题1(附答案)

2018年暑期教师命题大赛初中数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、毕业学校、姓名、考试号、座号填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能写在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案. 4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.第Ⅰ卷(选择题 共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分. 1.下列方程组中,属于二元一次方程组的是 ( )A. ⎩⎨⎧==+7,25xy y x B.⎪⎩⎪⎨⎧=-=+043,112y x y x C. 354433x y x y =⎧⎪⎨+=⎪⎩ D.⎩⎨⎧=+=-123,82z x y x2. 二元一次方程5x-11y=21 ( )A. 只有一组解B. 只有两组解C. 无解D. 有无数组解3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( ) A . B . C . D . 4.下列语句是命题的是( )A .作线段的垂直平分线B .同位角相等C .两点确定一条直线吗D .取线段AB 的中点M 5.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )A .B .C .D .6.如图,在△ABC 中,∠C =70º,沿图中虚线截去∠C , 则∠1+∠2=( )A .360ºB .250ºC .180ºD .140º 第6题7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值 为( ).A .-1B .1C .2D .-28.丹丹想用12个除颜色外其他都一样的球设计一个摸球游戏,下面是她设计的四种方案,其中不能实现的是( )A .摸到白球的可能性是12,摸到红球的可能性也是12 B .摸到红、白、黑球的可能性都是31C .摸到黑球的可能性是21,摸到白球的可能性是31,摸到红球的可能性是61D .摸到红球的可能性是32,摸到白球、黑球的可能性各是319.如右图,CD AB //,且 25=∠A ,45=∠C ,则E ∠的度数是( )A. 60B. 70C. 110D.80 第9题10.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )ACB 1 2EDCBA.对应的密文是-3,4.若密文是1,7时,则对应的明文是( ) A. -1,1 B. 1,3C. 3,1D. 1,l12.如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()A、360°B、540°C、240°D、280°第12题第Ⅱ卷(非选择题共72分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.方程ax-y=3的解是⎩⎨⎧==21yx则a的值是___________14.如图,一个正六边形转盘被分成6个大小形状一样的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是___________ .15.如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组的解为_________.第15题16.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于_____第16题17.如果|21||25|0x y x y -++--=,则x y +的值为_______三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分5分)⎩⎨⎧=-=+112312y x y x19.(本题满分5分)袋中装有红、黄、绿三种颜色的球若干个,每个球只有颜色不同.现从中任意摸出一个球,得到红球的概率为31,得到黄球的概率为21.已知绿球有3个,问袋中原有红球、黄球各多少个?20.(本题满分8分)如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠。

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

2018年全国初中数学竞赛试题及答案

2018年全国初中数学竞赛试题及答案

若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8

l (2n 1) 8 l (2n 1) 4
所以
,或

l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(

( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年我爱数学初中生夏令营数学竞赛试卷
第一试
一.已知a,b,c 是三个两两不同的奇质数,方程2()(2250b c x a ++++=有两个相等的实数根。

(1)求a 的最小值;(2)当a 达到最小时,解这个方程。

二.设AB,CD 为圆O 的两直径,过B 作PB 垂直AB ,并与CD 延长线相交于点P ,过P 作直线PE ,与圆分别交于E,F 两点,连AE,AF 分别与CD 交于G,H 两点(如图),求证:OG=OH..
三.已知a1,a2,…,a2002的值都是+1或-1,设S是这2002个数的两两乘积之和。

(1)求S的最大值和最小值,并指出能达到最大值,最小值的条件;
(2)求S的最小正值,并指出能达到最小正值的条件.
2002年我爱数学初中生夏令营数学竞赛试卷
第二试
一. 计算:20033
-20013
-6×20032
+24×1001= 。

二.在△ABC 中,∠B 的平分线与∠C 的外角平分线相交于点D ,如果∠A=27°,那么∠BDC= 。

三.已知0≤a-b ≤1,1≤a+b ≤4,那么当a-2b 达到最大值时,8a+2002b 的值等于 。

四.如果一个正整数等于它的各位数字之和的4倍,那么,我们就把这个正整数叫做四合数。

所有四合数的和等于 。

五.方程x-2|x+4|-27=0的所有根的和为 。

六.如果当m 取不等于0和1的任意实数时,抛物线2123
m m y x x m m m
--=
+-在平面直角坐标系上都过两个定点,那么这两个定点间的距离为 。

七.方程321)30x x -+=的三个根分别是 。

八.在Rt △ABC 中,∠A=30°,∠A 的平分线的长为1cm ,那么△ABC 的面积为 。

九. 已知: 100%-=
⨯商品出售价商品成本价
商品利润率商品成本价
某商人经营甲乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%,那么当售出的甲,乙两种商品的件数相等时,这个商人的总利润率是。

十.设计一把直尺ABC,BC在地面上,AB与地面垂直,并且AB=10cm,移动一个半径不小于10cm的圆形轮子,使轮子紧靠A点,且与BC相切于D点(如图)。

设计要求在D处的刻度恰好显示这个轮子的半径(以厘米为单位)。

那么,当BC的长度为1M时,BC上
可标出的最大刻度是 .。

相关文档
最新文档