外接球与内切球问题

合集下载

专题——几何体的外接球和内切球问题

专题——几何体的外接球和内切球问题

B.112π
C.1 000π 9
D.5 000 10π 81
※内切球问题 1.正棱锥的内切球.
第一步:先现出内切球的截面图, E, H 分别是两个三角形的外心; 第二步:由 POE 相似于 PDH ,建立等式: OE PO ,解出 r
DH PD
2.任意多面体的内切球:等体积法,
例 3 非直二面角类型
(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
专题——几何体的外接球和内切球问题
※基础知识:
1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆
长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半;
正三角形的内切圆半径: 3 a 6
外接圆半径: 3 a 3
面体的外接球的球心。 由定义,给出以下简单多面体外接球的球心的结论。
结论 1:正方体或长方体的外接球的球心就是其体对角线的中点,即其外接球的半径 R 满足:
2R2 a2 b2 c2 ,即 R a2 b2 c2
2 结论 2:正棱柱的外接球的球心是上下底面中心的连线的中点,即正棱柱的外接球的半径 R 为: R h 2 r 2 (其中 h 为正棱柱的侧棱长, r 是底面多边形的外接圆的半径)
(1)已知边长为 2 3 的菱形 ABCD 中,BAD 60 ,沿对角线 BD 折成二面角 A BD C 的大
小为120 的四面体,则该四面体的外接球的表面积为

第一步:先求出多面体的表面积和体积; 第二步:解出 r 3V S表
例 1、正方体的内切球与其外接球的体积之比为( )
球。
3.球的截面:
用一平面 去截一个球 O ,设 OO 是平面 的垂线段,O 为垂 足,且 OO d ,所得的截面是以球心在截面内的射影为圆心,以

内切球和外接球常见解法

内切球和外接球常见解法

内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。

在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。

以下将介绍一些常见的解法。

1. 解法一:利用勾股定理求解。

内切球和外接球都可以利用勾股定理求解。

以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。

整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。

而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。

欧拉定理是内切球和外接球求解的另一个重要工具。

欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。

对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。

利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。

点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。

对于一些优化问题,内切球和外接球也可以通过线性规划求解。

例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。

可以使用线性规划求解器求解其最优解。

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题(含例题)

几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.结论1:正方体或长方体的外接球的球心其体对角线的中点.例1 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为3,2,3,则此球的表面积为 .结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.例2 若一个底面边长为32,棱长为6的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 例3 在直三棱柱111ABC A B C -中,22AB =,3BC =,14AA =,π4ABC ∠=,则它的外接球体积为 . 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得.BC 222a b c R ++=(以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 例4 已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1===AB BC AC OO ,则球O 的表面积为 .结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜边的一半就是其外接球的半径.例5 已知三棱锥的四个顶点都在球O 的球面上,AB ⊥BC 且P A =7,PB =5,PCAC =10,则球O 的体积为 .(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1. 可构造正方体的类型:① ② ③ ①正四面体:棱长对应正方体的面对角线.例6 一个正四面体P-ABC 的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 .②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长.例7 设是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===,则球心O 到截面ABC 的距离是 .③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线.例8 在四面体S ABC -中,SA ⊥平面ABC ,90ABC ︒∠=,1SA AC AB ==,则该四面体的外接球的表面积为( )A .23π B .43πC .4πD .5πA BC DA BCPABCP2.可构造长方体和正方体的类型①与②与③ ④①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;例9 如果三棱锥的三个侧面两两垂直,面积分别为6cm 2、4cm 2和3cm 2,那么它的外接球的体积是 .③有三个面是直角三角形的三棱锥;例10 已知球上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2. 所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.例11 在三棱锥S ABC -中,5,17,10SA BC SB AC SC AB ======,则该三棱锥外接球的表面积为 .⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’ 的距离为d ,则有R 2=r 2+d 2.例12 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边 三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(hr R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .例13 在三棱柱ABC-A 1B 1C 1中,AC BC ⊥,若12AA AB ==,当四棱锥11B A ACC -体积最大时,三棱柱外接球的体积为 .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.例14 在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,22PA PB AB ==,若PBC ∆和PCD ∆的面积分别为1和3,则四棱锥P ABCD -的外接球的表面积为 .变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.例15 已知A ,B ,C ,D 为同一球面上的四个点.在△ABC 中,23BAC π∠=,23AB AC ==,AD=6,AD ⊥平面ABC ,则该球的体积为 .二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合.例16正三棱锥的高为1,底面边长为26.求它的内切球的表面积.例17正四棱锥S ABCD -,底面边长为2,侧棱长为3,则其外接球和内切球的半径是多少?结论4:基本方法:构造三角形利用相似比和勾股定理.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. 例18 一个正方体的棱长是4 cm ,它的内切球的体积为__cm 3,棱切球的体积为__cm 3.例19 甲球内切于正方体的各面,乙球内切于正方体的各条棱,丙球外接于正方体,则三球表面积之比为 .(二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31ABCP ABC P S Vr --=⇔3内切球 一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SVr 3=.例20正三棱锥的高为3,底面边长为83,正三棱锥内有一个球与其四个面相切,则球的表面积与体积分别为.(说明:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R.这样求球的半径可转化为求球心到三棱锥面的距离,而点面距离常可以用等体积法解决.)例21 如图,在棱锥P ABCD-中,底面ABCD是正方形,2PD AB==,PD⊥平面ABCD.在这个四棱锥中放入一个球,则球的最大半径为()A.2B.21+C.2 D.21-(三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r,内切球的半径R,则R=r.(2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记截面△ABC的面积为S,周长为C,内切球的半径R,则CSR2=.例22 圆柱的底面直径和高都是6,求该圆柱内切球的半径____.例23 圆锥的高为4,底面半径为2,求该圆锥内切球与外接球的半径比.三、有关内切球和外接球的综合问题1.正四面体的内切球与外接球的半径之比(正四面体的内切球与外接球的两个球心“二心合一”)设正四面体A-BCD的棱长为a,内切球半径为r,外接球半径为R,则OA=OB=R ,OE=r ,且R+r=AE.⊥底面△BCD 为正三角形,∴BE=a 33在ABE Rt ∆中,a aaBE AB AE 36312222=-=-=,∴a r R 36=+ ① 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫⎝⎛= ②由①②,得a r a R 12646==, ∴1:3:=r R , 即球心O 为正四面体高h 的四等分点.例24 求棱长为2的正四面体内切球和外接球的体积.2.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322== . 在O D A Rt 11∆中,得,22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=.1251a R =∴ 因此1:5:21=R R . 例25 一个正三棱柱恰好有一个内切球和一个外接球,则此内切球与外接球表面积之比为 .巩固练习1. 在正三棱锥S ABC -中,6AB BC CA ===,点D 是SA 的中点,若SB CD ⊥,则该三棱锥外接球的表面积为 .2.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( ) A .343aB .23a πC .33a π D .212a3.在平面四边形PACB 中,已知120APB ∠=︒,23PA PB ==,10AC =,8BC =.沿对角线AB 折起得到四面体P ABC -,当PA 与平面ABC 所成的角最大时,该四面体的外接球的半径为 .4.已知正三棱柱111ABC A B C -中,侧面11BCC B 的面积为4,则正三棱柱111ABC A B C -外接球表面积的最小值为( ) A .23πB .43πC .83πD .163π5.已知正方体1111ABCD A BC D -棱长为2,点P 是上底面1111D C B A 内一动点,若三棱锥P ABC -的外接球表面积恰为414π,则此时点P 构成的图形面积为________. 6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.备注:1.三角形内切圆的半径S S S S AO B AO C BO C ABC∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===.①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.。

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

(完整版)高考数学中的内切球和外接球问题.

(完整版)高考数学中的内切球和外接球问题.

(完整版)高考数学中的内切球和外接球问题.高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 .解设正六棱柱的底面边长为x ,高为h ,则有==h x x 24368936==213x h ∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

正方体的外接球与内切球问题

正方体的外接球与内切球问题

正方体的外接球与内切球问题简介
本文讨论正方体的外接球与内切球问题。

外接球问题
正方体的外接球是指一个球,它能够刚好与正方体的每个顶点接触,并且球心在正方体外部。

解决正方体的外接球问题可以采用以下步骤:
1. 首先找到正方体的对角线长度,记为d。

2. 外接球的直径等于正方体的对角线长度,即2d。

3. 外接球的半径等于直径的一半,即d。

因此,正方体的外接球的半径等于对角线长度的一半。

内切球问题
正方体的内切球是指一个球,它能够刚好与正方体的每个面接触,并且球心在正方体内部。

解决正方体的内切球问题可以采用以下步骤:
1. 首先找到正方体的边长,记为a。

2. 内切球的直径等于正方体的边长,即a。

3. 内切球的半径等于直径的一半,即a/2。

因此,正方体的内切球的半径等于边长的一半。

总结
通过上述讨论,我们得出了正方体的外接球和内切球的半径计算方法。

这些结果可以在几何学和物理学中得到应用。

希望本文能够帮助您理解正方体的外接球与内切球问题。

---
以上为回答内容, 仅供参考。

处理球的“内切”“外接”问题

处理球的“内切”“外接”问题

处理球的“内切”“外接”问题一、正多面体(即各个面都是全等的正多边形)的内切、外接球球心一定重合。

例: 1.正六面体(即正方体):球心在体对角线的中点。

设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。

(1)截面图1为正方形EFGH 的内切圆,得2aR =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图2作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。

(3) 正方体的外接球:正方体的八个顶点都在球面上,如图3,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。

2.正四面体(四个面全等的正三棱锥)设高为h ,内切球半径为r,外接球半径为R 。

内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为r=4h ,R= 43h ,R=3r. 例.正四面体的外接球和内切球的半径是多少?分析:(方法一)运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。

解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .图1图2图3在BEO Rt ∆中,222EO BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46=,得r R 3= (方法二)正四面体四个面全等,是一种侧棱与底面边长都相等的特殊正三棱锥。

可以用补形法补成正方体,取正方体的六条面对角线为正四面体棱长, 再由正方体外接球球心在体对角线上来求出半径。

二、构造直三角形,巧解正棱柱与球的组合问题1、正棱柱的外接球,底面中心及底面一顶点构成的直角三角形便可得球半径。

(直棱柱例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解设正六棱柱的底面边长为x ,高为h ,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r=,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.2、长方体体对角线中点,直径等于体对角线长。

立体几何外接球及内切球问题

立体几何外接球及内切球问题

立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。

常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。

根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。

例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。

解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。

2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。

解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。

3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。

解:由墙角模型的特点可知,正三棱锥的对棱互垂直。

连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。

由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。

因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。

类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。

通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。

例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。

解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。

球的内切和外接问题

球的内切和外接问题

接球。
性质
02
圆锥体的外接球的半径等于圆锥体母线长度的一半。
应用
03
在几何学中,圆锥体的外接球的概念常用于解决与圆锥体相关
的问题,如计算圆锥体的表面积、体积等。
03
球的内切和外接问题的 应用
在几何学中的应用
确定球与平面、球与多面体的位置关系
通过球的内切和外接问题,可以确定球与平面、球与多面体的位置关系,进一步研究球的相关性质。
当一个球恰好与圆柱体的上底面和下 底面相切,这个球被称为圆柱体的外 接球。
性质
应用
在几何学中,圆柱体的外接球的概念 常用于解决与圆柱体相关的问题,如 计算圆柱体的表面积、体积等。
圆柱体的外接球的半径等于圆柱体高 的一半。
球与圆锥体的外接
定义
01
当一个球恰好与圆锥体的顶点相切,这个球被称为圆锥体的外
解决几何问题
利用球的内切和外接问题,可以解决一些与球相关的几何问题,如计算球的表面积、体积等。
在物理学中的应用
确定天体的运动轨迹
在天文学中,通过研究天体与地球之 间的球内切和外接问题,可以确定天 体的运动轨迹和运行规律。
解决物理实验问题
在物理实验中,利用球的内切和外接 问题可以解决一些与球相关的物理实 验问题,如研究球的滚动摩擦等。
02
球的外接问题
球与多边形的外接
01
02
03
定义
当一个球恰好与一个多边 形的各顶点相切,这个球 被称为多边形的外接球。
性质
多边形的外接球的半径等 于多边形各顶点到其外接 圆圆心的距离。
应用
在几何学中,外接球的概 念常用于解决与多边形相 关的问题,如计算多边形 的面积、体积等。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

P DS CAO空间几何体的外接球、内切球问题外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=︒,则此球的表面积等于 。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为 ( )A . π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法 练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA.3B.13π C.23π D.3二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

空间正方体的外接球和内切球问题

空间正方体的外接球和内切球问题

空间正方体的外接球和内切球问题外接球
外接球是一个与正方体相切于所有顶点的球体。

换句话说,外接球的球心与正方体的顶点相重合,并且球体的半径刚好与正方体的边长相等。

由于正方体的六个顶点之间的距离是相等的,所以外接球也是一个等边球体。

外接球的性质有以下几点:
1. 外接球的球心与正方体的中心重合。

2. 外接球的半径等于正方体的边长。

内切球
内切球是一个与正方体的六个面相切的球体。

换句话说,内切球的球心位于正方体的中心,并且球体的半径刚好与正方体的边长的一半相等。

内切球的性质有以下几点:
1. 内切球的球心与正方体的中心重合。

2. 内切球的半径等于正方体的边长的一半。

外接球和内切球的关系如下:
1. 外接球的半径等于内切球半径的两倍。

2. 外接球的球心和内切球的球心重合。

外接球和内切球的问题在几何学和工程学中具有一定的应用价值。

通过研究它们的性质和特点,可以帮助我们更好地理解立体几何和球体的关系。

本文只是简单介绍了空间正方体的外接球和内切球问题,希望能对您有所帮助。

如需深入了解此问题,还需进一步研究和探索。

空间圆锥体的外接球和内切球问题

空间圆锥体的外接球和内切球问题

空间圆锥体的外接球和内切球问题
介绍
空间圆锥体是一个三维几何体,由一个圆锥和一个直径位于圆锥顶点的球构成。

在研究空间圆锥体时,外接球和内切球问题是经常涉及的一个重要问题。

外接球
外接球是指完全包围空间圆锥体的最小球。

它的圆心位于圆锥体的顶点,并且恰好接触圆锥体的底面。

外接球的半径可以通过以下公式计算:
R = √(h^2 + r^2)
其中,R代表外接球的半径,h代表圆锥体的高度,r代表圆锥体底面的半径。

内切球
内切球是指位于空间圆锥体内部,并且与圆锥体的底面和侧面相切的最大球。

内切球的半径可以通过以下公式计算:
r' = √(h^2 + r'^2)
其中,r'代表内切球的半径,h代表圆锥体的高度,r'代表内切球底面的半径。

应用
外接球和内切球的性质在几何学和工程学中有广泛应用。

它们可以用于计算空间圆锥体的几何特征,如体积、表面积等。

此外,外接球和内切球还可以用于优化设计和模拟分析等领域。

结论
空间圆锥体的外接球和内切球问题是一个重要的几何学问题。

通过计算它们的半径,可以获得圆锥体的几何特征,并在实际应用中发挥重要作用。

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理

外接球与内切球问题解题技巧梳理一.外接球8大模型秒杀公式推导r α说明:为底面外接圆的半径,R 为球的半径,l 为两面公共边的长度 为两个面的二面角,h 是空间几何体的高,H 为某一面的高1.墙角模型(1) 使用范围:3组或3条棱两两垂直;或可在长方体中画出该图且各顶点与长方体的顶点重合 (2)推导过程:长方体的体对角线就是外接球的直径(2) 秒杀公式:222222a b c 3a R (a b c R (a 44++==、、为长方体的长宽高)正方体的边长)(4)图示过程(3) 秒杀公式:2.汉堡模型(1)使用范围:有一条侧棱垂直与底面的柱体或椎体 (2)推导过程第一步:取底面的外心O 1,,过外心做高的的平行且长度相等,在该线上中点为球心的位置第二步:根据勾股定理可得222h R r 4=+(3)秒杀公式:222h R r 4=+(4)图示过程3.斗笠模型(1)使用范围:正棱锥或顶点的投影在底面的外心上 (2)推导过程第一步:取底面的外心O 1,,连接顶点与外心,该线为空间几何体的高h 第二步:在h 上取一点作为球心O第三步:根据勾股定理22222r h R (h R)r R 2h+=-+⇔=(3)秒杀公式:22r h R 2h+=(4)图示过程4.折叠模型(1)使用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠 (2)推导过程第一步:过两个平面取其外心H 1、H 2,分别过两个外心做这两个面的垂线且垂线相交于球心O第二步:计算2222222111OH H E tan=(CE-H E)tan (H r)tan (222ααα==-α为两个平面的二面角) 第三步:22222211OC OH CH (H r)tanr 2α=+=-+ (3)秒杀技巧:2222R (H r)tanr 2α=-+ (4)图示过程5.切瓜模型(1)使用范围:有两个平面互相垂直的棱锥 (2)推导过程:第一步:分别在两个互相垂直的平面上取外心F 、N ,过两个外心做两个垂面的垂线,两条垂线的交点即为球心O ,取BC 的中点为M ,连接FM 、MN 、OF 、ON第二步:22222222212l ONMF OA AN ON AN MF R r r 4∴=+=+∴=+-为矩形由勾股可得(3)秒杀公式:222212l R r r 4=+-(4)图示过程6.麻花模型(1)使用范围:对棱相等的三棱锥(2)推导过程:设3组对棱的长度分别为x 、y 、z,长方体的长宽高分别为a 、b 、c2222222222222x a b x y z y b c R 8z a c ⎧=+⎪++⎪=+⇔=⎨⎪=+⎪⎩(3)秒杀公式:2222x y z R 8++=(4)图示过程7.矩形模型(1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边(2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径(3)秒杀公式:22l R 4=(4)图示过程8.鳄鱼模型(1)使用范围:适用所有的棱锥 (2)推导过程:121212222121221212221122211O O O O O O OO E r (1sin O O E O O =O E O E 2O E O E cos 2 OD O O O D 3OD O O O D∴α∆+-α=+=+第一步:在两个平面上分别找外心、两外心做这两面的垂线相交于球心第二步:四点共圆,正弦定理可得OE=2=)在中,()()第三步:由(1)(2)(3)整理可得 且 过 2221122212112222221211122221212 =OE O E O DO O O EO Dsin O E O E 2O E O E cos O E O D sin O E O E 2O E O E cos =sin -+=-+α+-α=-+α+-α=2211O E O B-+α2122222O E=m O E=n AB=l,m n2mncos lR=+sin4α+-αα第四步:设,,两个面的二面角为由第三步可得(3)秒杀公式:22222m n2mncos lR=+sin4+-αα(4)图示过程二.内切球的半径---等体积法1.推导过程P ABC PAB PAC PBC ABCPAB PAC PBC ABC11111V S h RS RS RS RS 333331=R(S S S S)31=RS33VR=S-∆∆∆∆∆∆∆∆==++++++∴底面表面积几何体表面积以三棱锥P-ABC为例2.秒杀公式:3VR=S几何体表面积3.图示过程技巧1 外接球之墙角模型【例1】已知长方体''''ABCD A B C D -中,''A B =''1B C =,'A B 与平面''ACC A 所成角的正)A .4πB .16πC .163π D .323π 【举一反三】1.棱长为2的正方体的外接球的表面积为( )A .4πB .43π C .12πD .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( ) A .803πB .32πC .42πD .48π技巧2 外接球之汉堡模型【例2】已知四棱锥A BCDE -中,四边形BCDE 是边长为2的正方形,3AB =且AB ⊥平面BCDE ,则该四棱锥外接球的表面积为( ) A .4π B .174πC .17πD .8π【举一反三】1.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为2,体积为8,则这个球的表面积是( ) A .16πB .12πC .10πD .8π2.如图,在三棱锥A ﹣BCD 中,BD ⊥平面ADC ,BD =1,AB =2,BC =3,AC A ﹣BCD 外接球的体积为( )A .4πB .3πC .D .3.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为( )A .11π2B .7πC .11πD .14π4.(2020·全国高三月考(文))三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC AB ⊥,1AC =,AB =12AA =,则该三棱柱111ABC A B C -的外接球的体积为( )A .3B .3C .3D .8π技巧3 外接球之斗笠模型【例3】正三棱锥S ABC -中,2SA =,AB = )A .B .4πC .12πD .6π【举一反三】1.已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是________. 2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π技巧4 外接球之折叠模型【例4】在三棱锥A ﹣BCD 中,△ABD 与△CBD 均为边长为2的等边三角形,且二面角A BD C --的平面角为120°,则该三棱锥的外接球的表面积为( ) A .7π B .8πC .163πD .283π【举一反三】 1.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.2.如图所示,三棱锥S 一ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A ﹣BC ﹣S 的大小为23π,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A .73π B .133π C .43π D .3π技巧5 外接球之切瓜模型【例5】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==面PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143πB .283πC .11πD .12π【举一反三】1.已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( ) A .4πB .163πC .8πD .203π技巧6 外接球之麻花模型【例6】在四面体ABCD 中,若AB CD ==2==AC BD ,AD BC ==ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8π技巧7 外接球之矩形模型【例7】在四面体ABCD 中,AB =,1DA DB CA CB ====,则四面体ABCD 的外接球的表面积为( ) A .π B .2πC .3πD .4π【举一反三】1.四面体SABC 中,AC BC ⊥,SA ⊥平面ABC ,SA =AC =BC =,则该四面体外接球的表面积为( ) A .323πB .163πC .16πD .32π2.已知四面体ABCD 满足:1AB BC CD DA AC =====,BD =,则四面体ABCD 外接球的表面积为_______.技巧8 内切球半径【例8】正四面体的外接球与内切球的表面积比为( ) A .9: 1 B .27: 1C .3: 1D .不确定【举一反三】1.如图所示,球内切于正方体.如果该正方体的棱长为a ,那么球的体积为( )A .343a πB .3aC 3aD .316a π2.已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( ) A .25︰1B .1︰25C .1︰5D .5︰13的内切球,则此棱柱的体积是( ).A .3B .354cmC .327cmD .3巩固练习1.直三棱柱111ABC A B C -的所有顶点都在同一球面上,且2AB AC ==,90BAC ∠=︒,1AA =则该球的表面积为( ) A .40πB .32πC .10πD .8π2.在三棱锥P ABC -中,AB AC ==120BAC ∠=,PB PC ==,PA =棱锥的外接球的表面积为( ) A .40πB .20πC .80πD .60π3.已知四棱锥A BCDE -中,AB ⊥平面BCDE ,底面BCDE 是边长为2的正方形,且3AB =,则该四棱锥外接球的表面积为( ) A .4πB .174πC .17πD .8π4.已知点P ,A ,B ,C 在同一个球的球表面上,PA ⊥平面ABC ,AB ⊥AC ,PB BC ,PC =2,则该球的表面积为( ) A .6πB .8πC .12πD .16π5.四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3πB .4πC .6πD .12π6.平行四边形ABCD 中,AB BD ⊥,且2224AB BD +=,沿BD 将四边形折起成平面ABD ⊥平面BDC ,则三棱锥A BCD -外接球的表面积为( )A .2π B .2πC .4πD .16π7.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .368.已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( ) A .25πB .50πC .100πD .500π39.已知三棱柱111ABC A B C -(侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形)内接于球O ,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3,则球O 的表面积是( ) A .228π c m 3B .256π c m 3C .27π c m 3D .214π c m 310.在四棱锥P ABCD -中,//BC AD ,AD AB ⊥,AB =6AD =,4BC =,PA PB PD ===P BCD -外接球的表面积为( )A .60πB .40πC .100πD .80π11.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .10B .20πC .24πD .32π12.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B C .30π D .45π13.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球为球1O ,则外接球1O 的表面积是__________.14.在三棱锥P ABC -中,侧棱PA ⊥底面,120,1ABC BAC AB AC ∠===且2,PA BC =则该三棱锥的外接球的体积为__________.15.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.16.鳖臑(bi ē n ào )出自《九章算术·商功》:“斜解立方,得两重堵.斜解壍堵,其一为阳马,一为鳖臑.”鳖臑是我国对四个面均为直角三角形的三棱锥的古称.如图,三棱锥A BCD -是一个鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,且4AB BC DC ===,过点B 向AC 引垂线,垂足为E ,过E作CD 的平行线,交AD 于点F ,连接BF .设三棱锥A BCD -的外接球的表面积为1S ,三棱锥A BEF -的外接球的表面积为2S ,则12S S =________.17.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为______.18.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,AC =表面积为___.19.在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 在正方形11CDD C 内,1C M ⊥平面1ACM ,则三棱锥11M ACC -的外接球表面积为______.20.在四面体S ABC -中,SA ⊥平面ABC ,120BAC ∠=︒,2SA =,BC =球的表面积为________.21.我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知某方锥各棱长均为2,则其内切球的体积为______.22.已知在三棱锥P ABC -中,PA PB ==,23APB ∠=π,6ACB π∠=,则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的表面积为_____.23.三棱锥A BCD -中,60ABC CBD DBA ===∠∠∠,2BC BD ==,面ACD,则此三棱锥外接球的表面积为___.24.在三棱锥P ABC -中,平面PAB 垂直平面ABC,PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.25在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,BC =1cos 3BAC ∠=,若三棱锥D ABC-,则此三棱锥的外接球的表面积为______26.设A ,B ,C ,D 为球O 的球面上的四个点,满足2AB AC BC ===,DC BD ==.若四面体ABCD 的表面积为O 的表面积为______.。

空间几何体外接球与内切球问题解决方法

空间几何体外接球与内切球问题解决方法

空间几何体的外接球与内切球问题一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、八大模型类型一柱体背景的模型题型1、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.π16B.π20C.π24D.π32解:162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是π9解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是.π36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BC AB ,中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为(D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+= BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S ,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=R πππ2383334343=⋅==R V 球,题型2、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222za c y cb x b a ⇒2)2(2222222z y xc b a R ++=++=,补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S (2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为.π229解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.题型3、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高);第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(h r R +=,解出R 例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可121()23(222=+=R ),1=R ,球的体积为34π=球V ;(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于.解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.π16解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为.π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r ,3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.类型二锥体背景的模型题型4、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R .例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V .(3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==a R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ;(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.πB.3π C.4πD.43π解:选D,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ;(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()AA.6B.6C.3D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球题型5、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对解:选C,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;类型三二面角背景的模型题型6、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.解:如图,3460sin 22221=== r r ,3221==r r ,312=H O ,35343121222=+=+=r H O R ,315=R ;法二:312=H O ,311=H O ,1=AH ,352121222=++==O O H O AH AO R ,315=R ;(2)在直角梯形ABCD 中,CD AB //, 90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为π4解:如图,易知球心在BC 的中点处,π4=表S ;(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为π6解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO ,33sin 21=∠O OO ,36cos 21=∠O OO ,22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ;法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM ,4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O ,∴2121=O O ,72120sin 21==O O OM ,法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ;法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V .题型7、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为()A.π12125B.π9125C.π6125D.π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为.解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .类型四多面体的内切球问题模型题型8、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径.第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3例8(1)棱长为a 的正四面体的内切球表面积是62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则2622313133a a V V ABCP =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-,∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为2217+解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCD S ⋅+==-328431表,∴3743284=⋅+r ,771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为47332++解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V ,另一表达体积的方式是r r S V ABC P ⋅++==-347331表,∴3323473=⋅++r ,∴47332++=r巩固练习:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为()A.3B.6C.36D.9解:【A】616164)2(2=++=R ,3=R 【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2.三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于.332π解:260sin 32== r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于.解:ABC ∆外接圆的半径为,三棱锥ABC S -的直径为3460sin 22== R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V ,4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:PAC ∆的外接圆是大圆,3460sin 22== R ,32=R ,5.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,8121697(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为.解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。

球的内切和外接问题

球的内切和外接问题

正方体外接球的直径2R 3 2 a, R 6 a
2
4
S表
3 2
a 2
A B
O D
C
求正多面体外接球旳半径
求正方体外接球旳半径
球旳内切、外接问题
1、内切球球心到多面体各面旳距离均相等, 外接球球心到多面体各顶点旳距离均相等。 2、正多面体旳内切球和外接球旳球心重叠。 3、正棱锥旳内切球和外接球球心都在高线上,但不 重叠。
丙球外接于该正方体,则三球表面面积之比为( A )
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
图3
图4
图5
甲球为内切球直径=正方体棱长
设为1
S甲 4 R12 =
D
C
A
B
中截面
O
.
D1
C1
A1
B1
球内切于正方体旳棱
正方形旳对角线等于球旳直径= 2a
S乙 4 R22 =2
连 AO 延长交 PD 于 G
6a 3
P
则 OG ⊥ PD,且 OO1 = OG
3
∵ Rt △ PGO ∽ Rt △ PO1D
A
a 2
•O G
O1 D
R
6 a R 3
3a
3a
2
6
R 6 a 4
E 3a
6
S表
3 2
a2
求棱长为a的正四面体P ABC的外接球的表面积
解法2:
正方体的棱长为 2 a, 2
球与多面体旳内切、外接
球旳半径r和正方体 旳棱长a有什么关系?
.r
a
一、 球体旳体积与表面积

V球

立体几何中的外接球与内切球问题

立体几何中的外接球与内切球问题

立体几何中的外接球与内切球问题在我们的数学学习中,立体几何是非常重要的一部分。

在立体几何学习中,我们不仅需要掌握各种图形的形状和性质,也需要深入了解这些图形中的各种关系。

其中外接球和内切球是两个非常重要的概念,在立体几何中被广泛使用。

一、外接球外接球是指和一个多面体的所有顶点都相切的球。

在三维空间中,一个正四面体的外接球,就是四面体的四个顶点构成的球。

同理,其他多面体都有一组外接球。

外接球的性质可以帮助我们计算多面体的各种数据。

对于正四面体而言,我们可以得知,外接球的半径和棱长之间的关系为:外接球的半径等于正四面体棱长的一半。

这个特点可以应用于其他多面体中,为我们计算多面体提供更多帮助。

二、内切球内切球是指可以被一个多面体的所有面都切到的球。

在三维空间中,一个正四面体的内切球,就是以正四面体的每个面为切面所构成的球。

同理,其他多面体都有一组内切球。

内切球的性质可以帮助我们更好地了解多面体的各种性质。

对于正四面体而言,我们可以得知,内切球的半径和棱长之间的关系为:内切球的半径等于正四面体棱长的三分之一。

通过内切球的特点,我们可以更好地了解多面体的横截面形状,深入了解多面体的性质。

三、外接球与内切球的应用外接球和内切球在数学学科中非常重要。

在生活中,我们可以看到不少与这两个概念有关的例子。

例如,在搭建玩具拼图时,我们可以注意到玩具拼图中各个构件的外接球和内切球的关系。

同样的,建筑设计和工程规划中也常常涉及到多面体的外接球和内切球问题。

此外,街头艺术品和雕塑等艺术作品中也常常出现多面体和其相应的外接球或内切球。

总之,立体几何中的外接球和内切球是我们不能忽视的重要概念。

它们不仅仅是数学学科中的知识点,也与我们日常生活中的许多方面有着密不可分的关系。

因此,我们应该更加深入了解这两个概念,并将其应用在我们的学习和生活中,从而更好地了解和利用立体几何的基础知识。

简单几何体的外接球与内切球问题

简单几何体的外接球与内切球问题

--简单几何体的外接球与内切球问题定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

一、 直棱柱的外接球 1、长方体的外接球:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对--角线长l 即2222c b a R ++=2、 正方体的外接球:正方体的棱长为a ,则正方体的体对角线为a 3,其外接球的直径R 2为a 3。

3、其它直棱柱的外接球:方法:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球。

例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π 二、 棱锥的外接球 1、正棱锥的外接球方法:球心在正棱锥的高线上,根据球心到各个顶点的距离是球半径,列出关于半径的方程。

例3、正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积--为 .例5、若正四面体的棱长为4,则正四面体的外接球的表面积为___________。

例6、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是:( ) (A )433 (B)33(C)43 (D)1232、补体方法的应用(1)、正四面体(2)、三条侧棱两两垂直的三棱锥 (3)、四个面均为直角三角形的三棱锥例7、如果三棱锥的三个侧面两两垂直,它们的面积分别为62cm 、42cm 和32cm ,那么它的外接球的体积是 。

外接球与内切球问题

外接球与内切球问题

立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球包 直柱球径公式:222h R r⎛⎫=+ ⎪⎝⎭, (r 为底面外接圆半径)球包正方体球包长方体球包四棱柱球包三棱柱球包直锥三棱锥四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥球径计算方程:()222h R r R -+=2222202h r h hR r R h+⇒-+=⇒=,(h 为棱锥的高,r 为底面外接圆半径) 特别地,(1)边长为a 正四面体的外接球半径:R =______________.(2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________. 例:1.(2017年全国卷III 第8题)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为A .B .C .D .π34π2π4π【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h =,1R =,底面半径为r ,则由222h R r ⎛⎫=+ ⎪⎝⎭得:222213124r r ⎛⎫=+⇒=⎪⎝⎭,234V r h ππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为A .B .C .D .【解析】“球包体”中的“垂底侧边棱”类型,h a =,33r a =,222222724312h a a a R r ⎛⎫=+=+= ⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .B .C .D .【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,2222r ==,则221629284h r R h ++===, 所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( ) A .20π B .24π C .28πD .32πa 2a π273a π2113a π25a π814π16π9π274π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________.四、正多面体的内切球(体中球)锥体的内切球: R =____________.圆锥的内切球:R =边长为a 的正方体: 2a R =等边圆柱(母线a ):R =2a . 边长a 的正八面体:R =五、正多面体的“切边球”(与所有的棱都相切的球)正四面体边长为a ,球半径R =正方体边长为a ,球半径R =正四面体边长为a ,球半径R =例3:1.一个球的外切正方体的全面积为,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III 第10题)在封闭的直三棱柱内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是A .B .C .D .【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AA R R ++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V R πππ9==⨯=.答案B . 练习:1.(2015年全国卷II 第9题)已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为 A . B . C . D . 2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =,ABC ∆是边长为3的正三角形,则三棱锥S ABC -的外接球的表面积为( ) A .3π B .5π C .9π D .12π 3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,111ABC A B C -4π92π6π323πA B O 90AOB ∠=︒C O ABC -O 36π64π144π256π4AC =,AB AC ⊥,112AA =,则球O 的半径为()A .3172B .210C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为A .B .C .D .6.在正三棱锥P ABC -中,3PA PB PC ===,侧棱PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π 7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .652B .652C .65D .659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________. 10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==,14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==,7AC BD ==,则三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________. S ABC -O ABC ∆1SC O 2SC =2632322。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球包 直柱球径公式:222h R r⎛⎫=+ ⎪⎝⎭, (r 为底面外接圆半径)球包正方体球包长方体球包四棱柱球包三棱柱球包直锥三棱锥四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥球径计算方程:()222h R r R -+=2222202h r h hR r R h+⇒-+=⇒=,(h 为棱锥的高,r 为底面外接圆半径) 特别地,(1)边长为a 正四面体的外接球半径:R =______________.(2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________. 例:1.(2017年全国卷III 第8题)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为A .B .C .D .π34π2π4π【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h =,1R =,底面半径为r ,则由222h R r ⎛⎫=+ ⎪⎝⎭得:222213124r r ⎛⎫=+⇒=⎪⎝⎭,234V r h ππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为A .B .C .D .【解析】“球包体”中的“垂底侧边棱”类型,h a =,33r a =,222222724312h a a a R r ⎛⎫=+=+= ⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .B .C .D .【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,2222r ==,则221629284h r R h ++===, 所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( ) A .20π B .24π C .28πD .32πa 2a π273a π2113a π25a π814π16π9π274π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________.四、正多面体的内切球(体中球)锥体的内切球: R =____________.圆锥的内切球:R =边长为a 的正方体: 2a R =等边圆柱(母线a ):R =2a . 边长a 的正八面体:R =五、正多面体的“切边球”(与所有的棱都相切的球)正四面体边长为a ,球半径R =正方体边长为a ,球半径R =正四面体边长为a ,球半径R =例3:1.一个球的外切正方体的全面积为,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III 第10题)在封闭的直三棱柱内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是A .B .C .D .【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AA R R ++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V R πππ9==⨯=.答案B . 练习:1.(2015年全国卷II 第9题)已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为 A . B . C . D . 2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =,ABC ∆是边长为3的正三角形,则三棱锥S ABC -的外接球的表面积为( ) A .3π B .5π C .9π D .12π 3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,111ABC A B C -4π92π6π323πA B O 90AOB ∠=︒C O ABC -O 36π64π144π256π4AC =,AB AC ⊥,112AA =,则球O 的半径为()A .3172B .210C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为A .B .C .D .6.在正三棱锥P ABC -中,3PA PB PC ===,侧棱PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π 7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .652B .652C .65D .659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________. 10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==,14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==,7AC BD ==,则三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________. S ABC -O ABC ∆1SC O 2SC =2632322。

相关文档
最新文档