excel单因素方差分析

合集下载

EXCEL在方差分析中的运用

EXCEL在方差分析中的运用

EXCEL在方差分析中的运用一、单因素方差分析在Excel中,可以使用[方差分析:单因素方差分析]工具来完成单因素方差分析。

【例6-4】本章例6-1的Excel统计分析步骤如下。

1.输入数据。

如图6-3所示。

图6-32.调出[方差分析:单因素方差分析]对话框,其主要选项含义如下。

输入区域:在此输入待分析数据区域的单元格引用。

该引用必须由两个或两个以上按列或行组织的相邻数据区域组成。

本例为“$B$1:$D$6”。

分组方式:如果需要指出输入区域中的数据是按行还是按列排列,请单击[行]或[列]。

本例分组方式为“列”。

标志位于第一行/列:如果输入区域的第一行中包含标志项,请选中[标志位于第一行]复选框;如果输入区域的第一列中包含标志项,请选中[标志位于第一列]复选框;如果输入区域没有标志项,则该复选框不会被选中,Excel将在输出表中生成适宜的数据标志。

α:在此输入计算F 统计临界值的置信度。

本例为0.05。

本例对话框的填写如图6-3所示。

图中分组方式为“列”方式,因为三家分店的日营业额是按列排列的,即分别排在B、C、D列。

3.单击[确定]按钮,可得方差分析表(结果已在本章第二节的表6-3中给出)。

二、无交互作用下的双因素方差分析该项工作可利用[方差分析:无重复双因素方差分析]工具来完成。

【例6-5】本章例6-2的Excel统计分析步骤如下。

1.输入数据。

如图6-4所示。

2.调出[方差分析:无重复双因素分析]对话框,填写如图6-4所示。

该工具对话框设置与单因素方差分析类似。

要注意,本例中[标志]复选框被选中,输入区域必须包括A因素与B因素的水平标志(如“工人一”、“工人四”、“设备B”等)所在的单元格区域,也即输入区域为“$M$1:$R$4”,而不是只包括数据的单元格区域“$N$2:$R$4”。

图6-43.单击[确定]按钮。

得到方差分析表。

(结果已在本章第三节表6-6中给出)。

三、有交互作用的双因素方差分析该项工作可以使用[方差分析:可重复双因素方差分析]工具来完成。

excel单因素方差分析默认置信度

excel单因素方差分析默认置信度

excel单因素方差分析默认置信度excel单因素方差分析默认置信度为0.05
1、选择单因素方差分析工具。

在Excel 2007中切换到“数据”选项卡,单击“分析”区域的“数据分析”按钮。

2、弹出“数据分析”对话框,在该对话框的列表框区域选择“方差分析:单因素方差分析”选项。

3、设置单因素方差分析相关参数。

单击“确定”按钮,弹出“方差分析:单因素方差分析”对话框。

单击“输入区域”文本框右边的“压缩对话框”按钮,选择输入数据区域选项。

4、选择完成后单击对话框右下角的“展开对话框”按钮,再单击“分组方式”选项中“列”前面的单选框,并勾选“标志位于第一行”前面的复选框,将置信度参数α设为默认值0.05。

在“输出选项”选区中,单击“输出区域”前面的单选按钮并选定输出区域。

α为置信度参数,表示输入区域中数据有多大的可信度。

α=0.05表示数据有95%的可信度。

Excel进行单因素方差分析的步骤

Excel进行单因素方差分析的步骤

Excel进行单因素方差分析的步骤Excel是一种功能强大的电子表格软件,可以用于进行各种数据分析,包括单因素方差分析。

单因素方差分析是一种常用的统计方法,用于比较不同组之间的均值是否存在显著差异。

下面是在Excel中进行单因素方差分析的步骤:步骤1:准备数据首先,需要准备好用于分析的数据。

假设我们有一个实验,分为三个组,每个组有若干个观测值。

我们需要将这些观测值依次输入到Excel的一些工作表中。

步骤2:计算各组的均值和总均值在Excel中,可以使用平均值函数(AVERAGE)计算每个组的均值。

将这些均值记录在另一列或另一个工作表中。

然后,使用平均值函数计算所有组的总均值。

步骤3:计算组内平方和和组间平方和使用Excel的平方和函数(SUMSQ)来计算每个组的组内平方和。

组内平方和可以通过将每个观测值与其对应组的均值之差的平方相加来计算。

然后,使用平方和函数计算组间平方和。

组间平方和可以通过将每个组的均值与总均值之差的平方乘以该组的观测数量相加来计算。

步骤4:计算均方计算组内平方和和组间平方和的均方,即将组内平方和除以自由度(观测数量减去组数)得到组内均方,将组间平方和除以组数减1得到组间均方。

步骤5:计算F值使用Excel的F分布函数(FDIST)来计算F值。

F值可以通过将组间均方除以组内均方来计算。

步骤6:确定显著性水平和临界值根据实验设计和显著性水平的设置,确定F分布的临界值。

在Excel 中,可以使用F分布的临界值函数(FINV)来计算临界值。

步骤7:进行假设检验根据F值和临界值的比较结果,进行假设检验。

如果F值大于临界值,则可以拒绝原假设,即组均值存在显著差异。

如果F值小于等于临界值,则不能拒绝原假设,即组均值没有显著差异。

步骤8:进行事后比较(可选)如果在步骤7中发现组均值存在显著差异,可以使用Excel的多重比较方法,如Bonferroni校正、Tukey HSD等,进行事后比较。

Excel中的单因素方差分析

Excel中的单因素方差分析

Excel中的单因素方差分析一、目的要求为了解决多个样本平均数差异显著性的测验问题,需要应用方差分析。

方差分析是把试验看成一个整体,分解各种变异的原因。

从总的方差中,将可能的变异原因逐个分出,并用误差的方法作为判断其他方差是否显著的标准,如果已知变异原因的方差比误差方差大得多,那么,该方差就不是随机产生的,试验的处理间的差异不会是由于误差原因造成的,这时处理的效应是应该肯定的。

通过学习Excel中方差分析,掌握基本的分析操作,能够处理实验的数据。

二、实验工具Microsoft Excel三、试验方法2、例:在五个硼肥试验处理中测得苹果叶内硼含量(ppm),试比较各处理苹果叶内平均含硼量的差异显著性。

3、操作步骤:在Excel统计中,完全随机试验设计的方差分析,只须经过单因素方差分析即可得出结果,具体步骤如下:①打开Excel,向单元格中输入文字与数字,建立表格;②单击“工具”,在出现的对话框中,选择“数据分析”,选取“方差分析: 单因素方差分析”;③单击“确定”,单击“输入区域:”框右边的按钮,用鼠标选中数据,再次单击按钮;其他设置选择a为0.05。

分组方式:行。

点选标志位于第一列④单击“确定”,即可输出单因素方差分析结果。

4、方差分析输出结果: SUMMARY组观测数求和平均方差A 6 52 8.666667 4.666667B 6 245 40.83333 13.76667C 6 96 16 11.6D 6 169 28.16667 34.96667E 6 249 41.5 3.55、多重比较:由方差分析的结果,采用新复极差测验法,再稍加计算比较处理, 即可得出:新复极差测验的LSR值6结论:由方差分析结果F=94.17>F o.o5=Fcrit=2.76,可知5种喷硼处理间差异显著,并可知除E与B二处理间无极显著差异外,其他均有极显著差异。

SPSS中的单因素方差分析一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

Excel 财务应用 单因素方差分析

Excel 财务应用  单因素方差分析

Excel 财务应用 单因素方差分析单因素方差分析用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

1.创建数据模型设有三部机器A 、B 、C 制造同一种产品,对每一部机器观察4天的日产量,记录如图7-3所示。

问在产量上,各机器之间是否有显著差别?图7-3 数据模型可以把每部机器生产的日产量看作是一个总体,问题是检验三种产品总体的均值是否相等,因此,可以采用单因素方差分析法。

现在假设3台机器之间在产量上是没有差异的,要检验这个假设能否成立,我们可以根据上面模型介绍中,通过人工计算方差分析表来实现。

在计算样本均值时,需要使用到Excel 的均值函数AVERAGE ,其功能是返回参数的平均值(算术平均值)。

其语法为:AVERAGE(number1,number2,…)其中,number1,number2,…为需要计算平均值的30个参数。

需要说明的是,参数可以是数字,或者是包含数字的名称、数组或引用。

如果数组或引用参数包含文本、逻辑值或空白单元格,则这些值将被忽略,但包含零值的单元格将计算在内。

例如,选择第1天所对应的样本均值所在的单元格(B7单元格),并选择【公式】选项卡,在【函数库】组中,单击【自动求和】按钮,执行【平均值】命令,按Enter 键即可求出第1天的样本均值,如图7-4所示。

图7-4 计算样本均值提 示选择B7所在的单元格,将鼠标置于该单元格的填充柄上,向右拖动至该行的其他单元格中,即可计算出其他单元格的“样本均值”。

接下来可以对总体均值进行计算。

选择“总体均值”所对应的单元格(B8单元格),单击【函数库】组中的【插入函数】按钮,在弹出的【插入函数】对话框中,选择函数AVERAEGA 函数,如图7-5所示。

创建表格 执行图7-5 选择函数 图7-6 计算“总体均值”单击【确定】按钮后,将弹出【函数参数】对话框,设置函数的参数,即可求出“总体均值”,结果如图7-6所示。

excel单因素方差分析

excel单因素方差分析

excel单因素方差分析Excel的单因素方差分析(One-WayAnalysisofVariance,ANOVA)是一种统计技术,可以帮助我们检验某个变量在不同分组或组之间的差异。

它主要通过检验有效性的F检验,来分析两个或多个数据组之间的平均值是否具有统计学意义。

此外,Excel中的单因素方差分析技术还可以用来测量和比较不同因素对总体中样本值的影响程度,从而更好地判断因素之间的关联性。

Excel中的单因素方差分析是一种重要的统计分析工具,在许多研究领域中都得到了广泛应用,如市场营销研究中对用户满意度的比较,社会科学研究中对实验组和对照组的分析等。

它可以有效地帮助我们判断因素之间的关联性,从而更好地进行决策分析。

Excel中的单因素方差分析首先要准备数据,准备之前要注意几个问题:数据要符合正态分布,变量要是独立的,没有多重共线性等。

接下来,将准备好的数据输入Excel中。

进入数据分析对话框后,选择单因素方差分析,根据自己的分析需求,可以设置分析参数,比如比较的组别或因子,按照不同实验设置设定P值和alpha值等参数,最后点击确定,Excel就会根据我们的分析需求自动生成报告,包括F-检验和P-值等参数。

Excel中的单因素方差分析技术也具有一定的局限性要注意,它只能用于定量数据的分析,不能用于定性数据的分析,而且它不能用于多维数据分析,只能用于单维数据的分析。

此外,由于它的统计假设比较严格,不能适用于所有数据分析情形。

总之,Excel单因素方差分析是一种有效且易于使用的分析工具,能够用于在数据分析中帮助我们检验某个变量在不同分组或组之间的差异,比较实验组和对照组的差异,并用于测量和比较不同因素对总体样本值的影响程度,从而更好地判断因素之间的关联性。

但是,它也有一些局限性,在使用之前要仔细考虑,以确保最终的分析结果的准确性。

Excel中对数据进行单因素分析的操作方法

Excel中对数据进行单因素分析的操作方法

Excel中对数据进行单因素分析的操作方法
推荐文章
在Excle中如何快速分析数据?热度:HR如何使用数据分析Excel数据透视表热度: Excel回归分析需要注意的事项热度: Excel 回归数据分析的解答热度: Excel数据挖掘和统计分析是怎样的热度:单因素方差分析可以查看某个因素不同水平下对总体的影响,从而得出采用不同的方案,得出最佳效果。

今天,店铺就教大家在Excel 中对数据进行单因素分析的操作方法。

Excel中对数据进行单因素分析的操作步骤:
点击打开excel2010。

输入数据,以下图为列。

选取五种印染工艺,每种工艺进行四次试验,分析不同的工艺对缩水率是否有影响。

点击打开数据分析,选择单因素分析。

点击选定输入数据区域类型。

选择分组方式。

注意!这里选择的是列,不懂的话,请注意看题。

选择输出区域,这里随便你选定区域。

确定,得出分差分析表。

实验三 用Excel进行方差分析实验报告

实验三 用Excel进行方差分析实验报告
3.多重比较 采用q法,3种课程训练销售记录平均数多重比较表如下
3种课程训练平均销售记录多重比较表
课程 B课程 A课程 C课程
平均数 x i 2928 2228.8 1951.6
x i 1951 6 . 976.4 277.2
x i 2228.8 699.2
因为MSe 3992323, n 5, 所以标准误 x 为 . s
的提高无显著影响,不 同改革方
q0.01 6.93 5.95 5.41
LSR0.05 1.6996 1.5288 1.4280
LSR0.01 3.0356 2.6063 2.3698
进一步对改革方案各水 平平均经
3.多重比较
品种小麦收获量极显著高于B4品种,但B1、B2和B3品
方案
B2 B3
B1
式为
F值 1.61 20.49**
自由度df 均方MS 4 3.5245 3 44.8818 12 2.1902 19
SS B
1 1 x2j C 3 2 (20 an
2415655 2411208 444
SSAB SSAB SSA SSB 469
因为MSe 3992323, n 5, 所以标准误 x 为 . s
s x MSe / n 3992323 / 5 282.5712 .
q值与LSR值
dfe
12
秩次距 2 3
q0.05 3.08 3.77
q0.01 4.32 5.05
LSR0.05 870.3193 1065.2934
A2
单个观测值试验资料。A因素有5个水平,即a=5
b=5× 4=20个观测值。方差分析如下:

实验四 用EXCEL实现方差分析

实验四 用EXCEL实现方差分析
第五步:多重比较 先计算标准误SE ,再手工输入 SSRα值,然后编辑公式计算-L- 精S品R-- α值,如图。
《田间试验设计与统计》实验
用EXCEL实现方差分析
此部分数据存在于方差分析表之 前的汇总统计 (Summary)中
第六步:将处理名称及其对应的平均数复制到
所需位置,如图。
-- 精品--
《田间试验设计与统计》实验
-- 精品--
《田间试验设计与统计》实验
例4.2 有一包 括A、B、C、D、 E、F、G七个小 麦品种的品种比 较试验,G为对照 品种,随机区组 设计,重复3次, 小区计产面积 30m2,其产量(㎏ )见表4.2,试作分 析。
-- 精品--
-- 精品--
பைடு நூலகம்
《田间试验设计与统计》实验
例4.1 设有A、 B、C、D四个 大豆品种,其 中D为对照,采 用完全随机设 计进行比较试 验,5次重复, 小区产量(㎏)列 于 表 4.1 , 试 作 分析。
-- 精品--
用EXCEL实现方差分析
《田间试验设计与统计》实验
用EXCEL实现方差分析
第一步:打开一张工作表,并输入相应的数据, 如A2:F6。
输出区域:“$A$8”
第三步:在弹出的对话框中输入相应的参数,然后 再单击“确定”按钮,如图。
-- 精品--
《田间试验设计与统计》实验
用EXCEL实现方差分析
此值为F=6.1973时的概率值,它如果≤0.01,则处理间有极显著差异,
如果介于[0.05,0.01)之间,则有显著差异,否则无显著差异。
《田间试验设计与统计》实验
用EXCEL实现方差分析
实验四 用EXCEL进行方差分析
一、单因素方差分析 二、无重复两因素方差分析 三、有重复两因素方差分析

单因素方差分析-excel教程

单因素方差分析-excel教程

检验假设:
H0 : 1 2 ... r
r
考察统计量 SST
ni
2
Xij X
总离差平方和
i1 j1
经恒等变形,可分解为: SST SSA SSE
其中
r ni
2
SSA
Xi X
i1 j1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
观测值
消费者对四个行业的投诉次数
行业
零售业
旅游业
航空公司
家电制造业
1
57
68
31
44
2
66
39
49
51
3
49
29
21
65
4
40
45
34
77
5
34
56
40
58
6
53
51
7
44
1. 分析四个行业之间的服务质量是否有显著差 异,作出这种判断需要检验这四个行业被投 诉次数的均值是否相等
2. 如果它们的均值相等,就意味着“行业”对 投诉次数是没有影响的,即它们之间的服务 质量没有显著差异;
i1 j1
▪ 前例的计算结果:SSE = 2708
构造检验的统计量
(三个平方和的关系)
▪ 总离差平方和(SST)、误差项离差平方和
(SSE)、水平项离差平方和 (SSA) 之间的关 系
k ni
k
k ni
xij x 2 ni xi x2
xij xi 2
i1 j1
i1
i1 j1
SST = SSA + SSE ▪ 前例的计算结果:

实验 利用EXCEL软件进行方差分析(一)

实验 利用EXCEL软件进行方差分析(一)

实验利用EXCEL软件进行方差分析(一)一、实验目的学会在计算机上利用EXCEL进行单因素(单向分组资料)、无重复双因素(如单因素随机区组或各个处理组合只有一个观察值)试验结果的方差分析。

二、实验器具计算机三、实验要求每位同学一台计算机独立完成操作,并结合习题按照操作情况写出实验报告。

四、实验步骤(一)单因素(单向分组资料)的方差分析1. 打开计算机点击“开始” 选择“程序” 选择“Microsoft office” 选择“excel”,进入excel的界面;2. 输入资料数据;表:水稻不同药剂处理的苗高(cm)药剂苗高观察值A 18 21 20 13B 20 24 26 17C 10 15 17 14D 28 27 29 323. 点击“工具” 选择“数据分析” 选择“单因素方差分析” 点击“确定”;4. 将光标置于输入区域,用鼠标将数据所在区域选定;5. 分组方式点中“行”,用鼠标选定任意区域(单元格,非数据所在区域),然后点“确定”,即可得到结果。

(二)无重复双因素(如单因素随机区组或各个处理组合只有一个观察值)试验结果的方差分析1. 打开计算机点击“开始” 选择“程序” 选择“Microsoft office” 选择“excel”,进入excel的界面;2. 输入资料数据,例如;表:小麦品比试验(随机区组)的产量结果(kg)品种区组T t ⅠⅡⅢA 10.9 9.1 12.2 32.2B 10.8 12.3 14.0 37.1C 11.1 12.5 10.5 34.1D 9.1 10.7 10.1 29.9E 11.8 13.9 16.8 42.5F 10.1 10.6 11.8 32.5G 10.0 11.5 14.1 35.6H 9.3 10.4 14.4 34.13. 点击“工具” 选择“数据分析” 选择“无重复双因素方差分析” 点击“确定”;4. 将光标置于输入区域,用鼠标将数据所在区域选定;5. 将光标置于输出区域,用鼠标选定任意区域(单元格,非数据所在区域),然后点“确定”,即可得到结果。

用excel进行方差分析的实验报告

用excel进行方差分析的实验报告

用excel进行方差分析的实验报告实验四:用excel进行方差分析的实验报告实验目的:学会在计算机上利用excel进行单因素方差分析和有交互的双因素分析以及无交互的双因素分析,实验背景:方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。

一个复杂的事物,其中往往有许多因素互相制约又互相依存。

方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。

方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。

对变差的度量,采用离差平方和。

实验内容:实验(1):单因素方差分析条件:单因素方差分析是对成组设计的多个样本均数比较,所以对数据格式有特殊要求,因素的不同水平作为表格的列(或行),在不同水平下的重复次数作为行(或列)。

例1:以下数据来自2009年中国统计年鉴,各地区农村居民家庭平均每人生活消费支出,按不同项目分组的不同地区:其中,1代表生活消费支出合计,2代表食品,3代表衣着,4代表居住, 5代表家庭设施及服务, 6代表交通和通讯, 7代表文教娱乐用品及服务,8代表医疗保健, 9代表其他商品及服务各地区农村居民家庭平均每人生活消费支出 (2009年)单位:元地区项目地区生活消费食品衣着居住家庭设备交通和文教娱乐医疗保健其他品支出合计及服务通讯用品及服务及务地区 1 2 3 4 5 6 7 8北京8897.59 2808.92 654.36 1798.88 528 1132.09 960.41 867.87 14天津4273.15 1848.11 324.63 674.67 187.83 481.27 371.85 299.79 8河北3349.74 1195.65 217.82 796.62 170.4 350.92 263.53 289.27 6山西3304.76 1224.6 283.2 584.07 156.27 324.89 416.94 240.94 7内蒙古3968.42 1578.57 271.88 609.29 148.03 466.34 390.85 416.87 8辽宁4254.03 1563.33 335.93 793.91 185.5 416.41 437.79 409.64 11吉林3902.9 1371.12 286.97 737.07 168.36 355.99 376.76 511.5 9黑龙江4241.27 1331.07 345.69 946.84 161.03 427.35 496.42 434.25 9上海9804.37 3639.14 496.14 2102.96 480.62 1212.38 942.76 738.94 19江苏5804.45 2275.28 306.62 969.76 286.37 691.56 818.45 322.99 13浙江7731.7 2812.39 473.11 1488.95 374.31 968.17 843.34 609.07 16安徽3655.02 1494.19 203.37 813.12 229.66 302.23 312.05 227.1 福建5015.72 2304.14 291.72 821.21 260.68 570.24 421.69 219.02 12江西3532.66 1609.2 162.58 725.11 181.91 295.76 254.77 232.78 7山东4417.18 1618.66 265.59 945.81 273.77 533.55 399.95301.55河南3388.47 1220.36 225.64 875.83 203.81 310.11 234.01 242.87 7湖北3725.24 1668.35 195.45 702.62 229.32 307.22 281.68 236.31 10步骤:(1)、在excel的分析工具库中中选择“方差分析:单因素方差分析”指定相应的数据区域和显著性水平,点击“确定”后输出最终输出结果:表一方差分析:单因素方差分析SUMMARY组观测数求和平均方差列 1 32 129281.5 4040.048 3465440列 2 32 52249.75 1632.805 428309.6列 3 32 7951.16 248.4738 15408.02列 4 32 25251.6 789.1125 162323.1列 5 32 6519.28 203.7275 10263列 6 32 13547.29 423.3528 66285.85列 7 32 11279.63 352.4884 55136列 8 32 9809.81 306.5566 31281.44列 9 32 2716.05 84.87656 1665.067 表一是各组数据的描述统计指标。

单因素的方差分析和LSR法多重比较Excel表格计算

单因素的方差分析和LSR法多重比较Excel表格计算

1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。

3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。

已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用Excel进行数据分析:单因素方差分析
什么是方差分析?什么又是单因素方差分析?
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”
一个复杂的事物,其中往往有许多因素互相制约又互相依存。

方差分析的目的是通过数据分析找出对该事物有显着影响的因素,各因素之间的交互作用,以及显着影响因素的最佳水平等。

方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。

单因素方差分析,顾名思义,就是基于一个因素分组研究,比较该因素的效应。

一、应用场景
基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
|患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
二、操作步骤
1、选中数据,点击功能区数据—>数据分析—>方差分析:单因素方差分析
注:本操作需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,可以参考该专题文章的第一篇《用Excel进行数据分析:数据分析工具在哪里?》。

2、在弹出的选项框里面,进行如下设置
3、点击确认,得到如下结果
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述
其围绕总均数的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。

而且:SS总=SS组间+SS组内v总=v组间+v组内
如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则,则说明各组均数间1值接近F相比较,若1值)与F方差分析就是用组内均方去除组
间均方的商(即.
的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。

实际应用中检验假界值表(方差分析用)获得。

F值大于特定值的概率可通过查阅F设成立条件下。

相关文档
最新文档