电磁学习题答案1-3章
《电磁学》第三版的思考题和习题答案
电磁学习题案1-3章
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E ϖϖϖ+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220max 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E ϖϖϖ+=ϖ+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθaπεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==aπεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
电磁学第三版思考题与习题解答
电磁学第三版(梁灿彬)思考题与习题解答第一章 静电场的基本规律思考题1.1答案: (1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上E⃗ 大小相等。
1.2 答案: 利用对称性分析,垂直轴的分量相互抵消。
1.3答案:(1)× 没有净电荷 ;(2)×; (3)×;(4)√;(5)×;(6)×;(7)×。
1.4答案:无外场时,对球外而言是正确的。
1.5答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。
场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它们会产生一种电场;n 个带电导体放在一起时,由于静电感应,导体上的电荷分布发生变化,这时,应用叠加原理应将各个导体发生变化的电荷分布“冻结”起来,然后以“冻结”的电荷分布单独存在时产生的电场进行叠加。
1.6答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能 。
1.7答案:222121q q φφφφεε-==+,;113131+ -q q φφφφεε==,;134410+0 -q φφφφε==,。
1.8答案:(1)× ;(2)×; (3)×;(4)×;(5)√;(6)×。
1.9答案:n VE en∂=-∂ ,例如匀强电场;E 大,电势的变化率就大,并非一定121122010101.+.=4424R q E dl E dl rR R R πεπεπεπε∞⎝⎰⎰.0E dl =,0n VE e n∂=-=∂。
1.14证明:设s 面上有场强平行于分量,补上另一半球后球内各点的总场强应为零,可见s 面上不能有场强的平行分量,s 面上只有场强垂直分量,故s 面上应为等势面。
习题1.2.1解:(1)设一个电量为q 1,则q 2=4q 1,由公式12204q q F r πε=可以得到: ()2122041.64 5.010q πε-=⨯解之得: q 1=±3.3×10−7(C), q 2=1.33× 10−6(C) (2)当r=0.1时,所受排斥力为:12204q q F r πε==0.4(N ) 1.2.2解:设其中一个电荷电量为q ,则另一个电荷电量为Q -q ,由库仑力 ()2q Q q F k r -= 可知,当()220dF k Q q dq r =-=,即:2Qq = 时两电荷间的斥力最大,所以两者电量均为2Q。
电磁学习题答案
电磁学习题答案第一、二章静电场(一)填空题0111 引,引,引,不受静电0211 带电小球不是点电荷,库仑定律不适用0322 小0423 1∶50522 q=Q/20622 小0721 移到大地,不会移动0821 不会改变0911 同号等量1023 物质在引力场中1111 电力线的方向是电场的方向,即正电荷受力的方向而不是运动方向和轨迹1211 空过高斯曲面的电通量,电场E1311 不一定为零,必为零1423 不会成立这时 ∮E·dS=∫1/4π0q/rn1/ε0qrn-21522 能,不能1621 q/(6ε),在体内时不变,体外为零1723 恒为零,恒为一定值,由定值变为零1823 1/4πε4Qa21924 5/22022 2q/(4πεR2)2122 不能,能2222 能,不能2322 无限远或大地,整机外壳,并不一定相等2422 零,常数,2524 g,gh,mgh2611 -q2724 4.0×106N/C,02824 7.1×10-5C·m-22923 16∶253024 6.9×10-19J 、3112 升高3222 有,有,无,有3322 均匀分布,仍然为均匀3422 相等3523 rA ∶rB3624 2md/(et 2),2md 2/t 2 3722 1∶53824 EM <EN3923 W0/εr4024 600V(二)选择题0132 (B) 0222 (C) 0322 (B) 0422 (B)0523 (D) 0622 (A) 0724 (D) 0824 (D)0924 (D) 1023 (B) 1122 (B) 1222 (B)1321 (C) 1421 (C) 1521 (C) 1622 (C)1724 (D) 1834 (D) 1921 (D) 2022 (A)2123 (C) 2224 (C) 2322 (B) 2424 (CD)2523 (C) 2624 (D) 2724 (C) 2824 (C)2923 (C) 3034 (C) 3122 (A) 3222 (C)3322 (A) 3422 (B) 3523 (C) 3624 (C) 3734BF,D,AC 3824 (D) 3924 (C) 4024 (A)第三章稳恒电流(一)填空题0111 非保守力非静电场0211 非静电力将单位正电荷在电源内部由负极移到正极所作的功0322 不一定相同,不同,相同0423 x=l/2(1±n-4)0532 e2/(4πr0621 2nevS0721 2I/30821 l/2和l/20922 60V1034 92.5V1121 1159kW1223 1∶3,1∶1,3∶161333 并,2.71424 U3>U2>U1,相等,相等1534 闭路式,因为开路式当开关在触点间跨越时可能烧坏表头1622 灯泡点亮时电阻变大1722 零,增大,R>r时将减小,R<r时将增大,R=r时功率最大1822 新旧电池的电动势变化不大而内阻变化很大,故输出功率大大减小 1922 nε,nr2022 ε,r/n(二)选择题0122 (B) 0223 (C) 0321 (C) 0423 (C) 0522 (C) 0621 (B) 0722 (D) 0823 (B) 0922 (A) 1033 (D) 1134 (C) 1234 (B)1334 (A) 1424 (D) 1534 (B) 1622 (D)1723 (B) 1823 (C) 1923 (C) 2023 (B)第四、五章稳恒磁场(一)填空题0111 在与x轴的两个相交点处B=0,在与y轴相交的两点处B=μ0/4πidR2,但分别沿k和-k方向0211 μI/2R0312 μI0411 沿x方向0511 因引力而靠近0612 一方面朝两环电流方向相同的方位转动,同时相互平动靠近0711 电场或磁场,磁场,电场0811 相等0922 μ0I/(2π)1022 2μ0I/(πa)1121 零,μI/2πR (1+π/4),零1224 弱1311 零1411 μ0nI,μ0nI1512 能,不能1623 μ0Ir2πr2 μI/2πr ,零1722 无源有旋1821 μev/4πr21922 靠近导线平移,转动且平移靠近导线,转动且平移靠近导线2024 零2122 零,不一定为零2234 大,不变2324 右2424 ne(IB/b)2523 2mEk/(qr)2623 以半径R=mv2/(qvB)作圆周运动;以较小的半径反方向作圆周运动 2722 收缩变短2823 自上而下俯视为逆时针2932 向下偏移3024 vBd,上边为正极板,下边为负极板3122 B和M都与外磁场B0同方向,B和M都与外磁场B反方向3234 磁化的铁钉与磁场间的相互作用能(磁势能),铁钉接近磁铁时磁势能减小而转化为铁钉动能3322 弹簧伸长,插入部分变长,瞬间上升而随即又伸长插入螺线管中 3422 相同电流,不变3522 加一个反向磁场,或敲击震动磁铁,或加热使温度升高到居里点以上3622 加一块衔铁将两极闭合,将两条磁铁的异性磁极靠在一起3721 南,指向地面3821 抗磁质,顺磁质3921 ②,①4034 下降,下降,上升,上升,上升,吸住(二)选择题0121 (D) 1124 (A) 2121 (C) 3121 (B)0222 (D) 1223 (C) 2221 (B) 3234 (B)0324 (B) 1334 (BC) 2322 (C) 3323 (D)0421 (D) 1433 (D) 2422 (A) 3424 (C)0522 (D) 1522 (B) 2522 (A) 3534 (B)0634 (B) 1623 (AB) 2622 (D) 3622 (B)0723 (C) 1724 (D) 2724 (C) 3722 (A)0822 (BD) 1823 (B) 2833 (C) 3821 (A)0922 (B) 1923 (C)(B) 2933 (B) 3922 (B)1021 (D) 2023 (C) 3032 (A) 4033 (BCDA)第六章电磁感应(一)填空题0111 先加速最后以一恒速度0211 一个反抗拉力0322 垂直导线而远离0422 受到较大阻力而很快停下来,受到的阻力减小而好久才能停住 0523 变化的B在薄片上产生涡电流,由椤次定律知,涡流磁场总是阻碍原磁场变化,而具屏蔽作用0621 0,Blv,bωl 2/2,00721 0.1,a→d→c→b→a0834 右0921 增大1022 ωBR2/21122 0.05T1222 电能1323 ε/Bl1422 产生电流而不运动1523 μ0N21a2/2R,μ0N22a2/2R,μN1N2a2/2R1621 使二线圈的半径基本相等,同轴紧套在一起1721 两线圈互相垂直放置1821 同轴顺向紧密连接1921 先将电阻丝折成双线再绕在绝缘筒上而使电流相反 2021 交流电源,减少,焦耳热(二)选择题0121 (B) 0632 (AD) 1124 (D) 1623 (C) 0223 (D) 0732 (BD) 1223 (D) 1723 (D)0323 (A) 0824 (C) 1323 (D) 1823 (C)0421 (A) 0934 (C) 1423 (C) 1924 (D)0534 (C) 1021 (B) 1523 (D) 2024 (B)第七章电磁场和电磁波(一)填空题0111 涡旋电场和位移电流0211 变化的电场,电位移通量的变化率dφD/dt0312 位移电流产生于变化的电场且无焦耳热,而传导电流产生于电荷的运动且有焦耳热0422 是横波,S=E×H,E和H同位相、同周期变化,εE=μH2, v=(εμ)-1/2等0533 独立客观存在,有能量动量,有粒子性,与实物粒子可相互转换等 0622 传导,位移,传导0722 变化的电场和变化的磁场0833 不会产生,仍不产生0922 发射电磁波必须是高频的开放型振荡电路1033 实验规律中直接归纳,积分形式通过数学推演1121 3×1018 ,5. 09×1014 , 2.19×108 ,1.07×106Hz1221 2.0×108 m/s1321 7.0×10-2A1421 3.33×10-12T1522 3.95×1026W1623 1.74×10-2V/m, 5.8×10-11T1724 2.68×102W/m21824 3m,108Hz,2.0×10-9cos〔2π×108(t-x/c)〕1924 4.3×10-13~3.9×10-10F2023 1.6×10-5W/m2(二)选择题0121 (AC) 0322 (AC) 0522 (C) 0721 (D)0222 (AD) 0422 (AD) 0621 (D) 0821 (D)0924 (D) 1223 (A) 1524 (C) 1824 (D)1024 (A) 1323 (C) 1622 (C) 1924 (B)1123 (B) 1422 (C) 1723 (B) 2034 (D)。
电磁学答案第1章
第一部分 习题 第一章 静电场基本规律1.2.1在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们个距2510-⨯米时,相互排斥力为1.6牛顿。
问它们相距0.1米时,排斥力是多少?两点电荷的电量各为多少?解:设两点电荷中一个所带电量为q ,则另一个为4q :(1) 根据库仑定律:r r q q K F ˆ221 = 得:212221r r F F = (牛顿))()(4.01010560.12122222112=⨯⨯==--r r F F (2) 21224r q K F =∴ 2194221211109410560.14)()(⨯⨯⨯⨯±=±=-K r F q =±3.3×710- (库仑) 4q=±1.33×810- (库仑)1.2.2两个同号点电荷所带电量之和为 Q ,问它们带电量各为多少时,相互作用力最大?解: 设其中一个所带电量为q ,则一个所带电量为Q-q 。
根据库仑定律知,相互作用力的大小:2)(rq Q q K F -= 求 F 对q 的极值 使0='F即:0)2(=-q Q r K∴ Q q 21=。
1.2.3两个点电荷所带电量分别为2q 和q ,相距L ,将第三个点电荷放在何处时,它所受合力为零?解:设第三个点电荷放在如图所示位置是,其受到的合力为零。
图 1.2.3即:41πε20xq q = 041πε )(220x L q q - =21x2)(2x L - 即:0222=-+L xL x 解此方程得:)()21(0距离的是到q q X L x ±-= (1) 当为所求答案。
时,0)12(>-=x L x (2) 当不合题意,舍去。
时,0)12(<--=x L x1.2.4在直角坐标系中,在(0,0.1),(0,-0.1)的两个位置上分别放有电量为1010q -=(库)的点电荷,在(0.2,0)的位置上放有一电量为810Q -=(库)的点电荷,求Q 所受力的大小和方向?(坐标的单位是米)解:根据库仑定律知:1211ˆr r Qq K F = )ˆsin ˆ(cos 11211j i rQ q Kαα-= 2281092.01.01010109+⨯⨯⨯=--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i =j iˆ100.8ˆ1061.187--⨯-⨯ 如图所示,其中 21212111)(cos y x x +=α21212111)(sin y x y +=α同理:)ˆsin ˆ(cos 222212j i r Q q K F αα+⨯= 2281092.01.01010109+⨯⨯⨯=--×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i=j iˆ100.8ˆ1061.187--⨯-⨯ )(ˆ1022.3721牛顿iF F F -⨯=+=1.2.5在正方形的顶点上各放一电量相等的同性点电荷q 。
电磁学练习题积累(含部分答案)
一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
电磁学习题答案1-3章
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220m a x 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E +=+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθa πεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==a πεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
电磁学第三章课后习题答案
电磁学第三章课后习题答案电磁学第三章课后习题答案电磁学是物理学中的重要分支,研究电荷和电流之间相互作用的规律。
在电磁学的学习过程中,习题是巩固知识和提高能力的重要途径。
本文将为大家提供电磁学第三章的课后习题答案,希望能对大家的学习有所帮助。
1. 一个导线的长度为l,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × (ρl/A)。
2. 一个导线的电阻为R,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,导线两端的电势差为V = I × R。
3. 一个导线的电阻为R,电流为I,导线的长度为l,电阻率为ρ,横截面积为A。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × R = I × (ρl/A)。
4. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电流为I。
求两个电阻器上的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,第一个电阻器上的电势差为V1 = I × R1,第二个电阻器上的电势差为V2 = I × R2。
5. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电阻器之间的电势差为V。
求电流的大小。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,V = I × (R1 + R2)。
解方程可得电流的大小为I = V / (R1 + R2)。
6. 一个电路中有两个电阻器,电阻分别为R1和R2,电流为I。
求电路中的总电阻。
答案:电路中的总电阻可以通过电阻器的并联和串联来计算。
如果电阻器是串联的,总电阻等于各个电阻器的电阻之和,即R = R1 + R2。
电磁学习题答案
电磁学习题答案电磁学习题答案第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 那方面内容(E 为电场强度的大小,U 为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()5) 已知一高斯面所包围的体积内电量代数和0=∑iq ,则可肯定()A 、高斯面上各点场强均为零 C 、穿过整个高斯面的电通量为零B 、穿过高斯面上每一面元的电通量为零 D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6qε B 、12q ε C 、24q ε D 、48q ε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D )11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D)12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 相等,电势不相等答案(C )20)在边长为a 正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为()A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q0πε D 、R22Q 0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2QA 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )电势U为()A、r4QQ21πε+B、11R4Qπε+22R4QπεC 、0 D、11R4Qπε答案(B)22)真空中一半径为R的球面均匀带电为Q,,在球心处有一带电量为q的点电荷,如图设无穷远处为电势零点,则在球内离球心O距离为r的P点处的电势为()A、r4QπεB、)RQrq(41+πεC、r4qQπε+D、)RqQrq(41-+πε答案(B)23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U将()A、E不变,U不变 B、E不变,U改变 C、E改变,U不变 D、E改变,U也改变答案(C)24)真空中有一电量为Q的点电荷,在与它相距为r的A点处有一检验电荷q,现使检验电荷q从A 点沿半圆弧轨道运动到B点,如图则电场场力做功为()A、q2rr4Q22⋅π⋅πεB、rq2r4Q2⋅πεC、rqr4Q2π⋅πεD、0 答案(D)25)两块面积为S的金属板A 和B彼此平行放置,板间距离为d(d远远小于板的线度),设A板带电量1q, B 板带电量2q,则A,B板间的电势差为()A、S2qq21ε+B、dS4qq21⋅ε+C、dS2qq21⋅ε-D、dS4qq21⋅ε-答案(C)26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出()A、cE>>baEEcU>>baUU C 、cE>>baEEcU<<baUUB、cE<<baEEcU<<baUU D、cE<<baEEcU>>baUU答案(A)27)面积为S的空气平行板电容器,极板上分别带电量为q±,若不考虑边缘效应,则两极板间的相互作用力为()A、Sq2ε-B、S2q2ε-C、22S2qεD、22Sqε答案(B)28)长直细线均匀带电。
电磁学第二版习题答案第三章
(1)求外电场作用于偶极子上的最大力矩; (2)把偶极距从不受力矩的方向转到受最大力矩的方向,求在此过程中外电场 5 力所做的功。
解:(1)T = p ⋅ E ,T = P ⋅ E sinθ
当θ = π 时,取最大,T = P ⋅ E = 1.0×10−6 × 2.0×105 = 2×10−3 NM 2
解:由σ1s1 + σ 2s2 = Q …………………..(1)
即: σ ′ nˆ = − σ 0 + σ ′ nˆ
ε0x
ε0
σ0
=
−σ ′(1 x
+ 1)
解法二:用ξ 与 D 的知识,σ ′ = (P介 − P金 ) ⋅ nˆ介 = − p
∵
p=
xε0E =
xε 0
D ε0ε r
=xD εr
=
xσ0 εr
∴
σ0
=
−
σ ′εr x
= − σ ′(1+ x) x
当 x = εr −1
=
−q2 E−
+
q1E+
=
2q2 p1
4πε
0
(r
+
l2 2
)3
−
2q2 p1
4πε
0
(r
−
l2 2
)3
⎡
⎤
=
2q2 p1 4πε 0 r 3
⎢1
⎢ ⎢ (1+
l2
)3
−
1 (1− l2
)3
⎥ ⎥ ⎥
⎣ 2r
2r ⎦
将上式方括号内按马克劳林级数展开取前两项: f (l2 ) = f (0) + f ′(o)l2
《电磁场与电磁波》课后习题解答(全)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁学第三版答案
3
)2
qR
O
P
x
x
⑧ 均匀带电圆平面轴线上一点
x
E (1
)
2 0
x2 R2
第一章 静电学的基本规律
6
电磁学
习题课
例1 无限长均匀带电平面 已知: b a d
求: P、Q 两点的场强
y
解 P 点(与平面共面)
dq
沿 y 方向放置的无限长直线
dq dxd y dq dx
dy
d q 在P点产生的
0
rR
rR
2 π0r
r
2π0R2 r R
rR
2 π0r
第一章 静电学的基本规律
4
电磁学
⑤ 均匀带电球面
q RO
⑥ 均匀带电球体
习题课
0
rR
E
q
rR
4 π0r2
qr
E
4
π
q
0
R
3
rR
4 π0r2 r R
第一章 静电学的基本规律
5
电磁学
习题课
⑦ 均匀带电圆环轴线上一点
E
4
π0
qx (x2
R2
4
q
π
0l
(3)把单位负电荷从D点沿 DCO 移到O点,电场力作的功。
WDCO
q0 (D
O )
q
6 π0l
第一章 静电学的基本规律
15
电磁学
习题课
C
(4)把单位正电荷从D点 沿任意路径移到无穷远,
q •
q •
电场力作的功。
AO B D
x
2l
l
(4)
q0 1
电磁学答案第一章
ò
2p
0
d =
Qr 4pe 0 ( R 2 + r 2 ) 2
3
场
由于线和圆环之间的库伦力是一对相互作用力,故只需考虑线受力,积分得:
F =ò Qr dr = 3 Q 8pe 0
0
4pe 0 ( R 2 + r 2 ) 2
ò
d (R 2 + r 2 ) (R 2 + r )
3 2 2
0
=
Q 4pe 0 R
由对称性可知电场强度大小只与该点到平板层中间层的距离r有关社中间层过y轴且垂直于xdxdx125pb13203083余阳阳ar1rr2由高斯定理pepe3264lnlnpepe64ln104010126pb13203009圆柱面场强分布由高斯定理容易得到又小块电荷自身产生的场强同样易得可以推出其余电荷在此产生的场强1圆筒面均匀带电则由题中条件可求得
. × (
×
=50kg,n ≈ 1. 505 ×10
∙ )
则:F电 = k
= 9 ×10 ×(
×
×1. 505 ×10 ×1. 6 ×10
)
≈ 5. 219 ×10 N F万 = G
电 万
= 6. 67 ×10
×50 = 1. 6675 ×10 N
≈ 3. 130 ×10 10000F 电 ,设偏差为α
( ( ) ) ( )
,
。
仿照天体的椭圆轨道模型,可以认为中心天体质量为: = 半长轴 ,运行时间 。 根据万有引力定律即开普勒定律知:最终碰撞的时间 t=
( ) ( )
,
.
1-12(PB13000808 刘通) 解: 在电子流参考系下看:不妨设电子流宽度为 d,则面密度为σ = nde, 电场强度E = σ ÷ 2ε = 电子受力 加速度a = , . = 2. 50 ×10 s,x=vt=2.5cm. ,
电磁学第三章习题答案
第三章3.1 解:因螺绕环内的磁感应强度I n B 0μ=,所以副线圈中的感应电动势为VdtdI S dtd Sdtd 30103.1nN B N N --⨯===Φ=με副副副感应电流为A103.6RI 4-⨯==ε3.2 解:(1)设线圈发现→n 与→B 的夹角为零度时作为计时的起点,则t 时刻线圈中的感应电动势为tNBS dt t B d dt d ωωωεsin )cos S (-N-N==Φ=由此可以看出,当2t πω=或23t πω=时,即线圈法线与地磁场→B 的夹角为2π或23π时,感应电动势的值最大,此时ωεNBS m=(2)97N==ωεBS m 匝3.3 解:因距直导线为r 处的ri πμ2B 0=,所以(1)穿过回路ABCD 的磁通量t I a b l ldr riS d B basωπμπμsin ln 22000⎪⎭⎫⎝⎛==⋅=Φ⎰⎰⎰→→(2)回路ABCD 中的感应电动势 tI ab l dtωπωμεcos )(ln2d 00-=Φ-=3-5解:设t=0时,线圈与直导线处于同一平面内。
t 时刻俯视线圈与导线的相对位置如图3-19所示。
此时,线圈的有效面积是宽为AB 长为2a 的与长直导线共面的矩形面积。
穿过此有效面积的磁通量t t ab b a t ab b a b Ia tt ωωωπωμsin cos 21cos 21d )(d ε222220⎪⎭⎫⎝⎛-++++=Φ-=3-10解:设l 正方向如图3-23所示,则ac 段产生的感应电动势Vbc vB l d B l d B cbba30109.160cos 0)()(-→→→→→→⨯=+=⋅⨯+⋅⨯=⎰⎰ννε故感应电动势的方向为c a →,即c 点的电位高。
所以 V3oc 109.1U -⨯-=3-13解:(1)a,b 间的感应电动势22222121)(NBRR N B R B ldl B l d B d RLbaππωωυεε=⋅⋅===⋅⨯==⎰⎰⎰→→→(2)因ε的方向从轮心指向边缘,故在外电路上,I 的方向为b 指向a 。
电磁学第一章习题答案
第一章 静电场习题答案1-1 氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是5.29×10-11m 。
已知质子质量m p =1.67×10-27kg ,电子质量m e =9.11×10-31kg ,电荷分别为±e=±1.60×10-19C ,万有引力常量G=6.67×10-11N.m 2/kg 2。
(1)求电子所受质子的库仑力和引力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。
答:(1)设电子所受的库仑力为F ,根据库仑定律,其大小()()N r q q F 8211219922101023.81029.51060.11099.841---⨯=⨯⨯⨯⨯=⋅=πε设电子所受的万有引力为f ,根据万有引力定律,其大小()N r mM G f 4721127311121063.31029.51067.11011.91067.6-----⨯=⨯⨯⨯⨯⨯⨯=⋅= (2)394781027.21063.31023.8⨯=⨯⨯=--f F (3)设电子绕核做圆周运动的速度为v ,因为F f <<,所以可认为向心力就是库仑力F ,根据Rv m F 2=向得s m m RF v /1019.21011.91029.51023.8631118⨯=⨯⨯⨯⨯==---向 1-3 答:(1)它们之间的库仑力为()()N r q q F 4.14100.41060.11099.84121521992210=⨯⨯⨯⨯=⋅=--πε(2)每个质子所受的重力为:N Mg P 26271064.18.91067.1--⨯=⨯⨯==2626108.81064.14.14⨯=⨯=-P F 所以P F >> 1-5 答:设油滴的电量为q ,它受的电场力和重力分别为F 和P ,由F =P ,即mg Eq =,得()C E mg q 19563361002.81092.18.91010851.01064.114.334---⨯=⨯⨯⨯⨯⨯⨯⨯⨯== 考虑到电荷的正负,C q 191002.8-⨯-=1-7 根据经典理论,在正常状态下,氢原子中电子绕核做圆周运动,其轨道半径为m 111029.5-⨯,已知质子电荷为C e 191060.1-⨯=,求电子所在处原子核(即质子)的电场强度。
电磁学第一章答案
§2 电场 电场强度
因为l r, 且P ql qli , 所以得
1 2ql 1 2P EA i 3 4 0 r 4 0 r 3 2求EB : q和 q在B点产生的场强E和E
分别为
E
y
E
s?d点电荷位于球面中心204rqe???????sssrqsed4d20e???0e?q?r高斯定理库仑定律电场强度叠加原理专业资料第一章静电场第一章静电场353高斯定理点电荷在任意封闭曲面内??cosd4d20esrq?20d4rsq??00ed4??qq???s?ds?ds?d?rs?drsdd2?其中立体角专业资料第一章静电场第一章静电场363高斯定理q点电荷在封闭曲面之外2ds?2e?0dd111???se??222dd0es???0dd21??0d???sse??1ds?1e?专业资料第一章静电场第一章静电场373高斯定理由多个点电荷产生的电场???????21eee???????siissese????dde????????外内isiisisese????dd???????内内0e1diiisiqse???0d
G 6.67 1011 N m2 kg2
Fe 39 2.27 10 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第一章 —— 静电场 10
§1 静电的基本现象和基本规律
4、静电力的叠加原理: 作用于某电荷上的总静电力等于其他点电荷单独存在时作 用于该电荷的静电力的矢量和。 离散状态
Q
P E0
Q
P q
F E0 q
第一章 —— 静电场 14
电磁学答案第3章
电磁学答案第3章第三章 静电场的电介质3.2.1 偶极矩为p →=q l →的电偶极子,处于场强为E 的外电场中,p →与E →的夹角为θ。
(1) 若是均匀的,θ为什么值时,电偶极子达到平衡?(2)如果E 是不均匀的,电偶极子能否达到平衡? 解: (1)偶极子受的力:F + =F _=qE因而F →+=-F →_∴偶极子受合力为零。
偶极子受的力矩T =p ⨯E即 T=qEsin θ当 T=0时,偶极子达到平衡,∴ pEsin θ=0p →≠0 E →≠0 ∴θ=0 , πθ=0这种平衡是稳定平衡。
θ=π是不稳定平衡。
(2) 当E →不是均匀电场时,偶极子除受力矩外还将受一个 力(作用在两个点电荷的电场力的合力)。
所以不能达到平衡。
3.2.2 两电偶极子1p→和2p →在同一直线上,所以它们之间距r比它们自己的线度大的很多。
证明:它们的相互作用力的大小为F=402123rp p πε,力的方向是:1p→与2p→同方向时互相吸引,反方向时互相排斥。
证: 已知当r >>l 时,偶极子在其延长线上一点的场强:E →=302rpπε→当 1p →与2p →同方向时,如图2p →所受的力的大小:+→F =E →q=r lr q p ∧+3201)2(2πε-→F = -E→q=r lr q p ∧--3201)2(2πε∴F→= +→F +-→F =r l r l r q p ∧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+323201)2(1)2(12πε =r l r l l r q p ∧⎥⎦⎤⎢⎣⎡---⋅3222322201)2()2(2262πε略去 422l 及 832l 等高级小量。
F→=-r r qlp ∧402146πε= -r r pp ∧402123πε当 1p →与2p →反方向时(如图),同理: F→= r l r l r q p ∧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+323201)2(1)2(12πε =012πεq p ⨯r lr l l r ∧-+32223222)4()2(23略去高级小量得:F→=r rP P ∧402123πε3.2.3 一电偶极子处在外电场中,其电偶极矩为 ,其所在处的电场强度为 。
电磁学答案
第一章 1. 真空中两个点电荷q1=1.010-10 库仑, q2=1.010-10 库仑, 相距100毫米,求q1 受的力。 解:依库仑定律,q1受力大小为:
q1q2 1.0 10 9 1.0 10 F 9.0 10 2 4 0 r (100103 ) 2
(2) α粒子的加速度为:
2
F 7.8410 29 2 a 1 . 17 10 ( m / s ) 27 m 6.6810
6. 铁原子核里两质子间相距4.0 10-15米,每个质子带电 e=1.60 10-19库,(1)求它们之间的库仑力;(2)比较这 力与每个质子所受重力的大小。 解:(1)它们之间的库仑力大小为:
E y E1 y E 2 y E1 cos600 E 2 cos600 2.70 106
E y E1 y E 2 y E1 si n600 E 2 si n600 q1 6 o 9.0 10 3
E E 2 x E 2 y 3.110 6 伏 / 米
电子的万有引力大小为:
Fe 8.2310 39 2.27 10 47 F 3.6310
8
(倍)
5. 卢瑟福实验证明:当两个原子核之间的距离小到10-15米时, 他们之间的排斥引力仍遵守库仑定律。金的原子核中有79个 质子,氦的原子核(即α粒子)中有2个质子。已知每个质子 带电e=1.60 10-19库,α粒子的质量为6.68 10-27千克。当α 粒子与金核相距为6.9 10-15米时(设这时它们都仍可当作点 电荷),求(1)α粒子所受的力;(2) α粒子的加速度。
E
r1 o 20cm r2
y
x
o
q2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220max 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E +=+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθaπεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==aπεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
由 θθa R θsin cos cot ==得a θθR sin cos =∴ E 有极大值时a a θθR 22sin cos 22==而2023220max 33)cos (cos 21aπεq θθa q πεE =-=5、内半径为R 1,外半径为R 2的环形薄板均匀带电,电荷面密度为σ,求:中垂线上任一P 点的场强及环心处O 点的场强。
解:利用圆环在其轴线上任一点产生场强的结果2/3220)(4R x Qx E +=πε 任取半径为r ,宽为dr 的圆环,其电量为 dq = σds = 2πr σdr圆环在P 点产生的场强为:2/32202/3220)(2)(4r x εxrdr σr x πεxdq dE +=+=环形薄板在P 点产生的总场强为:)11(2222212021R x R x εx σdE E R R+-+==⎰ 若σ > 0,则E 背离环面;若σ < 0,则E指向环面。
在环心处x = 0,该处的场强为 E 0=06、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:在上题中,令R 1=R ,R 2→∞,x = r 则得结果2202R r εr σE +=第一章 习题二1、均匀电场的场强E与半径为R 的半球面的轴线平行,则通过半球面的电场强度通量Φ= πR 2E ,若在半球面的球心处再放置点电荷q ,q 不改变E 分布,则通过半球面的电场强度通量Φ= πR 2E ±q /2ε0。
2、真空中的高斯定理的数学表达式为∑⎰⎰=⋅0/εq s d E i S;其物理意义是 静电场是有源场 。
3、一点电荷q 位于一位立方体中心,立方体边长为a ,则通过立方体每个表面的E的通量是q /6ε0;若把这电荷移到立方体的一个顶角上,这时通过电荷所在顶角的三个面E的通量是 0 ,通过立方体另外三个面的E 的通量是q /8ε0。
4、两个无限大均匀带正电的平行平面,电荷面密度分别为σ1和σ2,且σ1>σ2,则两平面间电场强度的大小是( C )(A) (B) (C) (D) 5、应用高斯定理求场强E 时,要求E的分布具有对称性,对于没有对称性的电场分布,例如电偶极子产生的电场,高斯定理就不再成立,你认为这种说法:( B )(A)正确 (B)错误 (C)无法判断6、下述带电体系的场强分布可能用高斯定理来计算的是( D )(A) 均匀带电圆板 (B)有限长均匀带电棒 (C)电偶极子(D)带电介质球(电荷体密度是离球心距离r 的函数) 7、如果在静电场中所作的封闭曲面内没有净电荷,则( C )(A)封闭面上的电通量一定为零,场强也一定为零; (B)封闭面上的电通量不一定为零,场强则一定为零; (C)封闭面上的电通量一定为零;场强不一定为零; (D)封闭面上的电通量不一定为零;场强不一定为零。
()0212/εσσ+()021/εσσ+()0212/εσσ-()021/εσσ-8、一球体半径为R ,均匀带正电量为Q ,求球体内外的场强分布。
解:3/43R πQ ρ=,电场分布具有球对称性。
在球体内外作以O 为心的高斯球面S ,其半径 为r ,则有:∑⎰⎰⎰⎰===⋅Si S S εq E r πds E s d E 02/4∴ ∑=Siq r πεE 2041(1) r < R , Q R r R πQ r πρr πq S i 333333/434341===∑, ∴ r e R πεrQ E 3014= (2) r > R , Q q S i =∑2, ∴ re rπεQ E2024=∴9.无限长均匀带电圆柱面,电荷面密度为σ,半径为R ,求圆柱面内外的场强分布。
r ,高为h 的同轴圆柱面为高斯面,根据⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅侧面下底上底S d E S d E S d E S d E SrhE πdS E EdS 2===⎰⎰⎰⎰侧面侧面(1) r < R 时,∑=0i q由高斯定理 0/20===∑εq rhE πΦi得 0=Eσi ,由高斯定理 00/2/2εσRh πεq rhE πΦi ===∑得r εσR E 0/=)( 420R r ,e rπεQ r>)( 430R r ,e RπεrQ r<=E )( 0R r ,rεσR >)( 0R r ,<=E ∴第一章 习题三1、三个相同的点电荷q ,分别放在边长为L 的等边三角形的三个顶点处,则三角形中心的电势)4/(330L q U πε=,电场强度大小0=E ,将单位正电荷从中心移到无限远时,电场力作功)4/(330L q A πε=。
2、半径为R 的均匀带电细圆环,电荷线密度为λ,则环心处的电势02/ελ=U ,场强大小0=E 。
3、静电场中某点的电势,其数值等于单位正电荷在该处的电势能,或把单位正电荷从该点移到电势零点过程中电场力所作的功。
4、下列各种说法中正确的是( B )(A)电场强度相等的地方电势一定相等;(B)电势梯度较大的地方场强较大; (C)带正电的导体电势一定为正; (D)电势为零的导体一定不带电。
5、在静电场中下面叙述正确的是( B )(A)电场强度沿电场线方向逐点减弱; (B)电势沿电场线方向逐点降低。
(C)电荷在电场力作用下定沿电场线运动;(D)电势能定沿电场线方向逐点降低。
6、真空中产生电场的电荷分布确定以后,则( B )(A)电场中各点的电势具有确定值; (B)电场中任意两点的电势差具有确定值; (C)电荷在电场中各点的电势能具有确定值。
8、球壳的内半径为R 1,外半径为R 2,壳体内均匀带电,电荷体密度为ρ,A 、B 两点分别与球心0相距r 1和r 2,(r 1>R 2,r 2<R 1 ,求A 、B 两点的电势。
解:利用均匀带电球壳产生电势的结果和电势叠加原理计算作一半径为r , 厚度为dr 的球壳,其电量为dr r dq ρπ24=(1) A 点处,r 1>R 2时,)4/(101r dq dU πε=()1031322101132121r εR R ρdr r r ερdU U R R R R -===⎰⎰ (2) B 点处,r 2<R 1时,)4/(02r dq dU πε=()0212202222121εR R ρrdr ερdU U R R R R -===⎰⎰9、一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ=Ar(r <R),式中A 为常数,试求:(1)圆柱体内,外各点场强大小分布;(2)选距离轴线的距离为R 0(R 0>R)处为电势零点,计算圆柱体内,外各点的电势分布。
解:作一半径为r ,高为h 的同轴圆柱面为高斯面⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅=侧面下底上底S d E S d E S d E S d E ΦSrhE πdS E EdS 200==++=⎰⎰⎰⎰侧面侧面由高斯定理:∑⎰⎰=⋅=Si S q εS d E Φ01(1) r < R ,r d r Ah πr hd r πAr τd ρdq ''=''==22)2)((302322Ahr πr d r Ah πdq q rSi =''==⎰⎰∑ 3322Ahr πεrhE πΦ==, ∴ )( ,302R r εAr E <= r > R ,302322AhR πr d r Ah πdq q RSi =''==⎰⎰∑ 3322AhR πεrhE πΦ==, ∴ )( ,303R r r εAR E >=(2) r < R ,⎰⎰⎰⎰⎰+=+=⋅=00032033R RR rR R R r R rrdr εAR dr r εAEdr Edr l d E U RR εAR r R εA 003330ln3)(9+-= r > R ,rR εAR r dr εAR Edr l d E U R rR r R r0303ln33000===⋅=⎰⎰⎰S第一章 习题四1、真空中半径为R的球体均匀带电,总电量为q ,则球面上一点的电势U =R πεq 04/;球心处的电势U 0=R πεq 08/3。