材力 第五章
材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总
![材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总](https://img.taocdn.com/s3/m/a01b0ea1a0116c175f0e48e8.png)
( 4)
例题 6-6
5. 实心铜杆横截面上任意点的切应力为 Ta Ga M e 0 ra ρa I pa Ga I pa Gb I pb 空心钢杆横截面上任意 点的切应力为
b
Tb Gb M e I pb Ga I pa Gb I pb
2
1 dV (dxdydz ) 2 dV dW v dV dxdydz 1 v 2
一、密圈螺旋弹簧
——螺旋角
F
O
d
d ——簧丝横截面的直径 D ——弹簧圈的平均直径
O D
密圈螺旋弹簧 ——螺旋角<5°时的圆柱形弹簧
§4.5
密圈螺旋弹簧的计算
O F
例题 6-6
Me Tb Ta
解: 1. 实心铜杆和空心钢杆横截面上的扭矩分别为Ta 和Tb(图b),但只有一个独立平衡方程 Ta+Tb= Me (1) 故为一次超静定问题。
例题 6-6
Me Tb Ta
2. 位移相容条件为实心杆和空心杆的B截面相对 于A截面的扭转角相等。在图b中都用表示(设 A端固定)。 Ba Bb ( 2)
a
b
ra
ra
a rb
切应力沿半径的变化 情况如图c所示。
ra
rb
(c)
§5-8非圆截面等直杆扭转的概念
圆截面杆扭转时的应力和变形公式,均建立在平 面假设 的基础上。对于非圆截面杆,受扭时横截面不 再保持为平面,杆的横截面已由原来的平面变成了曲 面。这一现象称为截面翘曲。因此,圆轴扭转时的应 力、变形公式对非圆截面杆均不适用。
(2)
材料力学课件第5章
![材料力学课件第5章](https://img.taocdn.com/s3/m/b704f3dff01dc281e43af069.png)
M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M
得
1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx
材料力学第五章 弯曲应力分析
![材料力学第五章 弯曲应力分析](https://img.taocdn.com/s3/m/85dd333402d276a201292ea6.png)
B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
《材料力学》 第五章 弯曲内力与弯曲应力
![《材料力学》 第五章 弯曲内力与弯曲应力](https://img.taocdn.com/s3/m/ba667ecf58f5f61fb7366690.png)
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学第5章-剪力图与弯矩图
![材料力学第5章-剪力图与弯矩图](https://img.taocdn.com/s3/m/e46cdfef27d3240c8447efa1.png)
第5章 梁的强度问题
剪力方程与弯矩方程
建立剪力方程和弯矩方程的方法与过程,实际上与前面所 介绍的确定指定横截面上的剪力和弯矩的方法和过程是相似的 ,所不同的,现在的指定横截面是坐标为x的横截面。
需要特别注意的是,在剪力方程和弯矩方程中,x是变量, 而FQ(x)和M(x)则是x的函数。
第5章 梁的强度问题
剪力方程与弯矩方程
例题2
MO=2FPl
FP
B
A
C
l
l
悬臂梁在B、C两处分别承受集中力FP和集中力偶M=2FPl
的作用。梁的全长为2l。 试写出:梁的剪力方程和弯矩方程。
第5章 梁的强度问题
剪力方程与弯矩方程
y
MO=2FPl
O
A
C
l
FP
B l
解:1.确定控制面和分段
本例将通过考察截开截面的右
边部分平衡建立剪力方程和弯矩方 程,因此可以不必确定左端的约束 力。
本章首先介绍如何建立剪力方程和弯矩方程;讨论载荷、 剪力、弯矩之间的微分关系;怎样根据载荷、剪力、弯矩之间 的微分关系绘制剪力图与弯矩图;然后应用平衡、变形协调以 及物性关系,建立确定弯曲的应力和变形公式;最后介绍弯曲 强度设计方法。
第5章 梁的强度问题
工程中的弯曲构件 梁的内力及其与外力的相互关系 剪力方程与弯矩方程 载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图 刚架的内力与内力图 结论与讨论(1)
根据以上分析,不难得到结论: 杆件各截面上内力变化规律随着外力的 变化而改变。
第5章 梁的强度问题
梁的内力及其与外力的相互关系
所谓剪力和弯矩变化规律是指表示剪力和弯矩变 化的函数或变化的图线。这表明,如果在两个外力 作用点之间的梁上没有其他外力作用,则这一段梁 所有横截面上的剪力和弯矩可以用同一个数学方程 或者同一图线描述。
材料力学第五章
![材料力学第五章](https://img.taocdn.com/s3/m/f4323b7eb4daa58da0114a67.png)
F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图
材料力学第五章
![材料力学第五章](https://img.taocdn.com/s3/m/60a8590702020740be1e9b95.png)
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学第5章弯曲应力
![材料力学第5章弯曲应力](https://img.taocdn.com/s3/m/7bae2fe325c52cc58ad6be5b.png)
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
材料力学第五章梁弯曲时的位移
![材料力学第五章梁弯曲时的位移](https://img.taocdn.com/s3/m/60bda6775acfa1c7aa00ccf9.png)
工程实例
7-1
工程实例
工程实例
5-1 梁的位移——挠度及转角
建立坐标系,oxy为梁对称面,外力作用在对 称面内。所以,挠曲线为o xy面内的平面曲线。
挠度
y 向下为正。
y
x
y
转角
x
挠曲线
挠曲线方程:
7-2
w= f (x)
挠度
略去剪力的影响,则平面假设成立,发
y
5.2 积分法求梁的挠度和转角
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解 1)由梁的整体平衡分析可得:
2)写出x截面的弯矩方程
FAx 0, FAy F (), M A Fl (
)
A
x
l
yB
F B
B
x
M ( x ) F (l x ) F ( x l )
A
FAx 0, FAy
Fb Fa , FBy l l
2)弯矩方程
FAy x1
ymax
x2
FBy
AC 段:
M x1 FAy x1 Fb x1 ,0 x1 a l
y
a
b
CB 段:
Fb M x2 FAy x2 F ( x2 a ) x2 F ( x2 a ), l
目录
a x2 l
5.2 积分法求梁的挠度和转角
A d 2 w1 Fb EI M ( x1 ) x1 2 dx1 l FAy x1 dw1 Fb 2 EI EI ( x1 ) x1 C1 x2 dx1 2l Fb 3 a EIw1 x C1 x1 D1 6l a x2 l CB 段: y d 2 w2 Fb EI M ( x2 ) x2 F ( x2 a) 2 dx2 l dw Fb 2 F EI 2 EI ( x2 ) x 2 ( x2 a ) 2 C 2 dx2 2l 2 Fb 3 F EIw2 x 2 ( x2 a)3 C2 x2 D2 6l 6
材料力学第五章 弯曲应力
![材料力学第五章 弯曲应力](https://img.taocdn.com/s3/m/1f525b6fe45c3b3567ec8b66.png)
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
材料力学第五章
![材料力学第五章](https://img.taocdn.com/s3/m/76640cbe02d276a200292e93.png)
xC
Sy A
n
x C
Ai
i 1
n
Ai
i 1
n
yC
Sx A
i 1 n
y C
Ai
Ai
i 1
第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图
Ⅱ
所示。
求:图形的形心。
50
C2
Ⅰ
C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z
ydA
A
Sy AzC
Sz AyC
yC
Sz A
ydA
A
A
zC
Sy A
zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy
材料力学第五章
![材料力学第五章](https://img.taocdn.com/s3/m/b70fac42852458fb770b56e2.png)
FSC
q0 x q ( x) l
是否可以将梁上的分布荷载全部用静力等效后的 合力代替来求截面C的内力?
§5-3 剪力和弯矩
例题 解: 1. 确定支反力 Fy 0 FAy FBy 2 F
M
FAy 2. 用截面法研究内力 FSE ME FAy FBy
A
0
FBy 3a Fa 2 F a F 5F FBy FAy 3 3 F 5F F 0 F 2 F F y SE SE 3 3 a 5F 3a M 0 2 F M O E 2 3 2 3Fa ME 2
a
F
b
A
FAY
x1
C x2
l
B
FBY
例题5-3 图示简支梁C点受集中力作用。 试写出剪力和弯矩方程,并画 出剪力图和弯矩图。 解:1.确定约束力 M A=0, M B=0
FS
Fb / l
FAy=Fb/l
FBy=Fa/l
Fa / l
Fab / l
M
2.写出剪力和弯矩方程 =Fb / l 0 x1 a x AC FS x1 M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l CB M x2 =Fal x2 / l a x2 l
FCy
D
FBy 29kN
§5-2
受弯杆件的简化
q =20kN/m F MA Me=5kN· m C A B FAx D E K FBy FAy 1m 3m 1m 1m
AB梁
F F
0.5m
x y
0 0 0
FAx 0
材料力学第五章 梁弯曲时的位移 PPT
![材料力学第五章 梁弯曲时的位移 PPT](https://img.taocdn.com/s3/m/7fe3a945240c844768eaee18.png)
M(x) E Iz
高等数学:
1
r (x)
=±(1+ww2)3/2
± w w (1+ 2)3/2
=
M(x) E Iz
M < 0,w > 0
M > 0,w < 0
取负号!
- w w (1+ 2)3/2
=
M(x) E Iz
w w (1+ 2)3/2
=-
M(x) E Iz
挠曲线微分方程
小 变 形
w
=-
DB段(a≤x≤l): M2(x)F l b xF(xa) Ew I2 Fl b xF(xa)
q E w 2 IE2I F l b x 2 2 F (x 2 a )2 C 2
E2 I w F l b x 6 3F(x 6 a )3 C 2xD 2
确定积分常数 连续条件
x = a 时:
w1 w2 w1 w2
边界条件
x = 0 时: w1 0 x = l 时: w2 0
D1D20 C1C2F 6lb(l2b2)
AD段( 0≤ x ≤ a ):
w 1 q1F(6 b lE 2b I2)l2F Eb Ix2l
w1F(6 b lE 2b I2l)x6F EbIx3 l
DB段( a ≤ x ≤ l ):
q w 2 2 F ( 6 lE 2 b b 2 I ) l2 F Ex b 2 I l 2 F E (x I a )2
对于受任意荷载的简支梁,若挠曲线上无拐点, 则可用梁中点的挠度代替最大挠度。
例3:悬臂梁如图,已知F、a,M=0.5 Fa,
梁的弯曲刚度 EI 为常数,试画出挠曲线的大致形 状。
FM
A
B
C
D
a
a
材料力学 第5章习题答案
![材料力学 第5章习题答案](https://img.taocdn.com/s3/m/2753bfd1c1c708a1284a4439.png)
图 5−4
(A)Nmax = 60kN,Nmin = 15kN (B)Nmax = 60kN,Nmin = −15kN (C)Nmax = 30kN,Nmin = −30kN (D)Nmax = 90kN,Nmin = −60kN 解:用直接法求轴力可得 NAB = −30kN,
NBC = 30kN,NCD = −15kN,NDE = 15kN。 答案:(C)
)。
图 5−1
第二节 轴 向 拉 伸 与 压 缩
5-2 (2010 年) 等截面杆轴向受力如图 5−2 所示。杆的最大轴力是( )kN。
(A)8
(B)5
(C)3
(D)13
解:用直接法求轴力,可得左段轴力为−3kN,而右段轴力为 5kN。
答案:(B)
图 5−2
5-3 (2006 年) 如图 5−3 所示变截面杆中,AB 段、BC 段的轴力为( )。
解:由于 A 是斜截面 m−m 的面积,轴向拉力 P 沿斜截面是均匀分布的,所以 σ = P A
应为斜截面上沿轴线方向的总应力,而不是垂直于斜截面的正应力。 答案:(C)
93
5-7 (2005 年) 有一横截面面积为 A 的圆截面杆件受轴向拉力作用,在其他条件不变时,
若将其横截面改为面积仍为 A 的空心圆,则杆的( )。
第五章 材 料 力 学
第一节 概 论
5-1 (2009 年) 在低碳钢拉伸实验中,冷作硬化现象发生在( (A)弹性阶段 (B)屈服阶段 (C)强化阶段 (D)局部变形阶段 解:低碳钢拉伸实验时的应力—应变曲线如 图 5−1 所示。当材料拉伸到强化阶段(ce 段)后,卸除荷载时,应力和应变按直 线规律变化,如图 5−1 中直线 dd′。当 再次加载时,沿 d′d 直线上升,材料的 比例极限提高到 d 而塑性减少,此现象 称为冷作硬化。 答案:(C)
材料力学第五章扭转应力
![材料力学第五章扭转应力](https://img.taocdn.com/s3/m/aee2be64e3bd960590c69ec3d5bbfd0a7956d509.png)
建筑工业中的应用
建筑结构中的梁、柱等构件在承受扭矩时会产生扭转应力。
在建筑设计过程中,工程师需要考虑材料的抗扭性能,合理 设计梁、柱等构件的截面尺寸和连接方式,以确保建筑结构 的稳定性和安全性。
学习有限元分析方法,掌 握如何利用计算机软件进 行结构分析,提高解决实 际问题的能力。
ABCD
结合实际工程问题,分析 不同材料的抗扭性能,以 及如何优化设计以提高结 构的稳定性。
关注相关领域的最新研究 进展,了解材料力学在工 程实践和科学研究中的应 用。
THANKS
感谢观看
扭转应力的计算公式
计算公式
扭转应力的大小可以通过以下公式计算:$tau = frac{T}{A}$,其中$tau$是扭转应 力,$T$是扭矩,$A$是物体的截面面积。
截面面积
截面面积是指物体横截面的面积,通常用于计算物体在扭矩作用下的扭转应力。
扭转应力的单位和符号
单位
扭转应力的单位是帕斯卡(Pa),在国际单位制中,1Pa=1N/m²。
弹性模量
弹性模量是材料在弹性变形范围内,抵抗外力作用的能力, 它反映了材料的刚度。对于同一材料,弹性模量越大,抵抗 扭转变形的能力越强,因此,弹性模量越大,扭转应力也越 大。
总结
在材料力学中,弹性模量是影响材料扭转应力的关键因素之 一。高弹性模量的材料具有较高的抵抗扭转变形的能力,因 此会产生较大的扭转应力。
剪切模量对扭转应力的影响
剪切模量
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的刚度。剪切模量的大小与材料的剪切应力成正比,即剪切 模量越大,材料抵抗剪切变形的能力越强,因此,扭转应力也越大。
材料力学第5章剪切和挤压
![材料力学第5章剪切和挤压](https://img.taocdn.com/s3/m/ddc83123bd64783e09122b71.png)
第5章剪切和挤压5.1 剪切的概念和实例在工程实际中,为了将构件互相连接起来,通常要用到各种各样的连接。
例如图5-1中所示的(a)为拖车挂钩的销轴连接;(b)为桥梁结构中常用的钢板之间的铆钉连接;(c)为传动轴与齿轮之间的键块连接;(d)为两块钢板间的螺栓连接;(e)为构件中的搭接焊缝连接。
这些起连接作用的销轴,铆钉,键块,螺栓及焊缝等统称为连接件。
这些连接件的体积虽然比较小,但对于保证整个结构的牢固和安全却具有重要作用。
因此,对这类零件的受力和变形特点必须进行研究、分析和计算。
(a)(b)(c) (d)图5-1 工程中的连接现以螺栓连接为例来讨论剪切变形与剪切破坏现象。
设两块钢板用螺栓连接,如图5-2(a)所示。
当钢板受到横向外力N拉伸时,螺栓两侧面便受到由两块钢板传来的两组力P 的作用。
这两组力的特点是:与螺栓轴线垂直,大小相等,方向相反,作用线相距极近。
在这两组力的作用下,螺栓将在两力间的截面m-m处发生错动,这种变形形式称为剪切。
发生相对错动的截面称为剪切面,它与作用力方向平行。
若连接件只有一个剪切面,称为单剪切,若有两个剪切面,称为双剪切。
为了进一步说明剪切变形的特点,我们可以在剪切面处取出一矩形簿层来观察,发现在这两组力作用下,原来的矩形将歪斜成平行四边形,如图5-2b所示。
即矩形薄层发生了剪切变形。
若沿剪切面m-m截开,并取出如图5-2c所示的脱离体,根据静力平衡方程,则在受剪面m-m上必然存在一个与力P大小相等、方向相反的内力Q,此内力称为剪力。
若使推力P逐渐增大,则剪力也会不断增大。
当其剪应力达到材料的极限剪应力时,螺栓就会沿受剪面发生剪断破坏。
(a) (b) (c)图5-2 螺栓连接的剪切破坏5.2剪切和挤压的实用计算5.2.1剪切的实用计算受剪切的连接件一般大多为短粗杆,且剪切变形均发生在某一局部,要从理论上计算它们的工作应力往往非常复杂,有时甚至是不可能的。
即使用精确理论进行分析,所得结果也会与实际情况有较大的出入。
材料力学笔记(第五章)
![材料力学笔记(第五章)](https://img.taocdn.com/s3/m/e83c4e1d6bd97f192279e93e.png)
材料力学(土)笔记第五章 梁弯曲时的位移1.梁的位移——挠度及转角为研究等直梁在对称弯曲时的位移取梁在变形前的轴线为x 轴,梁横截面的铅垂对称轴为y 轴而xy 平面即为梁上荷载作用的纵向对称平面梁发生对称弯曲变形后,其轴线将变成在xy 平面内的曲线1AC B度量梁变形后横截面位移的两个基本量是挠度:横截面形心(即轴线上的点)在垂直于x 轴方向的线位移ω转角:横截面对其原来位置的角位移θ 梁变形后的轴线是一条光滑的连续曲线,且横截面仍与该曲线保持垂直因此横截面的转角θ也就是曲线在该点处的切线与x 轴之间的夹角度量等直梁弯曲变形程度的是曲线的曲率梁的变形还受到支座约束的影响通常就用这两个位移量来反映梁的变形情况梁轴线弯曲成曲线后,在x 轴方向也将发生线位移 但在小变形情况下,梁的挠度远小于跨长,梁变形后的轴线是一条平坦的曲线横截面形心沿x 轴方向的线位移与挠度相比属于高阶微量,可略去不记因此在选定坐标后,梁变形后的轴线可表达为()f x ω=式中,x 为梁在变形前轴线上任一点的横坐标;ω为该点的挠度梁变形后的轴线称为挠曲线,在线弹性范围内,也称为弹性曲线上述表达式则称为挠曲线(或弹性曲线)方程由于挠曲线为一平坦曲线,故转角θ可表达为''tan ()f x θθω≈== 称为转角方程即挠曲线上任一点处的切线斜率'ω可足够精确地代表该点处横截面的转角θ 由此可见,求得挠曲线方程后,就能确定梁任一横截面挠度的大小,指向及转角的数值 正值的挠度向下,负值的挠度向上正值的转角为逆时针转向,负值的转角为顺时针方向2.梁的挠曲线近似微分方程及其积分为求得梁的挠曲线方程,利用曲率κ与弯矩M 间的物理关系,即 1M EIκρ== 式中曲率κ为度量挠曲线弯曲程度的量,是非负的这是梁在线弹性范围内纯弯曲情况下的曲率表达式在横力弯曲时,梁横截面上除弯矩M 外尚有剪力S F 但工程用梁,其跨长l 一般均大于横截面高度的10倍剪力S F 对于梁位移的影响很小,可略去不计,故该式子依然适用式中的M 和ρ均为x 的函数,即1()()()M x x x EIκρ== 在数学中,平面曲线的曲率与曲线方程导数间的关系有'''23/21()(1)x ωρω=±+ 取x 轴向右为正,y 轴向下为正时曲线凸向上时''ω为正,凸向下时为负而按弯矩的正、负号规定,梁弯曲后凸向下时为正,凸向上为负,符号相反于是得到 '''23/2()(1)M x EIωω=-+ 由于梁的挠曲线为一平坦曲线,因此,'2ω与1相比十分微小可以略去不计故上式可近似的写为 ''()M x EIω=-上式略去了剪力S F 的影响,并略去了'2ω项 故称为梁的挠曲线近似微分方程若为等截面直梁,其弯曲刚度EI 为一常量,上式可改写为''()EI M x ω=-对于等直梁,上式进行积分,并通过由梁的变形相容条件给出的边界条件确定积分常数 即可求得梁的挠曲线方程当全梁各横截面上的弯矩可用单一的弯矩方程表示时,梁的挠曲线近似微分方程仅有一个 将上式的两端各乘以dx ,经积分一次,得'1()EI M x dx C ω=-+⎰再积分一次,即得12[()]EI M x dx dx C x C ω=-++⎰两式子中积分常数1C 、2C 可通过挠曲线的边界条件确定例如在简支梁中,左右铰支座处的挠度均等于零在悬臂梁中,固定端处的挠度和转角均等于零确定积分常数1C 、2C 后,就分别得到梁的转角方程和挠曲线方程从而可以确定任一横截面的转角和挠度1C 和2C 的几何意义 由于以x 为自变量,在坐标原点即0x =处的定积分恒等于零因此,积分常数'100x C EI EI ωθ===,20C EI ω=式中,0θ和0ω分别表示坐标原点处截面的转角和挠度若梁上的荷载不连续即分布荷载在跨度中间的某点处开始或结束,以及集中荷载或集中力偶作用处梁的弯矩需分段写出,各段梁的挠曲线近似微分方程也随之不同在对各段梁的近似微分方程积分时,均将出现两个积分常数为确定这些积分常数,除需利用支座处的约束条件外还需利用相邻两段梁在交界处位移的连续条件例如左、右两段梁在交界处的截面应具有相等的挠度和转角不论是约束条件和连续条件,均发生在各段挠曲线的边界处故均成为边界条件,即弯曲位移中的变形相容条件遵循两个原则①对各段梁,都是从同一坐标原点到截面之间的梁段上的外力列出弯矩方程所以后一段梁的弯矩方程包括前一段的弯矩方程的新增的()x a -项②对()x a -项的积分,以()x a -作为自变量于是由x a =处的连续条件,就能得到两段梁上相应的积分常数分别相等的结果 对于弯矩方程需分为任意几段的情况,只要遵循上述规则同样可以得到各梁段上相应的积分常数分别相等的结果从而简化确定积分常数的运算3.按叠加原理计算梁的挠度和转角梁在微小变形条件下,其弯矩与荷载成线性关系 在线弹性范围内,挠曲线的曲率与弯矩成正比当挠度很小时,曲率与挠度间呈线性关系梁的挠度和转角均与作用在梁上的荷载成线性关系在这种情况下梁在几项荷载(如集中力、集中力偶或分布力)同时作用下某一横截面的挠度或转角 就分别等于每项荷载单独作用下该截面的挠度或转角的叠加,即为叠加原理 已知梁在每项荷载单独作用下的挠度和转角表则按叠加原理来计算梁的最大挠度和最大转角将较为方便4.奇异函数·梁挠曲线的初参数方程5.梁的刚度校核·提高梁的刚度的措施5.1 梁的刚度校核对于梁的挠度,其许可值通常用许可挠度与跨长之比值[]l ω作为标准 梁的刚度条件可表达为 max[]ll ωω≤ max []θθ≤ 一般土建工程中的构件,强度要求是主要的刚度要求一般处于从属地位但当对构件的位移限制很严,或按强度条件所选用的构件截面过于单薄时刚度条件也可能起控制作用5.2 提高梁的刚度的措施由梁的位移表可见梁的位移(挠度和转角)除了与梁的支承和荷载情况有关还与其弯曲刚度EI 成反比,与跨长l 的n 次幂成正比减小梁的位移,可采取下列措施①增大梁的弯曲刚度EI②调整跨长和改变结构5.梁内的弯曲应变能当梁弯曲时,梁内将积蓄应变能梁在线弹性变形过程中弯曲应变能V ε在数值上等于作用在梁上的外力所作的功W梁在纯弯曲时各横截面上的弯矩M 为常数,并等于外力偶矩e M当梁处于线弹性范围内e EI EI θρ=== θ与e M 呈线性关系直线下的三角形面积就代表外力偶所作的功W ,即12e W M θ=从而得纯弯曲时梁的弯曲应变能 12e V M εθ=即得2222e M l M l V EI EIε== 横力弯曲时,梁内应变能包含两个部分:与弯曲变形相应的弯曲应变能和与切应变形相应的剪切应变能对于弯曲应变能,取长为dx 的梁段,其相邻两横截面的弯矩应分别为()M x 和()()M x dM x +在计算微段的应变能时,弯矩的增量为一阶无穷小,可略去不计 计算器弯曲应变能为2()2M x dV dx EIε= 全梁的弯曲应变能则可通过积分求得为2()2l M x V dx EIε=⎰ 式中,()M x 为梁任一横截面上的弯矩表达式 当各段梁的弯矩表达式不同时,积分需分段进行梁的剪切应变能远小于弯曲应变能,可略去不计。
材料力学第五章
![材料力学第五章](https://img.taocdn.com/s3/m/fcb850e776c66137ef061936.png)
例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩
三
剪力图与弯矩图
四
载荷集度、剪力与弯矩间的关系
五
纯弯曲时梁横截面上的正应力
六
梁的弯曲正应力强度条件及其应用
七
弯曲切应力
八
提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0
材料力学第五章__弯曲应力
![材料力学第五章__弯曲应力](https://img.taocdn.com/s3/m/3e3968e816fc700abb68fceb.png)
矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5—3 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN,试计算梁内的最
大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图:
(2) 最大弯矩(位于固定端):
max 7.5 M kN =
(3) 计算应力: 最大应力:
K 点的应力:
5—4 图示梁,由No22槽钢制成,弯矩M =80 N 、m,并位于纵向对称面(即x-y 平面)内。
试求
梁内的最大弯曲拉应力与最大弯曲压应力。
6max max max
227.510176 408066
Z
M M MPa
bh W σ⨯====⨯6max max 33
7.51030
132 ********
K Z
M y M y MPa bh I σ⋅⋅⨯⨯====⨯40
1m F 1
C y 1m F 2 80 K
z
30 M M y
z
y 0 b C
s F ()-
kN
5.2 kN 5
(+)
7、5kNm
x
M
5kN
kNm 5.7
kNm 5
解:(1) 查表得截面的几何性质:
4020.3 79 176 z y mm b mm I cm ===
(2) 最大弯曲拉应力(发生在下边缘点处):
()30max
8
80(7920.3)10 2.67 17610x M b y MPa I σ
-+-⋅-⨯-⨯===⨯ (3) 最大弯曲压应力(发生在上边缘点处):
30max
8
8020.3100.92 17610x M y MPa I σ
---⋅⨯⨯===⨯
5—5图示简支梁,由No18工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵
向正应变ε=3、0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa,a =1 m 。
解:(1) 求支反力:
31 44
A B R qa R qa ==
(2) 画内力图:
(3) 由胡克定律求得截面C 下边缘点的拉应力为:
q
x
x
F S
M
49
max
3.010*******
C
E MPa
σε
+-
=⋅=⨯⨯⨯=也可以表达为:
2
max
4
C
C
z z
qa
M
W W
σ+==
(4) 梁内的最大弯曲正应力:
2
max
max max
9
9
3267.5
8C
z z
qa
M
MPa
W W
σσ+
====
5—12图示矩形截面木梁,许用应力[σ+]=10MPa。
(1)试根据强度要求确定截面尺寸b;
(2)若在截面A处钻一直径d=60mm的圆孔,试问就是否安全。
(1)解:如图所示为剪力弯矩图,由图可知:
x
kN
3
kN
5
s
F
M
kNm
13
kNm
3x
()-
kNm M 13max -=
26
h b W z =
z
W M max
max =
σ []+≤σσmax
解得:mm
b 125.0≥
(2)
6
125.0125.02⨯=总
z W
34-m 1026.3⨯=
6
03.0125.02
1⨯=z I
35m 10875.1-⨯=
z I =1-z z I I 总
33-z m 1007.3⨯=I
[]+≤==
σσMPa W M A
79.7z
所以安全
5—13 图示槽形截面悬臂梁,F =10 kN,M e =70 kNm,许用拉应力[σ+]=35 MPa,许用压应力
[σ-]=120 MPa,试校核梁的强度。
解:(1) 截面形心位置及惯性矩:
z C
112212(150250)125(100200)150
96 (150250)(100200)
C A y A y y mm A A ⋅+⋅⨯⋅+-⨯⋅=
==+⨯+-⨯
332
284
1505025200(15050)(25)2(25200)(150)12121.0210 zC
C C I y y mm ⎡⎤⨯⨯=+⨯⋅-++⨯⋅-⎢⎥
⎣⎦=⨯ (2) 画出梁的弯矩图:
(3) 计算应力
A +截面下边缘点处的拉应力及上边缘点处的压应力分别为:
68(250)
4010(25096)60.4 1.0210C A A zC M y MPa I σ
++
+⋅-⨯-=
==⨯
68
40109637.61.0210
C
A A zC
M y MPa I σ-
++
⋅⨯⨯=
==⨯ A -截面下边缘点处的压应力为:
68
(250)
3010(25096)45.3 1.0210C A A zC
M y MPa I σ
--
-⋅-⨯-=
==⨯
可见梁内最大拉应力超过许用拉应力,梁不安全。
5—14图示铸铁梁,载荷F 可沿梁AC 水平移动,其活动范围为0<η<3l/2,试确定载荷F 的许用值。
已知许用拉应力[σt ]=35MPa,许用压应力[σc ] =140MPa,l=1m 、
M x
40kNm
30kNm
(+)
(-)
10kNm
s F
kN 10
()+
解:y c =(
020
.0080.0020.0010.0060
.0020.0080.0010.0020.0100.0⨯+⨯⨯⨯+⨯⨯)m=0、03222m
]m )03222.0060.0(080.0020.012080.0020.002222.0020.0100.012020.0100.0[4232
3-⨯⨯+⨯+⨯⨯+⨯=z I 46-m 10142.3⨯=z I
分析可知可能的危险面有两个:当F 作用在AB 段时,危险位置就是:
η=
2l ,4
max Fl M =+ 此时剪力弯矩图如图所示:
2
F ()+
s F
4
Fl M
()+
20
100
20
80
100
c y
20
20
80
y
当F 作用在BC 段时,危险位置就是:
η=23l ,|-m ax M |=2
Fl 此时剪力弯矩图如图所示:
确定载荷F 的许用值:
由危险面B 的压力强度要求:
[]c c z
c c y I Fl
y M σσ≤-=-⨯=)100.0(2)100.0(I | |z -max max ,
得:
F ≤)(c y -000.1l ]
2Iz[c σ=)(03222.0-100.01.00010140103.14226-6⨯
⨯⨯⨯⨯N =N N k 98.1210298.14=⨯
由截面B 的拉应力强度要求:
][2|M |-max max t t C Z
c z y I fl
y I σσ≤==,
得:
kN N N
ly I F c t z 83.61083.6)
03222.0100.0(000.11014010142.32][2366=⨯=-⨯⨯⨯⨯⨯=≤-σ
由+
m ax M 作用面的拉应力强度要求:
][-100.04-100.0|M |max max t t C Z
c z y I Fl y I σσ≤==+)()(, 得
()+
()-
()-
F
2
F s F
M
2
Fl
kN N N
y l I F c t z 49.61049.6)
03222.0100.0(000.1103510142.34-100.0][4366=⨯=-⨯⨯⨯⨯⨯=≤-)(σ
比较以上结果,最后确定取载荷的许用值为:
F=6、49kN。