非线性电阻电路的分析方法

合集下载

非线性电路及其分析方法

非线性电路及其分析方法
第4章非线性电路及其分析方法-12
3.非线性器件频率变换作用的分析
这部分的内容,主要介绍当给定一个非线性器件的伏安 特性幂级数多项式和输入信号的频率成分,来判断输出量中 会产生哪些频率分量。
假设某非线性器件在工作点VQ 附近的伏安特性曲线为
i a0 a1 (v VQ ) a2 (v VQ )2 a3 (v VQ )3
线性电路:输出与输入波形相似,频率成分相同 非线性电路:输出与输入波形失真,基频相同, 频率成分不同
第4章非线性电路及其分析方法-9
下面,我们定量分析频率变换
设 i av2 vi V1m cos1t V2m cos2t
i aV12m cos2 1t aV22m cos2 2t 2aV1mV2m cos1t cos2t
其中,0 为直流项;1(V1m cos1t V2m cos2t) 为线性项,
包含频率分量1 和2 ;平方项包含的频率分量有直流 21 、 22 、1 2 和1 2 ;
第4章非线性电路及其分析方法-14
i 利用三角公式 将三次项展开整理后, 中的频率成分如下
3 (V1m cos1t V2m cos2t)3 3 (V13m cos3 1t 3V12mV2m cos2 1t cos2t 3V1mV22m cos1t cos2 2t V23m cos3 2t)
静态电感:
LQ IQ
动态电感: L(i) d di
第4章非线性电路及其分析方法-6
4.2.2 非线性电路特点
由线性元件组成的电路叫做线性电路,如无源滤波器,低频和高频小 信号放大器等;由非线性元件组成的电路叫做非线性电路,如本课程中 之后要讲的功率放大器,振荡器,及各种调制解调电路等。非线性电路 的实质是输出产生了新的频率。

非线性电阻电路分析

非线性电阻电路分析

(
)
清华大学电路原理教学组
已知i 例2 已知 1 = u1 , i2 =u25, i3 =u33 ,求 u 。 u i1 R1 + 2V _ + u _1 i2 R2 + 1V _ + u _2 i3 R3 + 4V _ + u _3 非线性电阻是压控电阻, 非线性电阻是压控电阻, 则列KCL方程: 方程: 则列 方程 i1+i2+i3=0 u1+u25+u33=0 u-2+(u-1)5+(u-4) 3=0 u
清华大学电路原理教学组
例2 充气二极管 i + u _
i
伏安特性 给定一个电流,有一个对应的电压;而给定一个电压, 给定一个电流,有一个对应的电压;而给定一个电压,最多 可有3个对应的电流值 个对应的电流值。 可有 个对应的电流值。即 u = f (i)。称为“流控型”或 “ S型”。 。称为“流控型” 型 例3 整流二极管 i = I s ( e u U TH − 1 ) i i + 对于硅二极管来说, 对于硅二极管来说,典型值为 u _ u -IS I = 10−12 A = 1pA
其特性为一直线。 其特性为一直线。 两曲线交点坐标 (u0 , i0 ) 即为所求解答。 即为所求解答。
返回目录
i0
0
u0
US
u
清华大学电路原理教学组
4.4
分段线性法
一、分段线性法 将非线性电阻近似地用折线来表示。 将非线性电阻近似地用折线来表示。 将求解过程分为几个线性段,每段中分析线性电路。 将求解过程分为几个线性段,每段中分析线性电路。 例1 u u Ua U0 i 等效电路 OA段 段 +º u _ º

§15-3 非线性电阻电路的分段线性化法(折线法)

§15-3 非线性电阻电路的分段线性化法(折线法)
i1 + + 1V u1 1Ω i2 + u2 -
解得
i1 = 0, u1 = 0
i2 = 0, u 2 = 1V
两组解均落在了相应的线段 上,所以是电路的解 解得
i1 = 0, u1 = 0
i2 = 0, u 2 = 1V
(2) 代入线段组合(1,2)
i1 + + 1V u1 1Ω 1V + i2 + u2 -
1 = −3 A i= 2 3 −1
2 Ω 3
由于没有落在线段①上, ∴ 不是电路的解。
西南交通大学
假设非线性电阻工作在的第②段,等效电路如图:
i + 1V 2V 1Ω + + u -
解得
1− 2 i= 2 = − 0 .6 A 3 +1
2 Ω 3
u = 2 + 1× i = 1.4V
该解落在3
I3 西南交通大学
二、分段等效电路
i ② ① 0 u u +
i + u -
i R
①段 R = ∞
i + ② ① 0 u u i
u ②段 R = > 0 i
i + u -
①段 R = ∞
②段 R = 0
西南交通大学
i 0 ① ② u u +
i R u
i +
-
u ①段 R = > 0 i
i i ② 0 ① u + u -
两组解均落在了相应的线段 上,所以是电路的解。
西南交通大学
(3) 代入线段组合(2,1)
i1 + + 1V + 2V u1 -1Ω i2 + u2 -

简单非线性电阻电路分析

简单非线性电阻电路分析

第六章简单非线性电阻电路分析由电压源、电流源和电阻元件构成的电路,称为电阻电路。

由独立电源和线性电阻构成的电阻电路,称为线性电阻电路,否则称为非线性电阻电路。

分析非线性电阻电路的基本依据仍然是KCL、KVL和元件的VCR。

非线性电阻电路的一般分析方法已超出本课程的范围。

本书只讨论简单非线性电阻电路的分析,为学习电子电路打下基础。

§6 - 1非线性电阻元件电压电流特性曲线通过u-i平面坐标原点直线的二端电阻,称为线性电阻;否则称为非线性电阻。

按照非线性电阻特性曲线的特点可以将它们进行分类。

其电压是电流的单值函数的电阻,称为流控电阻,用u=f(i)表示;其电流是电压的单值函数的电阻,称为压控电阻,用i=g(u)表示。

图6-1图(a)所示隧道二极管是压控电阻。

图(b)所示氖灯是流控电阻。

图(c)所示普通二极管既是压控电阻,又是流控电阻。

图(d)所示理想二极管既不是流控电阻,又不是压控电阻。

其特性曲线对称于原点的电阻,称为双向电阻;否则称为单向电阻。

图(b)所示氖灯是双向电阻,图(a)、(c)、(d)所示隧道二极管、普通二极管和理想二极管都是单向电阻。

单向性的电阻器件在使用时必须注意它的正负极性,不能任意交换使用。

理想二极管是开关电路中常用的非线性电阻元件。

其参考方向如图-1(d)所示时,其电压电流关系为:当u「0当「0 -图6-2§6- 2非线性电阻的串联与并联由线性电阻串联和并联组成的单口网络,就端口特性而言,等效于一个线性电阻,其电阻值可用串联和并联等效电阻的公式(2 - I)、(2 - 2)求得。

u HR R k (2 -1)i k 土nG」'G k (2 -2)u k 土由非线性电阻(也可包含线性电阻)串联和并联组成的单口网络,就端口特性而言,等效于一个非线性电阻,其VCR特性曲线可用图解法求得。

一、非线性电阻的串联图6 —3(a)表示两个流控非线性电阻的串联,它们的VCR特性曲线u1=f1(i1)和u2=f2(i2)如(b)中曲线①、②所示。

10-4 非线性电阻电路的数值解法

10-4 非线性电阻电路的数值解法

二、牛顿-拉夫逊算法 1.非线性代数方程 实例 在图示电路中,R为 电压控制型非线性电阻,其伏-安 特性的数学函数表达式为I=fR(U) (如 I=U+AU -B ,A和B为常数) 。 3 求非线性电阻R 的静态工作点。 根据KVL有 U+RinI=U+RinfR(U) =UOC 令 f(x)=U+RinfR(U)-UOC= 0
……
f ( x (n)) x(n+1) = x (n) f ( x(n))
当 x (n-1)-x n ≤e (误差要求)时停止迭代,求得解。 理论依据 f(x)
以初始猜测值 x (1) f (x (1)) 找到非线性方程 f(x )=0 的猜测解 f(x (1 )) ; 以 f(x (1)) 处的线性 方程F(x)=0(切线),使 用迭代公式逐步逼近 真解。
(6)牛顿-拉夫逊法对复杂非线性电阻电路不易找到全 部解。
提示:自学教材P322例题一
10-5 非线性电阻电路的小信号分析法
一、小信号和动态电阻 1.小信号 在直流和交变电源共同激励下的非线性电路中,若交变 激励源的幅值(或有效值)远远小于直流值, 则此交变激励源称为小信号。
在非正弦激励下的非线性电路中,若交流分量的幅值(或 有效值)远远小于直流分量,则此交流分量称为小信号。
-
10-5 其它非线性元件 一、非线性电容 定义:电容上的电荷q与其 两端的电压u成非线性函数关系, 即q=f(u)为非线性函数。 二、非线性电感 定义:电感上的磁链y与产 生该磁链的电流i成非线性函数 关系,即y=f(i)为非线性函数。 三、非线性受控电源 定义:在4种受控电源的控 制关系中,控制系数为常数,但 受控量与控制变量不是线性正比 关系,则为非线性受控电源。

§6-3简单非线性电阻电路的分析

§6-3简单非线性电阻电路的分析

解:已知非线性电阻特性的解析表达式,可以用解析法求 已知非线性电阻特性的解析表达式, 求得l 解。由KCL求得 电阻和非线性电阻并联单口的 求得 电阻和非线性电阻并联单口的VCR 方程
i = i1 + i 2 = u − 2u + 1
2Leabharlann i = i1 + i 2 = u − 2u + 1
2
写出l 电阻和 电压源串联单口的 电压源串联单口的VCR方程 写出 电阻和3V电压源串联单口的 方程
图6-9 -
1. 将线性含源电阻单口网络用戴维宁等效电路代替 。 . 将线性含源电阻单口网络用戴维宁等效电路代替。 2.写出戴维宁等效电路和非线性电阻的VCR方程。 .写出戴维宁等效电路和非线性电阻的 方程。 方程
u = u oc − R o i i = g (u )
求得
( 6 − 1)
u = u − Ro g (u )
(6 − 2)
这是一个非线性代数方程;若已知 的解析式, 这是一个非线性代数方程;若已知i=g(u)的解析式, 的解析式 则可用解析法求解:若已知 的特性曲线, 则可用解析法求解:若已知i=g(u)的特性曲线,则可用以 的特性曲线 下图解法求非线性电阻上的电压和电流。 下图解法求非线性电阻上的电压和电流。
i = 3−u
由以上两式求得
u −u −2 = 0
2
求解此二次方程,得到两组解答: 求解此二次方程,得到两组解答:
u = 2 V , i = 1A u = −1V , i = 4 A
图6-11 -
例6-5 电路如图6-11(a)所示。已知非线性电阻特性曲线 电路如图 - 所示。 所示 如图6- 中折线所示。 和电流i。 如图 -11(b)中折线所示。用图解法求电压 和电流 。 中折线所示 用图解法求电压u和电流

线性电阻和非线性电阻实验报告

线性电阻和非线性电阻实验报告

线性电阻和非线性电阻实验报告线性电阻和非线性电阻实验报告引言:电阻是电路中常见的元件之一,它的作用是限制电流的流动。

在实际应用中,电阻可以分为线性电阻和非线性电阻两种类型。

本实验旨在通过实际测量和分析,探讨线性电阻和非线性电阻的特性和应用。

实验一:线性电阻特性测量1. 实验目的本实验旨在测量线性电阻的电流-电压特性曲线,并分析其特性。

2. 实验步骤(1)搭建线性电阻电路,将电流表和电压表连接到电路中。

(2)通过改变电源电压,记录不同电压下的电流值。

(3)根据测得的电流和电压值,绘制电流-电压特性曲线。

3. 实验结果与分析根据实验测量结果,我们绘制了线性电阻的电流-电压特性曲线。

从曲线可以看出,电流和电压之间呈现线性关系,符合欧姆定律。

线性电阻的电阻值可以通过曲线的斜率计算得出。

实验二:非线性电阻特性测量1. 实验目的本实验旨在测量非线性电阻的电流-电压特性曲线,并分析其特性。

2. 实验步骤(1)搭建非线性电阻电路,将电流表和电压表连接到电路中。

(2)通过改变电源电压,记录不同电压下的电流值。

(3)根据测得的电流和电压值,绘制电流-电压特性曲线。

3. 实验结果与分析根据实验测量结果,我们绘制了非线性电阻的电流-电压特性曲线。

与线性电阻不同,非线性电阻的电流-电压关系不是简单的线性关系。

在低电压范围内,电流随电压的增加而迅速增加,但随后增长速度逐渐减慢,形成曲线的饱和区域。

这是由于非线性电阻的电阻值随电压的改变而变化,导致电流-电压关系不再是线性的。

结论:通过本实验的测量和分析,我们深入了解了线性电阻和非线性电阻的特性和应用。

线性电阻的电流-电压关系呈现线性,符合欧姆定律;而非线性电阻的电流-电压关系则不是简单的线性关系,其电阻值随电压的改变而变化。

这些特性使得非线性电阻在电路设计和电子器件中具有广泛的应用,如温度传感器、光敏电阻等。

总结:通过本实验,我们不仅学习了线性电阻和非线性电阻的特性,还掌握了测量和分析电流-电压特性曲线的方法。

非线性电路讲解

非线性电路讲解

谢谢
伏安特性可以看成G1、 G2 、G3三个电导并联后 的等效电导的伏安特性 。
G2 =Gb- Ga G3=Gc- Gb
1.3 工作在非线性范围的运算放大器
1.理想运算放大器的饱和特性
uu+ iud i+ _ + ∞ + Usat uo o ud uo
有关系式: i 0 i 0
-Usat

u 100i i 3 100 0.01 0.013 1 10 6 V 忽略高次项, u 100 0.01 1
性化引起的误差很小。
当输入信号很小时,把非线性问题线 表明
3.非线性电阻的串联和并联
①非线性电阻的串联
i1
i2
i i1 i2 u u1 u2
把伏安特性分解为三个特性: 当u < U1有: G1u =Gau
G1=Ga
Ga
U1 U2
当U1 <u < U2,有:
i
G1u+G2u =Gbu G1+G2 =Gb
当U2 <u ,有: o Ga U1
Gb
U2
Gc u
G1u+G2u +G3u=Gcu G1+G2 +G3=Gc
解得: G =G 1 a
结论 隧道二极管的

u
u
非线性电阻在某一工作状态 下(如P点)的电压对电流的导数。
注意
①静态电阻与动态电阻都与工作点有关。当P点 位置不同时,R 与 Rd 均变化。 ②对压控型和流控型非线性电阻,伏安特性曲 线的下倾段 Rd 为负,因此,动态电阻具有 “负电阻”性质。
例 一非线性电阻的伏安特性 u 100i i

第二章电路的暂态分析

第二章电路的暂态分析

e=
d
dt
=L i
u + e=0
di = L dt
di u =L dt
在直流稳态时,电 感相当于短路。
di p=ui =Li 瞬时功率 dt P>0,L把电能转换为磁场能,吸收功率。 P<0,L把磁场能转换为电能,放出功率。 1 WL= Li 2 储存的磁场能 L为储能元件 2
章目录 返回 上一页 下一页
1
+
E
R2
20V
C2 R3
章目录 返回 上一页 下一页
-
C1
S t=0
解: (1)求初始值,画出 t=0–的电路 R1 R3 • E uC1(0-) = ———— R1+R2+R3 R2 C2 + 3×20 E 20V = ——— = 5V 3+6+3 - C S t=0 R3 R2 • E 1 uC2 (0-) = R +R +R ———— 1 2 3 6×20 = ——— = 10V uR1(0+) 3+6+3 + -
3A
a S R1
20
30
uL(0-) iL(0-)
t=0–的电路
解: (1) 画出t=0–的电路, L视为短路
R1 iL(0-) = ISR +R =1.2A —— 1 3
uL(0-)= 0
章目录 返回
上一页 下一页
(2) 画出 t=0+的电路
R3
30
iL(0+)= iL(0-)= 1.2 A
i (0-) + E
20V
R1
+ uC1(0-)
R2

非线性电路特性及分析方法

非线性电路特性及分析方法

常数

k 2
V1m 2
c
os21t

k 2
V2 m 2
c
os22t
新产生的频率分量
3、非线性电路不满足叠加原理
见上例:若符合叠加定理,输入应为: i kv12 kv22
非线性电路:非线性元件+选频网络
5.3 非线性电路分析法
1、幂级数分析法:小信号时较适用
任 何 非 线 性 元 件 特 性 曲线i f (v), 只 要 该 曲 线 在 某 区 间内 任 意 点VQ附 近
直流电导:又称静态电导,指非线性电阻器件伏安特性曲线上任一点与
原点之间连线的斜率,如图OQ线,表示为: 很显然,go值与外加VQ的大小有关。
go
IQ VQ
tg
交流电导:又称增量电导或微分电导,指伏安特性曲线上任一点的斜率
或近似为该点上增量电流与增量电压的比值,表为:
gd 值也是VQ (或IQ )的非线性函数。
gd

lim
v0
i v

di dv
Q
tg
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较
大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜
率是不同的,故引入平均电导的概念。
g I1m
g除与工作点VQ有关外,还随v(t)幅度的不同而变化。
Vm
2、非线性元件的频率变换作用
式 中 , 各 系 数 为 处 的 各阶 导 数
b0 f (v) vVQ b0 I0 , 是 静 态 工 作 点 电 流 ;
b1
f '(VQ ) 1!
b1 gd , 是 静 态 工 作 点 处 的 电导 , 动 态 电 阻 的 倒 数

非线性电阻的伏安特性实验报告

非线性电阻的伏安特性实验报告

非线性电阻的伏安特性实验报告非线性电阻的伏安特性实验报告引言电阻是电路中常见的基本元件之一,它对电流的流动产生一定的阻碍作用。

根据欧姆定律,电阻的伏安特性是线性的,即电阻值与电流成正比。

然而,在某些特殊情况下,电阻的伏安特性并非线性,这就是非线性电阻。

本实验旨在通过测量非线性电阻的伏安特性曲线,探究其特点和应用。

实验原理非线性电阻是指其电阻值与电流之间呈非线性关系的电阻元件。

一般情况下,非线性电阻的电阻值会随着电流的增大而减小,或者随着电流的增大而增大。

这种非线性关系可以通过绘制伏安特性曲线来展示。

实验步骤1. 准备实验所需材料和设备,包括非线性电阻元件、电流表、电压表和电源等。

2. 搭建电路,将非线性电阻元件连接到电流表和电压表之间,电流表和电压表分别连接到电源的正负极。

3. 逐渐调节电源的电压,记录下电流表和电压表的读数。

4. 根据记录的数据,绘制伏安特性曲线。

实验结果与分析根据实验记录的数据,我们绘制出了非线性电阻的伏安特性曲线。

从曲线可以看出,随着电流的增大,电阻的值呈现出递减的趋势。

这与非线性电阻的特性相符合。

此外,曲线上还存在一些异常点,这可能是由于测量误差或电路中其他因素的影响所致。

非线性电阻的应用非线性电阻在实际应用中具有广泛的用途。

以下是几个常见的应用领域:1. 电子器件:非线性电阻常用于电子器件中,如变阻器、热敏电阻等。

通过调节电阻的值,可以实现对电路的控制和调节。

2. 光电子学:非线性电阻在光电子学中也有重要应用。

例如,光敏电阻的电阻值会随着光照强度的变化而发生变化,从而实现对光信号的检测和测量。

3. 功率控制:非线性电阻可以用于功率控制电路中,通过调节电阻的值来实现对电路功率的调节,保护电路和设备的安全运行。

实验总结通过本次实验,我们了解了非线性电阻的伏安特性及其应用。

非线性电阻的伏安特性曲线呈现出非线性关系,电阻值随电流的变化而变化。

非线性电阻在电子器件、光电子学和功率控制等领域具有广泛的应用前景。

非线性电阻电路的分析方法

非线性电阻电路的分析方法
非线性电阻电路的分析方法
目录
• 非线性电阻电路概述 • 非线性电阻电路的分析方法 • 非线性电阻电路的特性分析 • 非线性电阻电路的仿真分析 • 非线性电阻电路的设计优化
01
非线性电阻电路概述
定义与特点
定义
非线性电阻电路是指电路中存在非线性电阻元件的电路。非线性电阻元件是指 其伏安特性曲线不呈线性的电阻元件,即电阻值随电压或电流的变化而变化。
动态响应特性
总结词
动态响应特性描述了非线性电阻电路对 输入信号变化的响应速度和动态过程。
VS
详细描述
非线性电阻电路的动态响应特性与其内部 元件的物理特性和电路结构有关。了解这 一特性有助于分析非线性电阻电路在不同 工作条件下的瞬态行为和稳定性,对于电 路设计和优化具有重要意义。
04
非线性电阻电路的仿真分析
作状态。
图解法适用于具有单一非线性 电阻的简单电路,如单个二极 管或晶体管。
图解法直观易懂,但仅适用于 特定类型的电路,且无法处理 多个非线性电阻的复杂电路。
数值法
数值法是通过数值计算的 方式求解非线性电阻电路 的方法。
数值法适用于具有任意非 线性电阻特性的复杂电路 ,如多个二极管或晶体管 的组合。
解析法适用于具有简单非线性电阻特性的电路,如分段 线性、幂函数等。
它基于电路的数学模型,通过求解代数方程或微分方程 来获得电路的电压和电流。
解析法可以提供精确的解,但求解过程可能较为复杂, 需要一定的数学技巧和计算能力。
图解法
图解法是通过作图的方式直观 地分析非线性电阻电路的方法

它通过绘制电压-电流曲线来展 示非线性电阻的特性,并根据 电路的连接关系判断电路的工
可扩展性
设计应具备可扩展性, 便于未来升级和改进。

非线性电路分析法

非线性电路分析法
第三节 小信号分析法
工程上,非线性电阻电路除了作用有直流电源外,往往同时作用有时变电源,因此在非线性电阻的响应中除了有直流分量外,还有时变分量。例如:半导体放大电路中,直流电源是其工作电源,时变电源是要放大的信号,它的有效值相对于直流电源小得多(10-3),一般称之为小信号(small-sigal)。对含有小信号的非线性电阻电路的分析在工程上是经常遇到的。
第六章 非线性电路
非线性电路:电路中元件性质(R的伏安特性、L的韦安特性、C的库伏特性)不再是线性关系,即其参数不再是常量。含有非线性元件的电路称为非线性电路。
第一节 非线性元件
一、电阻元件:VAR不符合欧姆定律的电阻元件。
①流控型电阻(CCR):电阻两端的电压是通过其电流的单值函数。VAR如图。
②压控型电阻(VCR):通过电阻的电流是其两端电压的单值函数。VAR如图。
例:用图解法示求电路中的电流i
+-
2)DP图法和TC图法
① DP图法:若某非线性一端口网络的端口伏安关系也称为驱动点(drive point)特性曲线DP确定,则已知端口的激励波形,通过图解法可求得响应的波形。
t
②TC图法:输入与输出是不同端口的电压、电流,其关系曲线称为转移特性(transmission character )TC曲线。已知TC曲线和激励波形,通过图解法可求得响应的波形。见P170
将其在工作点处展开为泰勒级数:
在小信号作用时非线性电阻可看作线性电阻,参数为其在工作点处的动态电阻。
画出小信号等效电路如图:

据线性电路的分析方法求出非线性电阻的电压电流增量。
总结以上过程的小信号法步骤:
①只有直流电源作用求解非线性元件的电压电流即静态工作点Q( UQ,IQ)

非线性电路及其分析方法

非线性电路及其分析方法

非线性元件的基本特性
非线性电阻 :二极管、三极管、场效应管
非线性元件
非线性电抗 :磁芯电感、钛酸钡介质电容
这里以非线性电阻(半导体二极管)为例,讨论非线性元件的特性
非线性元件的基本特性
非线性元件的工作特性
线性电阻的伏安特性曲线
半导体二极管的伏安特性曲线
与线性电阻不同,非线性电阻的伏安特性曲线不是直线。
非线性电路的分析方法
分析原则:
对于电路的分析,应当基于其所包含的电子元器件的基本物 理特性及其相互作用关系
在电路的分析与计算中,基尔霍夫定律对于线性电路和非线 性电路均适用,对于非线性电路的求解最终要归结于求应用 基尔霍夫定律得到的非线性方程或方程组的解的问题
非线性电路的分析方法
分析方法:
对非线性电路的分析没有统一的方法。对非线性电路的分析 只能针对某一类型的非线性电路采用适合这种电路的分析方 法。 常见的非线性电路分析方法有:直接分析法、数值分析法、 图解分析法、微变等效电路分析法、分段线性分析法、小信 号分析法等
非线性元件的基本特性
非线性元件的频率变换作用
线性电阻上的电压
正弦电压作用于二极管
与电流波形
产生非正弦周期电流
非线性电阻的输出电流与输入电压相比,波形不同,周期相同。
可知,电流中包含电压中没有的频率成分。
非线性元件的基本特性
例:设非线性电阻的伏安特性曲线具有抛物线形状,即:i kv2 ,式中 k 为常数。
非线性电路的分析方法
数值分析法——应用“牛顿法”求解非线性电阻电路
牛顿法: 对于含有一个非线性电阻元件的电路应用基尔霍夫电压定律可 以得到一个一元非线性方程 f( x) = 0, x 为待求解的变量,一 般为电压或者电流。牛顿法是将f( x) = 0 逐步归结为某种线性 方程来求解。设已知方程 f( x) = 0 有近似根 xk, 将 f( x) = 0 在点 xk处泰勒展开:

第17章 线性电路简介

第17章 线性电路简介

第十七章 非线性电路简介◆ 重点:1、含有单个非线性电阻的电路的分析◆ 难点:1、 非线性电路的小信号分析法2、 求解简单非线性电路的三种方法3、 理解牛顿-拉夫逊算法的意义及使用分析非线性电阻电路的基本依据与分析线性电阻电路一样,依旧是克希霍夫定律。

在本书中,我们只讨论非线性非时变电阻电路。

本章只讨论一些简单的非线性电阻电路,为学习电子电路及进一步学习非线性电路理论提供基础,至于一般的非线性电阻电路的分析方法,超出了本书的范围。

有兴趣的同学可以参考相关的书籍。

17.1 非线性电阻元件在实际生活中,线性是相对的,非线性是绝对的。

研究非线性现象,具有十分重要的意义。

在本章中,我们主要介绍非线性电阻元件。

17.1.1 非线性电阻的定义所谓非线性电阻,是这样一种元件,其伏安关系可以用通过原点的遵循某种特定非线性关系,且该关系并不随着电路中的状态变化而变化。

在电子线路中,二极管与三极管是典型的非线性元件,如隧道二极管,其伏安关系为17.1.2 非线性电阻的分类u u 图17-1 非线性电阻的分类17.1.3 静态电阻与动态电阻一、静态电阻αtg i uR ==二、动态电阻βtg didu R d ==工作点i 图17-2 非线性电阻的静态电阻与动态电阻注意在该图中,实际上其静态电阻值为正,而动态电阻值为负值。

所谓“负电阻”是可以发出能量的理想元件,在本书中,并未讨论。

17.2 含有单个非线性电阻的电路的分析17.2.1 分析方法含有单个非线性电阻的电路,可以将原电路看成是两个单口网络组成的网络:其一为电路的线性部分,另一个为电路的非线性部分(只含有一个非线性电阻)12图17-2(a) 非线性电路分析示意图N 1 N 2 图17-2(b) 非线性电路分析示意图对于网络N 1,而言,其输出伏安关系为:i R u u o oc -=,而对于仅含一个非线性电阻的网络 N 2而言,其元件的伏安关系为:)(u f i =。

高等电路理论与技术课件非线性电阻电路分析方法

高等电路理论与技术课件非线性电阻电路分析方法

试用分段线性化方法确定隧道二极管的工作点。
i
R0
u
U0

i / mA
4
3 Q1
Q2
2
1
Q3
0
0.1
0.3
解 负载线方程 u 0.6 200i
第1段折线的方程 i 3102u
第2段折线的方程 i 2 102u 5 103
第3段折线的方程 i 102u 1103


UC0=4V,Cd=4 10-6F, uc=1/3(1-e-62.5t) (t) V uc=4.33-0.33e-62.5t V,t>0
例5:已知u1= i13 i12 i1 (单位:V, A), =(10-3/3) il3(Wb, A), q =(10-3/54) uc2(C,V),
R2d

du2 di2
I2 1A

1

6i
2 2
I2 1A
7
R3d

du3 di3
I3 1A

2

3i
2 3
I3 1A
5
画出小信号工作等效电路,求 u , i
I1 2
+
Emsinw_t
I2
I3
7
+ _U2
5
+ _ U3
I1=Emsinw t /(2+35/12)= 0.2033 Emsinw t I2= I1 5/12 =0.0847 Emsinw t I3= I1 7/12 =0.1186 Emsinw t
含有一个非线性电阻元件电路的求解:
先用戴维南等效电路化简,再用图解法求解

简单非线性电阻电路的分析

简单非线性电阻电路的分析
等效电路,我们就可以用5-1所述的方法解得 u
和I,进一步求得整个电路各部分的电压和电流。
二、非线性电阻的并联
i
N
i1 i2
u
(a)
i i1 i2
i1
i2
o
u
(b)
图13-2-2
对含有非线性电阻并联的电路问题,也可作为 类似的处理。设电路如图13-2-2 (a) 所示,两非线性 电阻的伏安特性曲线分别如图 (b) 中曲线D1,D2所 示.由KCL及KVL可知,在该电路中因此
u1 u
u2
图14-2-1
D1 D2
o u1 u2 u1 u2
(b)
由KVL及KCL可知,在图(a)所示串联电路中
u u1 u2
i i1 i2
因此只要对每一个特定的电流 i,我们把它
在D1和D2特性曲线索对应的电压值u1和u2相加,
便可得到串联后的特性曲线,如图( b ) 中所示。 根据等效的定义,这条曲线也就是串联等效电 阻的特性曲线。如果已知线性网络 N 的戴维南
1
2 G2
G1 u1
3 G3
u
0
us2 u2us3
(a)
如可将某非线性电阻的伏安特性(见图(a)中的虚 线)分为三段,用1、2、3三条直线段来代替。这样, 在每一个区段,就可用一线性电路来等效。
在区间 0 u u1, 如果线段1的斜率为 G1,则其方
程可写为
u
1 G1
i
R1i
0 u u1,
于非线性电阻来说则是非线性函数。
如例图中,对于线性电阻R1、R2有
u1 R1i1,
u4 R4i4
对于非线性电阻R2(设其为压控型的)和R3 (设其为流控型的)有

30非线性电阻电路

30非线性电阻电路

u12 u1 u2
14.1
非线性电阻元件
例:设有一个非线性电阻,其伏安特性 u f (i ) 100i i 3 V
1)试分别求出i1=2A,i2=2cos314tA和i3=10A对应电压 u1,u2,u3的值。
2)设u12 f (i1 i2 ),问u12是否等于u1 u2 ?
14.2
非线性电阻的串联与并联
四、
简单非线性电阻电路的分析
图 (a)表示含一个非线性电阻的电路,它可以看作是一 个线性含源电阻单口网络和一个非线性电阻的连接,如图
(b)所示。图中所示非线性电阻可以是一个非线性电阻元件,
也可以是一个含非线性电阻的单口网络的等效非线性电阻。 这类电路的分析方法下:
14.2
分段线性化法
串联时,同一i下,三 个电压相加,由于理想二极 管i≥0,故串联后伏安特性中 i≥0,形状为凹形,故称凹 电阻。改变US和R,就可改 变凹电阻,US为转折点电压, 1/R=G为倾斜段直线的斜率。
凹电阻符号如图:
14.3
分段线性化法
或者可以列写二极管两种工作状态下对应的伏安关系: D导通: uD 0, i 0, u Ri uS uD Ri uS D截止: uD 0, i 0, u Ri uS uD uS uD uS
14.1
非线性电阻元件
图(a)所示隧道二极管是压控型电阻。 图(b)所示氖灯是流控型电阻。 图(c)所示普通二极管既是压控型电阻,又是流控型电阻,
即为单调型电阻。
图(d)所示理想二极管既不是流控电阻,又不是压控电阻。
14.1
非线性电阻元件
其特性曲线对称于原点的电阻,称为双向电阻;否则

非线性电阻电路的研究知识讲解

非线性电阻电路的研究知识讲解

非线性电阻电路的研究电工电子综合实验论文非线性电阻电路及应用的研究班级:姓名:学号:指导老师:一、摘要我们已经知道由线性元件构成的电路称为线性电路,若电路中含有非线性元件则称为非线性电路。

线性电路满足欧姆定律和叠加定理,因而由欧姆定律和叠加定理引出的一系列方法和定理,如回路电流法、节点电压法、戴维南(诺顿)定理、互易定理等等,均适用于求解线性电路。

对于非线性电路,欧姆定律和叠加定理不再成立,因而上述的这些线性电路的分析方法和定理已不再适用于求解非线性电路,只能有条件地应用于非线性电路中的线性部分的求解。

在非线性电路中,KCL和KVL仍成立,而非线性电阻的伏安特性则取代了线性电阻的欧姆定律。

求解非线性电阻电路的方法有图解法、解析法和数值法。

本次实验中主要采用图解法对非线性电路进行研究。

并使用multisim7.0软件仿真,在设计电路时使用串联和并联分解法,并在仿真实验后对电路进行修正。

二、关键词非线性二极管仿真凹电阻凸电阻串联分解法并联分解法三、引言对于一个一端口网络,不管内部组成,其端口电压与电流的关系可以用u-i平面的一条曲线表示。

则是将其看成一个二端电阻元件。

常见的二端电阻元件有二极管、稳压管、恒流管、电压源、电流源和线性电阻等。

运用这些元件串、并联或混联就可得到各种单向的单调伏安特性曲线。

四、电路设计要求(1)非线性电阻电路设计要求如下:用二极管、稳压管、稳流管等元器件设计如图1、图2所示伏安特性的非线性电阻电路。

测量所设计的伏安特性并作曲线,与图1、图2比较。

(2)实验材料、原理:二极管,电阻,电流源,电压源。

依据基尔霍夫定律和元件的伏安关系,分析非线性电阻的电路的特性,并采用串联分解法和并联分解法,分段分析,进而分析非线性电阻电路的特性曲线。

五、电路设计参考对于一个一端口网络,不管内部组成,其端口电压与电流的关系可以用u-i平面的一条曲线表示。

则是将其看成一个二端电阻元件。

常见的二端电阻元件有二极管、稳压管、恒流管、电压源、电流源和线性电阻等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性电阻元件的图形符号与伏安函数关系:
i
+ u
u=f(i) i=g(u)
非线性电阻元件分类
流控电阻 压控电阻 单调型电阻
1 流控电阻:电阻两端电压是其电流的单值函数。
i
对每一电流值有唯一的电压与 之对应,
对任一电压值则可能有多个电流与之对应
(不唯一)。
某些充气二极管具有类似伏安特性。
0
u
流控电阻的伏安特性呈“S”型。
例:一非线性电阻
uf(i)10 i0 i3
(1) 分别求 i1 = 2A, i2 = 2Sin314t A, i3 = 10A时 对应电压 u1,u2,u3;
u110 i1 0i1 320 V8
u210i2 0i23
20s0i3n1t48s i3n 31t 4( s i3θ n3sθ in4s iθ 3n)
i1 G 1 ( U n1 U s )
i2 G 2( U n1 U n3 )
i3 5( U n1 U n2 )3
i4 10 ( U n 2 U n 3 )1 3
i5
15 U
15 n2
则节点方程为
i2
i3 U n1 + u 3 G 1 i1
+
Us
G2
Un2 i4
+
+
u5
i5
u4 Un3 Is
例:一非线性电阻
uf(i)10 i0 i3
(1) 分别求 i1 = 2A, i2 = 2Sin314t A, i3 = 10A时 对应电压 u1,u2,u3;
(2) 设 u12 = f (i1 + i2 ),问是否有u12= u1 + u2?
(3) 若忽略高次项,当 i = 10mA时,由此产生多 大误差?
二、非线性电阻的并联
i + i1 + i2 +
u
u1
u2
i
i'
i
' 2
i
' 19;
i(u) i1 ( u) i2 (u)
u
i i1 i2 u u1 u2
同一电压下将电流相加。
三、含有一个非线性电阻元件电路的求解
线性 含源 电阻 网络
i
Us Ri
i0
o
a i+ u
b
i (u)
Q(u0 , i0)
Rs
utg
i
,
Gs
Rd
dutg
di
,
Gd
说明:(1)静态电阻与动态电阻不同,它们都与工作点 有关。当P点位置不同时,Rs 与 Rd 均变化。
(2) Rs反映了某一点时 u 与 i 的关系,而 Rd 反映了在 某一点 u 的变化与 i 的变化的关系,即 u 对i 的变 化率。
(3) 对“S”型、“N”型非线性电阻,下倾段 Rd 为负, 因此,动态电阻具有“负电阻”性质。
20s0i3n1t46s i3n1t42s i9n4t 2 20s6i3n1t42s i9n4tV 2 u2中出3倍 现频 了
u310 i3 0i3 320V 00
例:一非线性电阻
uf(i)10 i0 i3
(2) 设 u12 = f (i1 + i2 ),问是否有u12= u1 + u2? (3) 若忽略高次项,当 i = 10mA时,由此产生多
5.2 非线性电阻的串联、并联电路
一、非线性电阻的串联
i
+ u
+ u1 (i )
+
u2 (i)
i i1 i2 u u1 u2
u
u'
u
' 1
u
' 2
u
' 1
o
i'
u(i) u2 (i) u1 (i )
i
在每一个 i 下,图解法求 u ,将一 系列 u、i 值连成曲线即得串联等 效电阻 (仍为非线性)。
当T 300K(室温下)时,即摄2氏7C
q 4( 0 J/C)1 40V1 ([J][VIt]) kT
则 i I( S e40u 1) u kTln( i 1) q IS
u 可以用 i 表示 i 可以用 u 表示
一一对 应
三、非线性电阻的静态电阻 Rs 和动态电阻
Rd
u
P
静态电阻 动态电阻
i
u
3 单调型电阻:伏安特性单调增长或单调下降。
i+
u
i
i
P
0
u
u、i 一一对应,既是压 控又是流控。
PN结二极管具有此特性
u

u、i 关系具有方向性。
其伏安特性可用下式表示:
qu
i Is(ekT 1)
其中: Is —— 反向饱和电流 ( 常数 ) q —— 电子电荷,1.61019C k —— 玻尔兹曼常数,1.381023 J/K T —— 热力学温度(绝对温度)
u 0 Us
u
ai
Ri
+
+
u
Us
b
ab 以左部分为线性电路,化为戴 维南等效电路,其u、i关系为
uUsRi
其特性为一直线。
ab 右边为非线性电阻,其伏安特 性为 i = f (u),i(u)曲线如图。
两曲线交点坐标 (u0,i0 ) 即
为所求解答。
5.3 非线性电阻电路的方程
列写方程的依据:KCL、KVL、元件伏安特性。
大误差?
(2u 1)2 1(0 i1 0 i2)(i1i2)3 1i0 11 0i0 20 i1 3i2 33i1i2(i1i2)
u 1 u 2 1i1 0 i1 3 0 1i2 0 i2 3 0 u12u1u2 非线性电路不性 满足叠加
(3)u10i0i31000.010.0131106V 忽略高次 u1项 00, 0.011V 此时,仅 106引 V误起 ( 差线性化)
2 压控电阻:电阻两端电流是其电压的单值函数。
i
对每一电压值有唯一的电流与 之对应,
对任一电流值则可能有多个电压与之对应
(不唯一)。
隧道二极管( 单极晶体管 )具有此伏安特性
0
u。
压控电阻的伏安特性呈“N”型。
“S”型和“N”型电阻的伏安特性均有一段下倾段,在此段内电流随电 压增大而减小。
i
i
0
u0
非线性电阻电路的分析方法
5.1 非线性电阻的伏安特性
一、线性电阻元件
电阻值大小与u、i 无关(R为常数),其伏安特性为一过原点的直 线。线性电阻的u、i 关系与方向无关。u、i 关系符合欧姆定律。
i Ru
i
P i
u
u
R utg co nst
i
二、非线性电阻元件
非线性电阻元件的伏安特性不满足欧姆定律,而遵循某种特定的 非线性函数关系。其阻值大小与u、i 有关,伏安特性不是过原点 的直线。
一、节点电压方程的列写 (非线性电阻为压控电阻)
i2
U n1
i3
+
u3
G 1 i1
+
Us
G2
Un2 i4
+
+
u5 i5
G1、G2为线性电导,非线性 电阻为压控电阻
u4 Un3 Is
i3
5
u
3 3
i4
10
u
1 4
3
i5
15
u
1 5
5
i1 i2 i3 0 i3 i4 i5 0 i4 i2 Is 0
相关文档
最新文档