【全国校级联考】江西省重点中学协作体2018届高三第二次联考数学(理)试题

合集下载

【数学】江西省重点中学协作体2018届高三第二次联考数学(理)试题含解析

【数学】江西省重点中学协作体2018届高三第二次联考数学(理)试题含解析

江西省重点中学协作体2018届高三第二次联考数学(理)试卷第I卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. )C.【答案】BB.2. ,为()C.【答案】C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3. 已知命题)A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由题意结合两点式直线式方程的特征即可确定正确的结果.表示经过点直线的两点式可得表示经过任意两点的直线,.本题选择C选项.点睛:本题主要考查两点式直线方程的应用范围,充要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”()B.【答案】C【解析】分析:由题意将原问题转化为等差数列前n项和的问题,然后结合题意整理计算即可求得最终结果.,原问题等价于求解.由等差数列前n,.即公士所得鹿数为.本题选择C选项.点睛:本题主要考查数列知识的综合运用,意在考查学生的转化能力和计算求解能力.5. )D.【答案】D故选D.6. 已知双曲线的焦距是虚轴长的)C.【答案】A,故选A.7. 如图所示的程序框图,)D.【答案】D【解析】分析:由题意结合流程图和几何概型整理计算即可求得最终结果.本题选择D选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.8. 已知关于的取值范围是()【答案】B【解析】分析:首先利用诱导公式化简所给的方程,然后数形结合整理计算即可求得最终结果.在区间上的图象如图所示,轴为临界条件,据此有:本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()【答案】D【解析】分析:首先确定该几何体的空间结构,然后分别求得各条棱的长度,最后确定最长的棱长即可.详解:如图所示,在棱长为4E为棱AD的中点,其中,,,..............................本题选择D选项.点睛:本题主要考查三视图还原几何体,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.10. 、、)【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以恰好第5本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11. 已知向量、、为平面向量,所成夹角为最大值为()D.【答案】A即可求得最终结果.的夹角为,不妨认为到,使得,则,结合可得则点C的轨迹为以三点共线,即点位于图中点本题选择A选项.点睛:本题的核心是考查数量积的坐标运算和数形结合的数学思想.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12. 已知函数则实数的取值范围(数的底数)为()D.【答案】Ca的不等式组,求解不等式组即可求得最终结果.当a=0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a<0时,f(x),.,x∈(−∞,1),g′(x)>0,g(x)单调递增,x∈(1,+∞)时,g′(x)<0,g(x)单调递减,则函数在区间上的值域为有两个不同的实数根,则必有由的解析式有:则满足题意时应有:注意到函数是单调递增函数,且的唯一实数根满足,即的解集为求解不等式本题选择C选项.点睛:本题主要考查函数单调性的应用,导函数研究函数的值域,导函数研究函数的单调性等知识,意在考查学生的转化能力和计算求解能力.第II卷二、填空题:本题共5个小题,每小题5分,共25分.13. _____________.【答案】-672【解析】分析:由题意首先结合通项公式写出通项,然后结合展开式的性质整理计算即可求得最终结果.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14. _____________【答案】-3【解析】分析:首先画出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数表示点1的值,点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15.是________【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,,,的中线,则,可得:,且据此可知四边形EHFG是平行四边形,则点睛:本题主要考查抛物线定义的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.16.________【解析】分析:由题意结合正弦定理和函数的单调性首先求得∠ABC的值,然后结合三角形的性质整理计算即可求得最终结果.ABD和△ADE中应用正弦定理有:则:,据此有:,则函数在定义域内单调递增,在△ABD中:,则:则.点睛:本题是导数问题与解三角形问题的综合问题,在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.17. . (1)求数列(2,求证:【答案】(1)(2)见解析.【解析】分析:(1,,结合等比数列的性质可得(2)由(1详解:(1)由,,(2)由(1.点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,是平行四边形,,,(1(2)不重合的点使得直线.【答案】(1)证明见解析.(2)答案见解析.【解析】分析:(1(2)结合(1上存在点,且,结合空间向量的结论得所成角的正弦值为详解:(1是平行四边形,,所以平面(2)由(1所在直线为且与直线,所成角的正弦值为所以平面的一个法向量为,设直线:(舍).所以存在,使得直线与平面所成角的正弦值为点睛:本题主要考查面面垂直的判断定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19.城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的(满分100分)统计结果如下表所示.(1)根据频数分布表可以大致认为,这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:21次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:单位:元)为该市民参加问卷调查所获得的所有奖券面值和,.附:参考数据与公式【答案】(1)0.8186.(2)见解析.【解析】分析:(1(2),,,;;据此可得分布列,结合分布列计算数学期望可得.详解:(1)综上,(2获奖券面值的可能取值为,;的分布列为:点睛:本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆(1)的方程;(2)的动直线.【答案】(1(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得(2的方程可得也满足上述结论.为定值详解:(1,的方程为(2:因为为定值,所以,为轴时,,为定值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.(1)(2)时,.【答案】(1)见解析.(2)见解析.【解析】分析:(1据此进一步则题中的不等式得证.(2)设可知实数详解:(1.(2.从而不等式得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.选做题(请考生在第22、23两题中任选一题作答,如果全做,则按所做的第一题评分,作答时请写清题号)22. 在平面直角坐标系为参数,.(1)求曲线.(2.【答案】(1(2【解析】分析:(1)消去参数可得的直角坐标方程为(2,详解:(1的直角坐标方程为(2,,间距离的最小值为知:,得点睛:本题主要考查参数方程与普通方程互化,极坐标方程与互化,极坐标方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.23. 选修4-5:不等式选讲.【解析】试题分析:(1)由绝对值不等式可求得实数可化为的取值范围为的零点为解得:【点睛】绝对值函数的最值问题,一般按n个零点分n+1段讨论,也可以结合图像分析。

2018届江西省重点中学协作体高三第二次联考 理科综合试题(图片版)

2018届江西省重点中学协作体高三第二次联考 理科综合试题(图片版)

九校第二次联考物理参考答案题号 14 15 16 17 18 19 20 21 答案BDBACBDCDBD22.(6分)(1)BC (1分) DE (1分) (2)0.630(2分) 0.626(2分)23.(1) 0.729-0.731(2分) (2)B (2分) (3) 2004R d l π (2分)(4)无(1分)R l -图像的斜率不变(2分)24.(1)解: θsin 2d r =又221mv eU = 且rv m eBv 2=得 emUd B 2sin 2θ=(6分) (2)θcos v v x = θs i n v v y =θc o s v d t = 同时rv m eBv y y 2= eB m T π2= nT t =则 emUd n B 2cos 2θπ= 当n=1时,B 有最小值,即: emUd B 2cos 2θπ=(8分) 25.(1)解:设滑块运动到D 点时的速度大小为v1 , 小车在此时的速度大小为v2 , 滑块从A 运动到D 的过程中系统动量守恒,以向右为正方向,有:mv0﹣Mv=mv1+Mv2 代入数据解得v2=0则小车跟滑块组成的系统的初机械能小车跟滑块组成的系统的末机械能代入数据解得:E1=110J ,E2=25J小车与滑块组成的系统损失的机械能△E=E1﹣E2 代入数据解得:△E=85J (5分)(2)解:设滑块刚过D 点时,受到轨道的支持力为N ,则由牛顿第三定律可得N=76N由牛顿第二定律可得代入数据解得:r=1.0m (6分)(3)解:设滑块沿圆弧轨道上升到最大高度时,滑块与小车具有共同的速度v3 则由动量守恒定律可得mv1=(M+m )v3代入数据解得:设圆弧轨道的最大半径为R则由能量守恒关系,有:代入数据解得:R=0.71m (7分) 33.(1)BCE (5分)(2)(i )玻璃管水平放置时,气柱的压强等于大气压强,即75cmHg p p 01==当玻璃管管口朝上,且竖直放置时,气柱的压强为100cmHg gh p p 02=+=ρ由于温度不变,由波意耳定律S L p S L p 2211=,解得18.75cmHg L 2= (5分) (ii )设注入的水银柱长为x 。

2018届江西省重点中学协作体高三第二次联考理科综合试题及答案

2018届江西省重点中学协作体高三第二次联考理科综合试题及答案

江西省重点中学协作体2018届高三第二次联考理综试题第Ⅰ卷(选择题共126分)可能用到的相对原子质量:H:1 O:16 Fe:56 Cu:64 C:12 Au:197 S:32 Mg:24Cl:35.5 N:14一、选择题(本题共13小题,每小题6分,在每小题四个选项中,只有一项符合题目要求)1. 下图表示某生物膜结构,下列说法正确的是( )①低温环境中物质跨膜运输的速率减慢,主要是因为低温导致呼吸作用释放的能量减少②细胞膜对Na+的运输可同时具有b、d两种方式③交叉输血出现凝集反应与图中的C有关④图中a、b、c、d、e过程均能体现细胞膜的选择透过性A.①②③ B.②③④ C.①②④ D.①③④2.根据图示信息,判断下列说法正确的是( )A.图中甲细胞不能表示神经细胞B.图中乙细胞不能表示靶细胞C.图中b可表示细胞膜上的受体D.图中a可表示呼吸酶3.下列关于植物激素或植物生长调节剂应用的说法正确的是( ) A.植物体内调节生长发育的天然物质称为植物激素B.在蔬菜和水果上残留的植物生长调节剂可能会损害人体健康C.用适宜浓度的赤霉素处理水稻可以提高产量D.生长素与细胞分裂素的拮抗调控作用在植物组织培养中非常重要4.细胞自噬是继细胞凋亡后,当前生命科学最热的研究领域。

细胞自噬是将细胞内受损、变性、衰老的蛋白质或细胞器运输到溶酶体内并降解的过程(如右图),下列相关说法不.正确的是( )A. 细胞自噬和细胞凋亡对于细胞具有相同意义B.细胞自噬过程可体现溶酶体的消化营养功能C.细胞自噬被维持在一定水平,能确保细胞内的稳态D.细胞自噬可发生在细胞生长、分化、衰老、凋亡的全过程5.下列关于“J”型曲线和“S”型曲线的相关说法正确的是( ) A.呈“J”型曲线增长的种群不受环境的影响,而呈“S”型曲线增长的种群受环境的影响B.两条曲线的斜率分别代表各自的增长率C.呈“J”型曲线增长的种群其增长速率不断增大,而呈“S”型曲线增长的种群的增长速率有最大值D.从外地迁入的物种,其种群数量以“J”型曲线模式增长6.下列生物学实验和研究方法,不.正确的是( )A.用卡诺氏液对低温处理的根尖进行固定后,不能直接进行解离、漂洗等后续操作B.纸层析法分离叶绿体中色素实验中,橙黄色带在滤纸条最上边,所以判断胡萝卜素在层析液中溶解度最大C.探究温度对淀粉酶活性影响的实验,不能用斐林试剂代替碘液D.在探究酵母菌的细胞呼吸方式实验中,可通过观察呼吸产物能否使溴麝香草酚蓝水溶液和酸性条件下的重铬酸钾变色,来区分两种呼吸方式的不同7. 下列有关生活中的化学,说法不正确的是 ( )A. 石油裂解、煤的气化、海水制镁都包含化学变化来源B. 福尔马林可制备标本是利用了使蛋白质变性的性质C. 含钙、钡、铂等金属元素的物质有绚丽的颜色,可用于制造焰火D. 红葡萄酒储藏时间长后变香可能是因为乙醇发生了酯化反应8. 药物贝诺酯可由乙酰水杨酸和对乙酰氨基酚在一定条件下反应制得:下列有关叙述正确的是 ( )A.乙酰水杨酸和对乙酰氨基酚均能与NaHCO3溶液反应B.可用FeCl3溶液区别乙酰水杨酸和贝诺酯C.贝诺酯分子中有2种含氧官能团D.贝诺酯与足量NaOH 溶液共热,生成乙酰水杨酸钠和对乙酰氨基酚钠9.下列实验装置或操作正确的是 ( )白磷红磷A.实验○1制取氨气B.实验○2溴水褪色证明了乙烯可以与溴发生加成反应C.实验○3比较红磷和白磷的着火点D.实验○4用CaC2和饱和食盐水反应制取C2H210.实验室需配制一种仅含五种离子(不考虑水解和水电离出的离子)的混合溶液,且在混合溶液中五种离子的物质的量浓度均为5 mol/L,下面四个选项中能达到此目的的是()A.Na+、K+、SO42−、NO3−、Cl−B.Fe2+、H+、Br−、NO3−、Cl−C.Ca2+、K+、OH−、Cl−、NO3−D.Al3+、Na+、Cl−、SO42−、NO3−11. 用酸性氢氧燃料电池为电源进行电解的实验装置如下图所示。

江西省重点中学盟校2018届高三理综第二次联考试卷 精

江西省重点中学盟校2018届高三理综第二次联考试卷 精

江西省重点中学盟校2018届高三第二次联考试卷理科综合考试时间:150分钟试卷满分:300分命题人:物理卢教成(余江一中)余忠喜(景德镇一中)赵九华(临川二中)化学陈良慧(赣州三中)石晓刚(同文中学)张霞(宜春中学)生物操光华(鹰潭一中)徐新明(贵溪一中)刘保华(白鹭洲中学)卷Ι(选择题,共126分)可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23一、选择题(本大题共13小题,每小题6分,共78分。

每小题给出的四个选项中,只有一个选项正确,有选错或不答的得0分。

)1.细胞的结构和功能是相适应的,下列叙述中正确的是A.蛋白质合成旺盛的细胞中,其核仁较大,染色体数目较多B.细胞膜内的生物膜把各种细胞器分隔开,使多种化学反应同时进行,而互不干扰C.细胞膜上的载体蛋白和磷脂分子具有特异性,是细胞膜具有选择透过性的基础D.核膜上的核孔是DNA和蛋白质等物质进出细胞核的通道2.经测定某化合物含C、H、O、N、S元素,该化合物的功能不可能是A.与抗原发生特异性结合B.用于基因工程获得黏性末端C.用于精子、卵细胞的相互识别D.细胞中蛋白质合成的直接模板3.下列有关实验及实验方法的描述,哪项不正确A.用含15N尿苷的营养液培养洋葱,根尖分生区细胞的吸收峰值出现在间期B.研究遗传病发病率需在人群中随机抽样调查,研究其遗传方式需分析患者家系系谱图 C.低温诱导植物染色体数目变化的实验中,卡诺氏液起固定细胞形态的作用D.DNA被15N标记的一个精原细胞,在含14N培养液中进行减数分裂,产生两个含15N和两个不含15N的精细胞4.为探究不同浓度生长素对胚芽鞘生长的影响,某生物兴趣小组取若干相同长度、去除尖端的燕麦胚芽鞘切段,分别用不同浓度的生长素溶液处理并培养相同时间,然后逐一测量其长度,实验先后进行了两次(实验一、实验二),结果如下图。

以下叙述正确的是A.生长素浓度为0.1mg/L时两组数据偏差较大,对推导实验结论有干扰,应该舍弃B.两次实验结果有明显差异,原因是生长素对燕麦胚芽鞘生长的作用具有两重性C.当浓度大于10 mg/L时,生长素会抑制燕麦胚芽鞘的生长且抑制越来越强D.要确定促进燕麦胚芽鞘生长的最适浓度,应在0.1〜10mg/L之间减小浓度梯度继续分组实验5.手足口病是由肠道病毒等感染引起的传染病,多发生于春夏季。

江西省重点中学协作体高三第二次联考理科数学试题参考答案

江西省重点中学协作体高三第二次联考理科数学试题参考答案

江西省重点中学协作体高三第二次联考理科数学试题&参考答案考时:120分 全卷满分:150分第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集,集合,集合,则=( )A .B .C .D .3.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A. B. C. D .4. 已知数列为等差数列,数列为等比数列,且满足,,则( ) A .-1 B .C .1 D5.将的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后2(1)1i z i+=-i U R =2{|560}A x x x =--≤2{|log (3)1}B x x =-≤()U A C B [1,3](5,6]-[1,3)(5,6]-(5,6]∅1y x =tan y x =1lg 1x y x+=-2x y ={}n a {}n b 20172018a a π+=2204b =24033139tana ab b +=2x y cos =再将所得图象向左平移个单位长度,则最后所得图象的解析式为( ) A. B. C. D.6. 若双曲线的渐近线将圆平分,则双曲线的离心率为( ) A .B .C .D .7.如图,一竖立在水平地面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于( )A .B .C .D .8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为( )A .B .C .D .9. 给出下列四个命题: ①若样本数据的方差为16,则数据的方差为64;②“平面向量夹角为锐角,则>0”的逆命题为真命题;③命题“,均有”的否定是“,使得≤”;4πcos 24y x π⎛⎫=+ ⎪⎝⎭cos 24x y π⎛⎫=+ ⎪⎝⎭sin 2y x =x y 2sin -=22221(0,0)x y a b a b-=>>222440x y x y +--+=35323m P P 33m 1m 32m 43m 2m 0x =x 3478151641210,,,x x x 121021,21,,21x x x ---,a b a b ⋅(,0)x ∀∈-∞1x e x >+0(,0)x ∃∈-∞0xe 01x +④是直线与直线平行的必要不充分条件. 其中正确的命题个数是( ) A .1B .2C .3D .410.一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A. B. C. D.11.记“点满足()”为事件,记“满足”为事件,若,则实数的最大值为( ) A . B . C .1 D .1312.定义在上的函数满足,,其中是函数的导函数,若对任意正数,都有,则的取值范围是( ) A . () B . ()C . ()D . () 第Ⅱ卷 (非选择题 共90分)1a =-10x ay -+=210x a y +-=28π32π112π336π(,)M x y 22x y a +≤0a >A (,)M x y 105240220x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩B (|)1P B A =a 1245[0,)+∞()f x 2()()xxf x f x e '+=1()222f e=)(x f '()f x a b 22211(sin )64abf a e b θ≤++θ7[2,2]66k k ππππ-+k Z ∈5[2,2][2,2]66k k k k πππππππ+++k Z ∈[2,2]62k k ππππ++k Z ∈5[2,2]66k k ππππ++k Z ∈本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题:本大题共有4小题,每小题5分,共20分.13.设,则的展开式中的常数项为 . 14.在边长为1的正三角形中,设,,则__________.15.过抛物线的焦点的直线交该抛物线于、两点,若,为坐标原点,则__________. 16.已知数列的首项,其前项和为,且满足,若对,恒成立,则实数的取值范围是 . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量,,设函数,若函数的图象关于直线对称且.(Ⅰ) 求函数的单调递减区间;(Ⅱ) 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若,求的最大值.121(3sin )m x x dx -=+⎰6()m x x-ABC 2BC BD =2CE EA =AD BE ⋅=2:2(0)C y px p = >F A B ||5||AF BF =O ||||AF OF ={}n a 1a t =n n S 212n n S S n n ++=+n N +∀∈1n n a a +<t (3sin cos ,1)m x x ωω=-1(cos ,)2n x ω=()f x m n =⋅()f x 3x π=[]0,2ω∈()f x a =()1f A =b c +18.(本小题满分12分)高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,“将A 市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体B ,从学生群体B 中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计表如下:(Ⅰ)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;(Ⅱ)从所调查的50名学生中任选2名,记X 表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X 的分布列和数学期望;(Ⅲ)将频率视为概率,现从学生群体B 中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y ,求事件“”的概率.19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,2Y得到如图2所示的几何体.(Ⅰ)求证:AB ⊥平面ADC ;(Ⅱ)若AD =2,直线CA 与平面ABD 所成角的正弦值为,求二面角E -AD -C 的余弦值.20.(本小题满分12分)已知⊙:与⊙:,以,分别为左右焦点的椭圆:经过两圆的交点.(Ⅰ)求椭圆的方程;(Ⅱ),分别为椭圆的左右顶点,,,是椭圆上非顶点的三点,若∥, ∥,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由.631F 22(3)27x y ++=2F 22(3)3x y -+=1F 2F C 22221(0)x y a b a b+= >>C A B C M N P C OM AP ON BP OMN ∆图2ABDCE 图1y NPAOxB M21.(本小题满分12分)已知,函数. (Ⅰ)讨论函数的单调性;(Ⅱ)若函数有两个相异零点,,求证:.(其中e 为自然对数的底数)请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为(t 为参数),曲线C 的参数方程为a R ∈2()2ln(2)(2)f x x a x =---()f x ()f x 1x 2x 121242()x x x x e +>++122x t y ⎧=⎪⎪⎨⎪=⎪⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为. (Ⅰ)求直线l 以及曲线C 的极坐标方程;(Ⅱ)设直线l 与曲线C 交于A ,B 两点,求△P AB 的面积.23.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)若a =2时,解不等式:;(Ⅱ)对任意实数x ,不等式恒成立,求实数a 的取值范围.12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩θ2)3π()243f x x a x =-++()22f x >()34f x a ≥+江西省重点中学协作体2017届高三第二次联考数学(理)参考答案一、选择题:本大题共12小题,每小题5分,共60分. 1—5 BACCD 6—10 BABBC 11—12 A D 12.【解析】由可得,即,令,则,且, 所以, 所以, 当时,,单调递增,当时,,单调递减,所以,所以,,即在上单调递减。

2018届江西省重点中学协作体高三第二次联考理科数学试题及答案

2018届江西省重点中学协作体高三第二次联考理科数学试题及答案

2018届江西省重点中学协作体⾼三第⼆次联考理科数学试题及答案江西省重点中学协作体2018届⾼三第⼆次联考数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷⼀、选择题:本⼤题共10⼩题,每⼩题5分,共50分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知全集U R =,集合2{|log (1)},{|||,}A x y x B x x a a R ==-=<∈,()U C A B =? , 则实数a 的取值范围是( )A .(,1)-∞B .(,1]-∞C .(0,1)D .(0,1] 2.函数ln(1)11x y xx -=++的定义域是() A.[1,0)(0,1)- B.[1,0)(0,1]- C.(1,0)(0,1]- D.(1,0)(0,1)- 3.已知i 为虚数单位,若复数z 满⾜(2)12z i i -=+,则z 的共轭复数是( )A .iB .i -C .35iD .35i-4.关于统计数据的分析,有以下⼏个结论,其中正确的个数为()①将⼀组数据中的每个数据都减去同⼀个数后,期望与⽅差均没有变化;②在线性回归分析中,相关系数r 越⼩,表明两个变量相关性越弱;③已知随机变量ξ服从正态分布(5,1)N ,且(46)0.6826,P ξ≤≤=则(6)0.1587;P ξ>= ④某单位有职⼯750⼈,其中青年职⼯350⼈,中年职⼯250⼈,⽼年职⼯150⼈.为了了解该单位职⼯的健康情况,⽤分层抽样的⽅法从中抽取样本.若样本中的青年职⼯为7⼈,则样本容量为15⼈.A .1B .2C .3D .45.已知锐⾓βα,满⾜:1sin cos ,6αα-=3tan tan 3tan tan =?++βαβα,则βα,的⼤⼩关系是()A .βα<B .αβ>C .<<46.程序框图如下图所⽰,该程序运⾏后输出的S 的值是()A .3B .12C .13-D .2-7.等⽐数列{}n a 是递减数列,其前n 项积为n T ,若1284T T =,则813a a ?=( )A .1±B .2±C .1D .2 8.已知在⼆项式32()nx x-的展开式中,仅有第9项的⼆项式系数最⼤,则展开式中,有理项的项数是( )A. 1B. 2C. 3D. 49. 已知函数2()2f x x x =-,(1,0)Q ,过点(1,0)P -的直线l 与()f x 的图像交于,A B 两点,则QAB S ?的最⼤值为()1n = 开始结束否是输出S3S =1+=n n2014n ≤11S S S+=-A. 1210.如图,过原点的直线l 与圆221x y +=交于,P Q 两点,点P 在第⼀象限,将x 轴下⽅的图形沿x 轴折起,使之与x 轴上⽅的图形成直⼆⾯⾓,设点P 的横坐标为x ,线段PQ 的长度记为()f x ,则函数()y f x =的图像⼤致是( )⼆、选做题:请考⽣在下列两题中任选⼀题作答.若两题都做,则按所做的第⼀题评阅记分,本题共5分.11(1).(坐标系与参数⽅程选做题)在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标⽅程是( )A.3sin ρθ=B.3cos ρθ=C.sin 3ρθ=D.cos 3ρθ=11(2).(不等式选讲选做题))若存在,R x ∈,使|2|2|3|1x a x -+-≤成⽴,则实数a 的取值范围是( )A. [2,4]B. (5,7)C. [5,7]D. (,5][7,)-∞+∞第Ⅱ卷注意事项:第Ⅱ卷须⽤⿊⾊签字笔在答题卡上书写作答,若在试题卷上作答,答案⽆效. 三、填空题:本⼤题共4⼩题,每⼩题5分,共20分.将答案填在题中的横线上.yxo Q P12.已知2,=a e 为单位向量,当,a e 的夹⾓为32π时,+a e 在-a e 上的投影为 . 13.若⼀组数据1,2,0,,8,7,6,5a 的中位数为4,则直线ax y =与曲线2x y =围成图形的⾯积为 . 14.已知双曲线22122:1x y C a b -=和双曲线22222:1y x C a b-=,其中0,b a >>,且双曲线1C 与2C 的交点在两坐标轴上的射影恰好是两双曲线的焦点,则双曲线1C 的离⼼率是 . 15.对于定义在D 上的函数()f x ,若存在距离为d 的两条直线1y kx m =+和2y kx m =+,使得对任意x D ∈都有12()kx m f x kx m +≤≤+恒成⽴,则称函数()()f x x D ∈有⼀个宽度为d 的通道.给出下列函数:①1()f x x=;②()sin f x x =;③2()1f x x =-;④ln ()xf x x=其中在区间[1,)+∞上通道宽度可以为1的函数有 (写出所有正确的序号). 四、解答题:本⼤题共6⼩题,共75分.解答应写出⽂字说明、证明过程或演算步骤. 16.(本⼩题满分12分)如图,设1P ,2P ,…,6P 为单位圆上逆时针均匀分布的六个点.现从这六个点中任选其中三个不同点构成⼀个三⾓形,记该三⾓形的⾯积为随机变量S .(1)求32S =的概率;(2)求S 的分布列及数学期望()E S .5P 6P2P3P4P OP 117.(本⼩题满分12分)在ABC ?中,2sin 2cos sin 33cos 3A A A A -+=. (1)求⾓A 的⼤⼩;(2)已知,,a b c 分别是内⾓,,A B C 的对边,若1a =且sin sin()2sin 2,A B C C +-= 求ABC ?的⾯积.18.(本⼩题满分12分)若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-. (1)求数列{}n a 的通项公式;(2)若10,c =且对任意正整数n 都有112log n n n c c a +-=,求证:对任意*2311132,4n n n N c c c ≥∈+++< 都有.19.(本⼩题满分12分)如图,四棱锥ABCD P -的底⾯ABCD 是平⾏四边形,1,2==AB AD , 60=∠ABC ,⊥PA ⾯ABCD ,设E 为PC 中点,点F 在线段PD 上且FD PF 2=.(1)求证://BE 平⾯ACF ;(2)设⼆⾯⾓D CF A --的⼤⼩为θ,若1442|cos |=θ,求PA 的长.。

2018届江西省重点中学协作体高三第二次联考理科综合试题

2018届江西省重点中学协作体高三第二次联考理科综合试题

2018.5江西省重点中学协作体2018届高三第二次联考理科综合能力测试卷本试卷分选择题和非选择题两部分。

满分300分。

考试时间150分钟。

可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 F-19 Mg-24 S-32 Cl-35.5 Ca-40 Cu-64 Cr-52第Ⅰ卷(选择题,共126分)一、选择题(本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.细胞分化使细胞趋向专门化,下列对细胞分化不同水平的分析中,正确的是( )A.从核酸分子水平分析,细胞分化是不同细胞中遗传信息的执行情况不同的结果,这是细胞分化的直接原因B.从细胞水平分析,细胞分化是细胞形态、结构和功能发生了不稳定性的改变C.从蛋白质分子水平分析,细胞分化是蛋白质种类、数量改变的结果,这是细胞分化的根本原因 D 从细胞器水平分析,细胞分化是使细胞中细胞器的种类和数量发生改变2.科学家发现某些蚜虫能合成类胡萝卜素,其体内的类胡萝卜素不仅能吸收光能,传递给负责能量生产的组织细胞,而且还决定蚜虫的体色。

阳光下蚜虫的ATP 生成量将会增加,黑暗时蚜虫的ATP 含量将会下降。

下列有关分析不合理的是( )A. 正常情况下蚜虫在黑暗中合成ATP 时一定伴随着放能反应B. 阳光下蚜虫的ATP 生成量将会增加使得蚜虫组织细胞内ATP 的含量很高C. 蚜虫做同一强度的运动时,阳光下和黑暗中的ATP 消耗量不一样D. 蚜虫合成ATP 时需要的能量不仅来自光能,还来自呼吸作用释放的化学能3.下列关于生物学实验操作、实验结果、实验现象及原理的描述中,正确的是( ) A .用纸层析法分离菠菜滤液中的色素的原理是色素能溶于有机溶剂无水酒精中 B .探究酵母菌呼吸方式的两组实验中,两组实验都是实验组C .一天中植物体内有机物总量从减少转为增加时,细胞呼吸达到最低光合作用开始启动D .将二倍体玉米的幼苗用秋水仙素处理,待其长成后用其花药进行离体培养得到了新的植株,都是纯合子4.下列有关生物变异的说法,正确的是( )A .某生物体内某条染色体上多了几个或少了几个基因,这种变化属于染色体数目的变异B .黄圆豌豆×绿皱豌豆→绿圆豌豆,这种变异来源于基因突变C .DNA 分子中碱基对的增添、缺失和替换不一定都是基因突变D .亲代与子代之间,子代与子代之间出现了各种差异,是因为受精过程中进行了基因重组 5.“蚕豆病”是一种罕见的单基因遗传病,患者绝大多数平时没有贫血和临床症状,但在食用蚕豆或其他氧化剂药物时可能发生明显的溶血性贫血。

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试卷(含答案)

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试卷(含答案)

江西省重点中学盟校2018届高三第二次联考数学(理科)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数z 满足31i z i =-,则z =r( )A .1B .2C .2D .3 2.已知集合{}|lg ,1M y R y x x =∈=≥,{}2|4N x R y x =∈=-,则M N =I ( )A .{}(1,1),(1,1)-B .[]02,C .[]01,D .{}13.下图是2002年8月中国成功主办的国际数学家大会的会标,是我们古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作《周髀算经》中有详细的记载.若图中大正方形ABCD 的边长为5,小正方形的边长为2,现作出小正方形的内切圆,向大正方形所在区域模拟随机投掷n 个点,有m 个点落在中间的圆内,由此可估计π的所似值为( )A .254m n B .4m n C .425m n D .25mn4.命题“1[,3]4x ∀∈,220x a --≤”为真命题的一个充分不必要条件是( )A .9a ≥B .8a ≤ C.6a ≥ D .11a ≤5.已知定义在R 上的偶函数()f x 满足:当[)0,x ∈+∞时,()2018xf x =,若(ln 3)a f e =,0.3(0.2)b f =,12(())3c f -=-,则a ,b ,c 的大小关系是( )A .b c a <<B .c b a << C. b a c << D .c a b <<6.如图,网格纸上小正方形的边长为1,粗线描绘的是某几何体的三视图,其中主视图和左视图相同如上方,俯视图在其下方,该几何体体积为( )A.143πB.5π C.163πD.173π7.实数,x y满足610320x yyx y+≤⎧⎪-≥⎨⎪--≥⎩,则2x yzx+=最大值为()A.3 B.5 C.92D.758.运行如下程序框图,若输入的1[,3]2t∈-,则输出s取值为()A.[13,3]s∈ B.1[,8]2s∈ C.[13,8]s∈ D.[0,8]s∈9.已知菱形ABCD满足:2AB=,3ABCπ∠=,将菱形ABCD沿对角线AC折成一个直二面角B AC D--,则三棱锥B ACD-外接球的表面积为()A .203π B .8π C.7π D .173π 10.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,且图像关于直线34x π=对称,且在区间2[0,]3π上是单调函数,则ω=( ) A .83 B .23 C.43或83 D .4311.若函数2()(1)2(1)xx f x a ee a x =+-+-有两个极值点,则实数a 的取值范围是( )A .B . C.( D .U 12.已知抛物线22(0)x py p =>,过点(0,)(0)P b b ≠的直线与抛物线交于A ,B 两点,交x 轴于点Q ,若3QA AP =u u u r u u u r ,PQ AB λ=u u u r u u u r,则实数λ的取值是( )A .125-B .127- C.2- D .与,b p 有关 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知a =r ,2a b ⋅=r r ,()()15a b a b -+=-r r r r ,则a r 与b r 夹角为 .14.已知6((0)ax a+>展开式中的常数项为60,则(sin )a a x x dx -+=⎰ .15.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,若双曲线上存在关于y 轴对称的两点A ,B 使得等腰梯形21ABF F 满足下底长是上底长两倍,且腰与下底形成的两个底角为60︒,则该双曲线的离心率为 .16.已知等边ABC ∆边长为6,过其中心O 点的直线与边AB ,AC 交于P ,Q 两点,则当12PQ OQ+取最大值时,OP = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 首项为1,其前n 项和为n S ,且1310n n S s +--=.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3n n na b =,求数列{}n b 的前n 项和n T . 18. 如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ︒∠=,四边形BDEF 是矩形,G 和H 分别是CE 和CF 的中点.(1)求证:平面BDGH ∥平面AEF ;(2)若平面BDEF ⊥平面ABCD ,3BF =,求平面CED 与平面CEF 所成角的余弦值. 19.为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况. 学期x 1 2 3 4 5 6 总分y (分)512518523528534535(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性相关程度,并用最小二乘法求出y 关于x 的线性回归方程(线性相关系数保留两位..小数); (2)在第六个学期.....测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有X 人,求X 的分布列和期望.参考公式: iii=12ii=1()()ˆ()nnx x y y bx x --=-∑∑,ˆˆay bx =-;相关系数i ii=122i ii=1i=1()()()()nn nx x y yrx x y y--=--∑∑∑;参考数据:721084.91≈,6i ii=1()()84x x y y--=∑.20.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为12,左、右焦点分别为1F,2F,过1F的直线交椭圆于,P Q两点,以1PF为直径的动圆内切于圆224x y+=.(1)求椭圆的方程;(2)延长PO交椭圆于R点,求PQR∆面积的最大值.21. 已知函数sin()xf xx=.(1)若(0,)xπ∈,讨论方程()f x k=根的情况;(2)若(0,2)xπ∈,2[,)5k∈+∞,讨论方程()f x k'=根的情况.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为2233x ty m t=⎧⎪⎨=⎪⎩(t为参数,0m>),曲线1sin:cosx mCy m mϕϕ=⎧⎨=+⎩(ϕ为参数).(1)求直线l及曲线1C的极坐标方程;(2)若曲线2:3Cπθ=与直线l和曲线1C分别交于异于原点的A,B两点,且53AB=求m的取值.23.已知函数()123f x x x =+++. (1)解不等式()210f x x <+;(2)若不等式()2f x m x ≤+有解,求m 的取值范围.江西省重点中学盟校2018届高三第二次联考数学(理科)试卷参考答案一、选择题二、填空题13.65π14. 4 15. 213+或 13+ 16.221 16题提示:可设θ=∠APQ ,在三角形AOP 正弦定理可得:θsin 3=OP ,同理在三角形AOQ 可得:)3sin(3πθ+=OP .三、解答题17.(1)∵1310n n S S +--=⇒12,310n n n S S -≥--=.∴130n n a a +-=,又∵213a a = ∴{}n a 为等比数列13n n a -⇒=.(2)33n n n n n b a ==.231123133333n n n n n T --=+++⋅⋅⋅++⇒234111231333333n n n n n T +-=+++⋅⋅⋅++23121111333333n n n n T +⇒=+++⋅⋅⋅+-⇒nn n T 343243⋅+-=. 18.(1)连接AC 交BD 于点O ,显然AE OG //,⊄OG 平面AEF , ⊂AE 平面AEF ,可得//OG 平面AEF ,同理//BD 平面AEF ,O BD OG =I , 又⊂OG BD ,平面BDGH ,可得:平面//BDGH 平面AEF .(2)过点O 在平面BDEF 中作z 轴BD ⊥,显然z 轴、OB 、OC 两两垂直,如图所示建立空间直角坐标系.)0,3,0(C ,)3,0,1(-E ,)3,0,1(F ,)0,0,1(-D ,)33,1(,--=CE ,)0,3,1(--=CD ,)0,0,2(=EF .设平面CDE 与平面CDF 法向量分别为),,(1111z y x n =ρ,),,(2222z y x n =ρ.⎪⎩⎪⎨⎧=--=+--0303311111y x z y x ,设)0,1,3(1-=n ρ;⎩⎨⎧==+--020331111x z y x ,设)1,3,0(2=n ρ. 43223,cos 21-=⋅->=<n n ρρ,综上:面CED 与平面CEF 所成角的余弦值为43.19. 解:(1)由表中数据计算得:5.3=x ,525=y ,5.17)(261=-∑=x xi i,412)(261=-∑=y y i i ,∴75.099.04125.1784)()())((2126161>≈⨯=----=∑∑∑===y yx x y yx x r ni ii iii i.综上y 与x 的线性相关程度较高.又8.45.1784)())((ˆ26161==---=∑∑==x xy y x xbi ii i i,2.5088.45.3525ˆ=⨯-=∴a , 故所求线性回归方程:.25088.4ˆ+=x y.(2)X 服从超几何分布,所有可能取值为1,2,3,4,)4,3,2,1(49436)(=-==k C kC k C k X P 所以X 的分布列为期望394424213142211)(=⨯=⨯+⨯+⨯+⨯=X E20.(1)设1PF 的中点为M ,在三角形12PF F 中,由中位线得:212OMPF =, 当两个圆相内切时 ,两个圆的圆心距等于两个圆的半径差,即1122OM PF =-∴2112112422PF PF PF PF =-⇒+=, 即2a =, 又21=e ∴1,c b ==∴椭圆方程为:22143x y +=(2)由已知0≠PQ k可设直线:1PQ x my =-,1122(,),(,)P x y Q x y22221(34)690143x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩122234PQR POQS S y y m ==-=+V V 1t =≥,原式=212121313t t t t=++,当1t =时,min 1(3)4t t+=∴max ()3PQR S =V(1)0sin )(),,0(=-⇒=∈x kx k x f x π,令()π,0,sin )(∈-=x x kx x g .此时x k x g cos )(-='①若1-≤k ,)(x g 在()π,0递减,0)0(=g ,无零点; ②若1≥k ,)(x g 在()π,0递增,0)0(=g ,无零点;③若11<<-k ,)(x g 在()0,0x 递减,()π,0x 递增,其中k x =0cos . Ⅰ.若01≤<-k ,则0)(,0)0(≤=πg g ,此时)(x g 在()π,0无零点; Ⅱ.若10<<k ,则0)(,0)0(>=πg g ,此时)(x g 在()π,0有唯一零点; 综上所述:当0≤k 或1≥k 时,无零点;当10<<k 时,有1个零点.(2)解法一:k x xx x x f =-='2sin cos )(,令)2,0(,cos sin )(2π∈-+=x x x x kx x h , )2(sin )(k x x x h +='①若21≥k ,)(x h 在()π2,0递增,0)0(=h ,无零点;②若⎪⎭⎫⎢⎣⎡∈<≤1542,2152,k k ,)(x h 在()1,0x 递增,()21,x x 递减,()π2,2x 递增. 其中⎥⎦⎤ ⎝⎛--∈-==54,12sin sin 21k x x , 47234521πππ<<<<∴x x 显然22222221cos sin )(,024)2(,0)(,0)0(x x x kx x h k h x h h -+=>-=>=πππ消元:()2222222cos sin 2sin x x x x x x h -+-=,其中47232ππ<<x , 令x x x x x x u cos sin 2sin )(2-+-=,)47,23(,02cos )(2ππ∈<-='x x x x u08272264249)47()(22>--=>πππu x h ,即0)(),2,0(>∈x h x π,无零点.综上所述:⎪⎭⎫⎢⎣⎡+∞∈∈,52)2,0(k x ,π,方程k x f =')(无解 .解法二:令2sin cos )(x x x x x h -=,32sin 2cos 2sin )(xxx x x x x h +--='.令)2,0(sin 2cos 2sin )(2π∈+--=x x x x x x x u ,,x x x u cos )(2-='. 显然)(x u 在)2,0(π递减,)23,2(ππ递增,)2,23(ππ递减,0)0(=u ,0)2(<πu ,⇒<-=>--=>-=04)2(,024*******)47(,0249)23(22πππππππu u u )(x h 在),0(1x 递减,),(21x x 递增,)2,(2πx 递减,其中πππ247221<<<<x x . 且0sin 2cos 2sin )(,0)(22222221=+--==x x x x x x u x u , 由洛必达法则:5242)2(0)(,02sin lim sin cos lim)(lim 21020<=<=-=-=→→→πππh x h x x x x x x h x x x ,,2sin sin cos )(2222222x x x x x x h -=-=,由ππ2472<<x ,5242)(2<<x h . 综上所述:⎪⎭⎫⎢⎣⎡+∞∈∈,52)2,0(k x ,π,方程k x f =')(无解 .(1)直线l :06sin 2cos 32=+-m θρθρ,曲线:1C θρsin 2m =; (2)45353343,3422=⇒=-=-=⇒==m m m AB m m B A B A ρρρρ(1)⎪⎭⎫⎝⎛-∈⇒+<⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥+-<<-+-≤--=6,514102)(1,43123,223,43)(x x x f x x x x x x x f ,;(2)①若2-=x ,显然无解;②若2-≠x ,则2321++++≥x x x m ,令12)1()32(2321)(=++-+≥++++=x x x x x x x g (当且仅当123-≤≤-x 时等号成立) 1≥∴m。

江西省重点中学协作体2018届高三第二次联考数学(理)试题(精编含解析)

江西省重点中学协作体2018届高三第二次联考数学(理)试题(精编含解析)

江西省重点中学协作体2018届高三第二次联考数学(理)试卷第I卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若(为虚数单位),则复数()A. B. C. D.【答案】B【解析】由可得:,故选B.2. 设集合,,,则中的元素个数为()A. B. C. D.【答案】C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下: 2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3. 已知命题直线过不同两点、,命题直线的方程为,则命题是命题的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由题意结合两点式直线式方程的特征即可确定正确的结果.详解:方程表示经过点、的两点式方程,直线的两点式可得表示经过任意两点的直线,据此可得:命题是命题的充要条件.本题选择C选项.点睛:本题主要考查两点式直线方程的应用范围,充要条件的判断等知识,意在考查学生的转化能力和计算求解能力.4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分只鹿,则公士所得鹿数为()A. 只B. 只C. 只D. 只【答案】C【解析】分析:由题意将原问题转化为等差数列前n项和的问题,然后结合题意整理计算即可求得最终结果.详解:设大夫、不更、簪褭、上造、公士所分得的鹿依次为,由题意可知,数列为等差数列,且,原问题等价于求解的值.由等差数列前n项和公式可得:,则,数列的公差为,故.即公士所得鹿数为只.本题选择C选项.点睛:本题主要考查数列知识的综合运用,意在考查学生的转化能力和计算求解能力.5. 函数的减区间为( )A. B. C. D.【答案】D 【解析】函数的定义域为,由题得所以函数的单调减区间为,故选D.6. 已知双曲线的焦距是虚轴长的倍,则该双曲线的渐近线方程为( )A.B. C. D.【答案】A【解析】,,渐近线方程为,即,故选A.7. 如图所示的程序框图,则满足的输出有序实数对的概率为( )A. B. C. D.【答案】D 【解析】分析:由题意结合流程图和几何概型整理计算即可求得最终结果.详解:表示的平面区域为图中的正方形内部区域,满足的区域为图中应用部分的区域,正方形和图中的阴影部分区域均关于坐标原点直线对称,结合图形的对称性可知,满足题意的概率值为.本题选择D选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.8. 已知关于的方程在区间上有两个根,且,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:首先利用诱导公式化简所给的方程,然后数形结合整理计算即可求得最终结果.详解:由诱导公式可知:,绘制函数在区间上的图象如图所示,由题意可知函数与函数有两个不同的交点,且交点横坐标满足:,则和轴为临界条件,据此有:,解得:.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()A. B. C. D.【答案】D【解析】分析:首先确定该几何体的空间结构,然后分别求得各条棱的长度,最后确定最长的棱长即可.详解:如图所示,在棱长为4的正方体中,点E为棱AD的中点,题中的三视图对应的几何体为三棱锥,其中,,,则该几何体最长的棱长为.本题选择D选项.点睛:本题主要考查三视图还原几何体,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.10. 已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11. 已知向量、、为平面向量,,且使得与所成夹角为.则的最大值为()A. B. C. D.【答案】A【解析】分析:首先由坐标结合几何意义确定向量对应的轨迹,然后利用圆的性质整理计算即可求得最终结果.详解:设向量与的夹角为,由题意可得:,则,如图所示,在平面直角坐标系中,,,不妨认为,,延长到,使得,则,点为平面直角坐标系中的点,,则,,则满足题意时,,结合为定点,且,由正弦定理:可得,则点C的轨迹为以为圆心,为半径的优弧上,当点三点共线,即点位于图中点的位置时,取得最大值,其最大值为.本题选择A选项.点睛:本题的核心是考查数量积的坐标运算和数形结合的数学思想.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12. 已知函数(),,对任意的,关于的方程在有两个不同的实数根,则实数的取值范围(其中为自然对数的底数)为()A. B. C. D.【答案】C【解析】分析:由题意分别考查函数和函数的性质,据此得到关于a的不等式组,求解不等式组即可求得最终结果.详解:函数的定义域为,且,当a=0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.当a<0时,f(x)在递减,在递增.,则,x∈(−∞,1),g′(x)>0,g(x)单调递增,x∈(1,+∞)时,g′(x)<0,g(x)单调递减,其中,则函数在区间上的值域为,在有两个不同的实数根,则必有,且:由的解析式有:,,,则满足题意时应有:,注意到函数是单调递增函数,且,据此可知方程的唯一实数根满足,即,则不等式的解集为,求解不等式可得.据此可得实数的取值范围是.本题选择C选项.点睛:本题主要考查函数单调性的应用,导函数研究函数的值域,导函数研究函数的单调性等知识,意在考查学生的转化能力和计算求解能力.第II卷二、填空题:本题共5个小题,每小题5分,共25分.13. 多项式的展开式中常数项是_____________.【答案】-672【解析】分析:由题意首先结合通项公式写出通项,然后结合展开式的性质整理计算即可求得最终结果.详解:展开式的通项公式为:,令可得:,则展开式的通项公式为:.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14. 若实数满足,则的最小值为_____________【答案】-3【解析】分析:首先画出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:不等式组即:或,绘制不等式组表示的平面区域如图所示,目标函数即:,结合目标函数的几何意义可知目标函数表示点与可行域内连线斜率值加1的值,目标函数在点处取得最小值,据此可知目标函数的最小值为:.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________【答案】【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,作准线于点,准线于点,准线于点,由抛物线的定义可知:,则,轴,,则:,同理可得:,则,为的斜边的中线,则,结合可知四边形为筝形,故,据此可知:,结合可得:,且,据此可知四边形EHFG是平行四边形,则,从而:.点睛:本题主要考查抛物线定义的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.16. 在中,点、在边上,满足.若,,则的面积为________【答案】【解析】分析:由题意结合正弦定理和函数的单调性首先求得∠ABC的值,然后结合三角形的性质整理计算即可求得最终结果.详解:如图所示,设,在△ABD和△ADE中应用正弦定理有:,,则:,即:,据此有:,令,则,则函数在定义域内单调递增,结合可得:.在△ABD中:,则:,,则.点睛:本题是导数问题与解三角形问题的综合问题,在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.17. 已知等差数列的公差,其前项和为,且,,成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】分析:(1)由题意可设,,结合等比数列的性质可得,则数列的通项公式为.(2)由(1)可得,则,,据此可得.详解:(1)由得,,因为成等比数列,所以,即,整理得,即,因为,所以,所以.(2)由(1)可得,所以,所以,所以.点睛:本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在四棱锥中,底面是平行四边形,,,,.(1)求证:平面平面;(2)若,试判断棱上是否存在与点不重合的点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.【答案】(1)证明见解析.(2)答案见解析.【解析】分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判定定理可得平面平面.(2)结合(1)的结论可知平面,据此建立空间直角坐标系,假设棱上存在点,使得直线与平面所成角的正弦值为,设,由题意可得平面的一个法向量为,且,结合空间向量的结论得到关于的方程,解方程可知存在,使得直线与平面所成角的正弦值为.详解:(1)因为四边形是平行四边形,,所以,又,所以,所以,又,且,所以平面,因为平面,所以平面平面.(2)由(1)知平面,分别以所在直线为轴、轴,平面内过点且与直线垂直的直线为轴,建立空间直角坐标系,则,由,,可得,所以,假设棱上存在点,使得直线与平面所成角的正弦值为,设,则,,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,设直线与平面所成的角为,则:,解得或者(舍).所以存在,使得直线与平面所成角的正弦值为.点睛:本题主要考查面面垂直的判断定理,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19. 为创建文明城市,我市从年开始建立红黑榜,激励先进,鞭策后进,全力推进文明城市创建工作.为了更好地促进该项工作,我市“文明办”对全市市民抽样,进行了一次创建文明城市相关知识的问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示.组别频数(1)根据频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;(2)在(1)的条件下,市“文明办”决定按如下的方案对参与调查的市民进行奖励:(ⅰ)得分不低于的可以获得2次抽奖机会,得分低于的可以获得1次抽奖机会;(ⅱ)每次抽奖所获奖券和对应的概率为:中奖的奖券面值(单元:元)概率现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查所获得的所有奖券面值和,求的分布列与数学期望.附:参考数据与公式,若,则①;②;③.【答案】(1)0.8186.(2)见解析.【解析】分析:(1)由题意结合题意可得,,结合正态分布图像的对称性可得.(2)由题意可知的可能取值为,,,.且;;;.据此可得分布列,结合分布列计算数学期望可得.详解:(1).故,,∴,.∴.综上,.(2)易知,获奖券面值的可能取值为,,,.;;;.的分布列为:∴.点睛:本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.20. 已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由.【答案】(1).(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得的方程为.(2)当不为轴时,设:,、.联立与的方程可得,结合韦达定理和平面向量数量积的坐标运算可得.当为轴时,也满足上述结论.则存在使得为定值.详解:(1),所以从而的方程为.(2)当不为轴时,设:,、.联立与的方程可得,所以,,.因为为定值,所以,解得.此时定值为.当为轴时,,..综上,存在使得为定值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知,.(1)证明:;(2)若时,恒成立,求实数的取值范围.【答案】(1)见解析.(2)见解析.【解析】分析:(1)构造函数,结合函数的单调性可证得.据此进一步可证得.则题中的不等式得证.(2)设,则,则原问题成立的必要条件是.进一步证得当时可知实数的取值范围是.详解:(1)设,则,故在上单调递减,在上单调递增.从而.而当时,.(2)设,则,.要求在上恒成立必须有.即.以下证明:当时.只要证,只要证在上恒成立.令,则对恒成立,又,所以.从而不等式得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.选做题(请考生在第22、23两题中任选一题作答,如果全做,则按所做的第一题评分,作答时请写清题号)22. 在平面直角坐标系中,曲线的参数方程为(为参数,)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为().(1)求曲线、的直角坐标方程.(2)若、分别为、上的动点,且、间距离的最小值为,求实数的值.【答案】(1),.(2)或者.【解析】分析:(1)消去参数可得的直角坐标方程为,极坐标方程化为直角坐标方程为.(2)设,,由点到直线距离公式可得到的距离,结合题意分类讨论可得或者.详解:(1)消去参数可得的直角坐标方程为,的方程即:,即,则直角坐标方程为:.(2)设,,则到的距离,.由、间距离的最小值为知:当时,得;当时,,得.综上:或者.点睛:本题主要考查参数方程与普通方程互化,极坐标方程与互化,极坐标方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.23. 选修4-5:不等式选讲已知函数.(Ⅰ)若不等式对恒成立,求实数的取值范围;(Ⅱ)当时,函数的最小值为,求实数的值.【答案】(Ⅰ) (Ⅱ)【解析】试题分析:(1)由绝对值不等式可求得实数的取值范围.(2)以零点和分三段讨论。

江西省重点中学协作体2018届高三第二次联考理科数学(含答案)(2018.05)

江西省重点中学协作体2018届高三第二次联考理科数学(含答案)(2018.05)

1 2
C. (0, ]
1 2
D.
0,1
主视图 2 4 4 俯视图
左视图
9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都 是直角梯形,左视图是正方形, 则该几何体最长的棱长 为 ( ) A. 4 2 B. 2 5 B. 2 13 D. 6
10.已知一袋中有标有号码 1、 2 、 3 的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的 卡片全部取出时即停止,则恰好取 5 次卡片时停止的概率为( ) A.
1 16
B.
3 32
C.
1 4
D.
1 2
8 . 已 知 关 于 x 的 方 程 sin( x ) sin(
x ) 2m 1 在 区 间 2
4 2
4 4
4
0, 2 上有两个根 x1 , x2 ,且 x1 x2
是( A. ( 1, 0] ) B. [ ,1)
,则实数 m 的取值范围
14 22 25 C. D. 81 81 81 11. 已知向量 a 、 b 、 c 为平面向量,| a || b | 2a b 1 ,且 c 使得 c 2 a 与 c b 所成夹角为 .则 | c | 的 3
B. 最大值为( A. 3 1 ) B. 3
(2 n 2) 2 3 (2)若 bn ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2n . 2n Sn 1 2
18. (本小题满分 12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形, AB AC 2 ,
AD 2 2 , PB 2 , PB AC .
2

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理科)试题(考试时间:120分钟 总分:150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1. 已知集合{}2560A x x x =--≤,(){}ln 1B x y x ==-,则A B I 等于A. []1,6-B. (]1,6C. [)1,-+∞D. []2,3 2.设复数z 满足(1)3i z i -=+,则z = A .2 B .2 C .22 D .53.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215π B . 320π C. 2115π- D . 3120π- 4.执行如右图所示的程序框图,则输出的s 的值是 A .7 B .6 C .5 D .35.在等差数列{}n a 中,已知47,a a 是函数2()43f x x x =-+的两个零点,则{}n a 的前10项和等于A . 18-B . 9C .18D .206.已知Rt ABC ∆,点D 为斜边BC 的中点, 62AB =u u u r , 6AC =u u u r , 12AE ED =u u u r u u u r ,则AE EB ⋅u u u r u u u r等于A. 14-B. 9-C. 9D.147. 已知12e a dx x=⎰,则()()4x y x a ++ 展开式中3x 的系数为A.24B.32C.44D.56 8.函数321y x =-的图象大致是A. B. C. D.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点分别为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为A .5B .5C . 3D . 3310.已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+≠><< ⎪⎝⎭,若()03f f π⎛⎫=-⎪⎝⎭,则ω的最小值是 A . 3 B . 2 C. D 111. 如图,格纸上小正方形的边长为1,粗实线画出的 是某多面体的三视图,则该多面体的外接球表面积为 A. 31π B. 32π C. 41π D. 48π12.已知函数()f x 的定义域为R ,(2)()f x f x -=--且满足,其导函数'()f x ,当1x <-时,(1)[()(1)'()]0x f x x f x +++<,且(1)4,f =则不等式(1)8xf x -<的解集为A . (),2-∞-B .()2,+∞C . ()2,2-D . ()(),22,-∞-+∞U第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 若实数x y ,满足条件1230x x y y x≥⎧⎪-+≥⎨⎪≥⎩,则1y z x =+的最大值为14. 3sin 2,sin 2θθθθ=已知sin +cos =则 . 15. 已知,A B 是以F 为焦点的抛物线24y x =上两点,且满足4AF FB =u u u r u u u r,则弦AB 中点到准线距离为 .16. ∆∆在ABC 中,AB=AC,D 为AC 中点,BD=1,则ABC 的面积最大值为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或验算步骤.) 17. (12分)已知等比数列{}n a 的公比0q >,2318a a a =,且46,36,2a a 成等差数列.32()1求数列{}n a 的通项公式 ()2记2n nnb a =,求数列{}n b 的前n 项和n T 18. (12分)如图所示,该几何体是由一个直三棱柱ADE BCF -和一个四棱锥P ABCD -组合而成,其中AD AF ⊥,PA PB PC PD ===,2AE AD AB ===. (Ⅰ)证明:AD ⊥平面ABFE ;(Ⅱ)若四棱锥P ABCD -的高2,求二面角C AF P --的余弦值.19. (12分)“中国人均读书4.3本(包括络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:[)20,30, [)30,40, [)40,50, [)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在[)30,60的人数;(2)求40名读书者年龄的平均数和中位数; (3)若从年龄在[)60,80的读书者中任取2名,求这两名读书者年龄在[)70,80的人数X 的分布列及数学期望.20. (12分)已知椭圆2226:1(2)2x y C b b +=<< ,动圆P :22002()()3x x y y -+-= (圆心P 为椭圆C 上异于左右顶点的任意一点),过原点O 作两条射线与圆P 相切,分别交椭圆于M ,N 两点,且切线长最小值时,tan 2MOP ∠=. (Ⅰ)求椭圆C 的方程;(Ⅱ)判断MON ∆的面积是否为定值,若是,则求出该值;不是,请说明理由。

广东、江西、福建三省十校2018届高三2月联考数学理

广东、江西、福建三省十校2018届高三2月联考数学理

“三省十校”高三2月联考数学(理科)2018.2一、选择题1. 已知集合{}2560A x x x =--≤,(){}ln 1B x y x ==-,则A B 等于A. []1,6-B. (]1,6C. [)1,-+∞D. []2,32.设复数z 满足(1)3i z i -=+ =A .2 C . D3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215π B . 320π C. 2115π- D . 3120π- 4.执行如右图所示的程序框图,则输出的s 的值是 A .7 B .6 C .5 D .35.在等差数列{}n a 中,已知47,a a 是函数2()43f x x x =-+的两个零点,则{}n a 的前10项和等于A . 18-B . 9C .18D .206.已知Rt ABC ∆,点D 为斜边BC 的中点,AB = , 6AC = , 12AE ED = ,则AE EB ⋅等于A. 14-B. 9-C. 9D.14 7. 已知12ea dx x=⎰,则()()4x y x a ++ 展开式中3x 的系数为 A.24 B.32 C.44 D.56 8.函数y =的图象大致是A. B. C. D.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点分别为F ,M 是双曲线C的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为A.2 B..210.已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+≠><< ⎪⎝⎭,若()03f f π⎛⎫=- ⎪⎝⎭,则ω的最小值是A . 3B . 2 C. D 111. 如图,网格纸上小正方形的边长为1,粗实线画出的 是某多面体的三视图,则该多面体的外接球表面积为 A. 31π B. 32π C. 41π D. 48π12.已知函数()f x 的定义域为R ,(2)()f x f x -=--且满足,其导函数'()f x ,当1x <-时,(1)[()(1)'()]0x f x x f x +++<, 且(1)4,f =则不等式(1)8xf x -<的解集为A . (),2-∞-B .()2,+∞C . ()2,2-D . ()(),22,-∞-+∞ 二、填空题13. 若实数x y ,满足条件1230x x y y x≥⎧⎪-+≥⎨⎪≥⎩,则1y z x =+的最大值为14. 2,sin 2θθθθ=已知sin +cos 则 . 15. 已知,A B 是以F 为焦点的抛物线24y x =上两点,且满足4AF FB =,则弦AB 中点到准线距离为 .16. ∆∆在ABC 中,AB=AC,D 为AC 中点,BD=1,则ABC 的面积最大值为 . 三、解答题17. 已知等比数列{}n a 的公比0q >,2318a a a =,且46,36,2a a 成等差数列.()1求数列{}n a 的通项公式()2记2n nnb a =,求数列{}n b 的前n 项和n T18. 如图所示,该几何体是由一个直三棱柱ADE BCF -和一个四棱锥P ABCD -组合而成,其中AD AF ⊥,PA PB PC PD ===,2AE AD AB ===. (Ⅰ)证明:AD ⊥平面ABFE ;(Ⅱ)若四棱锥P ABCD -的高2,求二面角C AF P --的余弦值.3219. “中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: [)20,30, [)30,40, [)40,50,[)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问: (1)估计在40名读书者中年龄分布在[)30,60的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在[)60,80的读书者中任取2名,求这两名读书者年龄在[)70,80的人数X 的分布列及数学期望.20. 已知椭圆222:12x y C b b +=<<,动圆P :22002()()3x x y y -+-= (圆心P为椭圆C 上异于左右顶点的任意一点),过原点O 作两条射线与圆P 相切,分别交椭圆于M ,N 两点,且切线长最小值时,tan MOP ∠Ⅰ)求椭圆C 的方程;(Ⅱ)判断MON ∆的面积是否为定值,若是,则求出该值;不是,请说明理由。

【高三数学试题精选】2018届高三数学理科联考试题(江西省九校有答案)

【高三数学试题精选】2018届高三数学理科联考试题(江西省九校有答案)
记(),则,
设则,是单调减函数,
则有,而,.
又是单调增函数,且..................8分
(3)由得,设,在等边三角形中,易知, ,由等边三角形性质知即
...............10分
,又
..............12分
22.解(1)直线的参数参数方程为为参数),
圆的极坐标方程为...............5分
2018届高三数学理科联考试题(江西省九校有答案)
5
分宜中学玉一中临川一中
②得
18解(1)
,即二面角……………12分
19解(1)两次点数之和为16,即两次的底面数字为(1,3),(2,2),(3,1),
……………5分
(2)的可能取值为0,1,2,3

…………(2)∵,∴四边形为平行四边形,
(2)圆的直角坐标方程为,把代入得
又...............10分
23.解(1)当时, ,原不等式等价于
或或
解得或或,所以不等式的解集为或....5分
(2)
....10分
5
显然直线的斜率存在,设的方程为,
把代入得,
由得,
∴,,
∵………………………7分

=,
令,∴,
∴…………………10分
当且仅当,即时取等号,
∴,此时的方程为。12分
21.解(1)
若则则函数在上单调递增,这与题设矛盾
易知在上单调递减,在上单调递增
且时, ;时,
.................4分
(2),两式相减得.

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校 2018 届高三联考理科数学试题含答案分宜中学 玉山一中 临川一中2018 年江西省 南城一中 南康中学 高安中学高三联合考试彭泽一中 泰和中学 樟树中学数学试卷(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分 150 分 . 考试时间为 120 分钟 .2.本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做 在第Ⅰ卷的无效 .第 Ⅰ卷(选择题共 60 分)一、 选择题:本大题共 12 小题 ,每小题5分 ,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.已知集合 A2 1 , Bx (x2)( x 1) 0 ,则 A B 等于()xxA . (0, 2)B . (1,2)C . ( 2,2)D . ( , 2) (0,)2.设 (12i )x x yi ,其中 x, y 是实数,则yi()xA . 1B . 2C . 3D .53.下面框图的 S 的输出值为 ()A . 5B . 6C . 8D . 13N (2, 2)4X 服从正态分布且.已知随机变量P( x 4)0.88 ,则 P(0 x 4) ()A . 0.88B . 0.76C . 0.24D .0.125.在各项不为零的等差数列a n 中,2a 2017 a 20182 2a 2019 0 ,数列 { b n } 是等比数列,且b2018a 2018 ,则 log 2 (b 2017b 2019 ) 的值为()A . 1B . 2C. 4D . 86.下列命题正确的个数是()( 1)函数 ycos 2 ax sin 2 ax 的最小正周期为”的充分不必要条件是 “a 1”.( 2)设 a { 1,, ,3}1,则使函数 yx a 的定义域为 R 且为奇函数的所有a 的值为 1,1,3 .2a ln x 在定义域上为增函数,则 a 0 .( 3)已知函数 f (x)2xA . 1B . 2C . 3D . 07.已知向量 a( x 2 , x 2), b (3, 1),c (1, 3) ,若 a // b ,则 a 与 c 夹角为( )A .B .2 5C .D .63368.如图,网格纸上小正方形的边长为1,粗线所画出的是某几何体的三视图,则该几何体的各条棱中最长的棱长为()A. 2 5B. 4 2C. 6D. 4 39.若关于 x 的不等式 (a 2a6) x sin a 无解,则 a( ) A. 3B.2C. 2D. 310.若 A 1,2 ,Bx 1 , y 1 ,C x 2 , y 2 是抛物线 y 24x 上不同的点,且 AB BC ,则 y 2 的取值范围是()A .( -,-6 ) [10,+)B .( - ,-6] (8,+ )C .( - ,-5] [8,+ )D .( - ,-5][10,+)2x y 411.已知动点 P( x, y) 满足:x,则 x 2 y 2 +4 y 的最小值为()2 x3 y 2 y3 xA . 2B .24 . 1D . 2Cx12.已知函数 f ( x) =ee ,x,( e 为自然对数的底数) ,则函数 y f ( f ( x)) f ( x)2 + 0x,x0.5x 4的零点的个数为 ()A . 2B . 3C . 4D .5第 II 卷(非选择题共 90 分)二、填空题 :本大题共 4 小题 ,每小题 5 分 ,共 20 分 .13. ( x1)(2x1)3 的展开式中的常数项为.xx14.已知 F 1、F 2 为双曲线的焦点,过F 2 作垂直于实轴的直线交双曲线于A 、B 两点, BF 1 交 y轴于点 C ,若 AC ⊥BF 1,则双曲线的离心率为.15.已知矩形 ABCD 的两边长分别为 AB 3 , BC 4 , O 是对角线 BD 的中点,E 是 AD 边上一点,沿 BE 将 ABE 折起,使得 A 点在平面 BDC 上的投影恰 为 O (如右图所示),则此时三棱锥 A BCD 的外接球的表面积是 .16.在 ABC 中,内角 A,B,C 所对的边分别是 a, b, c , b sin A , a1 b cos A ,1;( 2) S ABC 的最大值为12sin Ccos B 则有如下结论:( 1) c;4( 3)当 S ABC 取最大值时, b5 .3.则上述说法正确的结论的序号为三、解答题:共 70 分。

江西省重点中学盟校2018届高三第二次联考理科综合试题含答案

江西省重点中学盟校2018届高三第二次联考理科综合试题含答案

江西省重点中学盟校2018届高三第二次联考理科综合试卷考生注意:1.答题前,考生将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试卷上作答,答案无效。

考试结束,监考员将试题卷、答题卡一并回收。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共300分。

本卷共21小题,每小题6分,共126分可能用到的相对原子质量:H-1 C-12 O-16 Na-23 S-32一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.下列关于构成真核细胞的元素及化合物的相关叙述,正确的是()A.组成神经元的元素都是以化合物的形式存在,且K+进出神经元的载体种类不同B.生命活动都需要降低化学反应活化能的酶和直接供能物质ATP参与C.细胞生物中只有DNA能携带遗传信息,其遗传特征主要也由DNA决定D.RNA聚合酶、解旋酶只能通过核孔进入细胞核发挥作用2.生命系统中整体与部分(Ⅰ、Ⅱ、Ⅲ)的关系如下图所示,下列叙述错误..的是()A.若整体代表固醇,且Ⅰ、Ⅱ代表性激素和维生素D,则Ⅲ是动物细胞Array膜的成分B.若整体为人体有氧呼吸,且存在有过程Ⅰ→Ⅱ→Ⅲ的关系,则过程Ⅱ发生的场所是产生二氧化碳的唯一场所C.若整体代表物质跨膜运输的方式,且Ⅰ代表自由扩散,则Ⅱ、Ⅲ都需要载体蛋白D.若整体为生产者的同化量,则Ⅰ、Ⅱ分别表示生产者流入初级消费者能量、流入分解者的能量,则Ⅲ为未被利用的能量3.春夏时期常见的传染性结膜炎,俗称“红眼病”,常见伴有双眼发烫、红肿、多泪、刺痛等症状,根据传染源可分为细菌性结膜炎和病毒性结膜炎。

下列有关叙述不正确的是()A.泪液中的溶菌酶可以对结膜上的病原体起免疫作用,这属于人体的第一道防线B.细菌在细胞质中通过自身的核糖体合成蛋白质,而病毒的细胞质中没有核糖体C.细菌可以在普通培养基上生长,而病毒不能,两者一定共有的元素是C、H、O、N D.病毒性结膜炎引起体内细胞免疫后,效应T 细胞使靶细胞裂解死亡,但还需借助体液免疫产生的抗体及吞噬细胞的吞噬作用才能彻底消灭其内的病毒4.2017年10月诺贝尔生理学奖或医学奖授予美国科学家杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·杨,以表彰他们发现控制昼夜节律的分子机制。

(新)江西省两校2018届高三数学11月联考试题理

(新)江西省两校2018届高三数学11月联考试题理

江西省两校2018届高三数学11月联考试题理一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U是实数集R,函数214yx=-的定义域为2,{|log(1)1}M N x x=-<,则()UN C M⋂=()A.{}|21x x-≤<B.{}|22x x-≤≤C.{}|2x x<D.{}|12x x<≤2.《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第八日所走里数为()A.150 B.160 C.170 D.1803.已知向量,a b的夹角为060,且2a b==,则向量a b+在向量a方向上的投影为()A.3B.3C.3-D.3-4.设曲线1cossinxyx+=在点(,1)2π处的切线与直线10x ay-+=平行,则实数a等于()A.1-B.12C.2-D.25.函数2ln||xy xx=+的图象大致为( )6.关于x的不等式2210ax x-+<的解集为非空集合的一个必要不充分条件是()A.1a<B.1a≤C.01a<<D.0a<7.已知实数x y、满足不等式组2110xx y mx y≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y=-+的最大值不超过4,则实数m的取值范围是()A.(3,3)-B.3] C.[3,0]D.[3,3]8.已知βα,均为锐角,53)3sin(,135)cos(=+-=+πββα,则)6cos(πα+=( ) A.6533B.6563C.6533-D.6563-9.已知数列{}n a 是等比数列,若2588a a a =-,则151959149a a a a a a ++( ) A .有最大值12B .有最小值12C .有最大值52D .有最小值5210.已知数列{}n a 的前n 项和为n S ,且)(,*N n S a a n n ∈+==+12111,在等差数列{}n b 中,52=b ,且公差2=d .使得n b a b a b a n n 602211>+++ 成立的最小正整数n 为( )A .2B .3C .4D .511.已知122)(+-=x x ax f 为奇函数,)ln()(2b x x g -=,若对)()(,,2121x g x f R x x ≤∈∀恒成立,则b 的取值范围为( ) A .]0,(-∞B .],(e --∞C .]0,[e -D .),[+∞-e12.在ABC ∆中,角A B C ,,所对的边是a b c ,,,0GA GB GC ++=且0GA GB ⋅=,若tan tan tan tan tan A B mA B C+=,则实数m 的值是( ) A.12B.13C.14D.15二、填空题:本大题共4小题,每小题5分,共20分.13.在正方形ABCD 中,M N 、分别是BC CD 、的中点,若AC AM BN λμ=+, 则λμ+= 14.设函数()2sin(2)6f x x πω=+(),0x R ω∈>,若将)(x f y =的图像向左平移6π个单位后,所得图像关于y 轴对称.则ω的最小值为 ;15.若,,x y z 均为正实数,则222xy zyx y z +++的最大值为16. 已知函数()()()⎪⎩⎪⎨⎧<++≥+=012012x x x x e xx f x ,若函数1))((--=a x f f y 有三个零点,则a 的取值范围是 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知正项数列{}n a 满足:211,(21)n n a a n a =--=211(21)(2).n n a n a n n N --++-≥∈且(1)求数列{}n a 的通项公式; (2)求3223111111n n a a a a a a ++++++---的值.18.(本小题满分12分)如图,在多面体111ABC A B C -中,1AA ⊥平面ABC ,11AA BB ∥, 111,2B C BC ∥12.2AB AC AA BC ===(1)求证:1AB //平面11AC C ;(2)求二面角11C AC A --的余弦值.19.(本小题满分12分)在ABC ∆中,角C B A 、、的对边分别为a 、b 、c ,若12cos 2cos22=-+C BA .(1)求角C 的大小,并求函数()sin()sin cos cos()44f A A A A A ππ=+++-的最大值; (2)若ABC ∆三边长成等差数列,且1a =,求ABC ∆的面积.20.已知椭圆)0(1:2222>>=+b a by a x C 过点)0,2(-P ,直线l 与椭圆C 相交于B A ,两点(异于点P ).当直线l 经过原点时,直线PB PA ,斜率之积为43-. (1)求椭圆C 的方程; (2)若直线PB PA ,斜率之积为41-,求AB 的最小值.21.(本小题满分12分) 已知函数222()=22(),()=2ln ln 2(0)xx f x eae a x R g x a x x x -+∈-+>,a R ∈,(1)讨论()f x 的单调性;(2)求证:对0,x a R ∀>∈,都有()()f x g x >.22.[选修4―4:坐标系与参数方程](10分)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为2(1x t y ⎧=-⎪⎨=-+⎪⎩为参数),曲线C 的极坐标方程为4cos ρθ=;(1)求直线l 的直角坐标方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交点分别为M N 、,点(1,0)P ,求11PM PN+的值.23.[选修4—5:不等式选讲](10分)已知()()f x x a a R =+∈;(1)若()23f x x ≥+的解集为[]3,1--,求a 的值;(2)若x R ∀∈,若不等式()22f x x a a a +-≥-恒成立,求实数a 的取值范围.2018届江西师大附中、九江一中高三数学(理)联考试卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U是实数集R,函数214yx=-的定义域为2,{|log(1)1}M N x x=-<,则()UN C M⋂=( D )A.{}|21x x-≤<B.{}|22x x-≤≤C.{}|2x x<D.{}|12x x<≤2.《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第八日所走里数为( C )A.150 B.160 C.170 D.1803.已知向量,a b的夹角为060,且2a b==,则向量a b+在向量a方向上的投影为( A )A.3B.3C.3-D.3-4.设曲线1cossinxyx+=在点(,1)2π处的切线与直线10x ay-+=平行,则实数a等于( A )A.1-B.12C.2-D.25.函数2ln||xy xx=+的图象大致为( C )6.关于x的不等式2210ax x-+<的解集为非空集合的一个必要不充分条件是( B )A.1a<B.1a≤C.01a<<D.0a<7.已知实数x y、满足不等式组2110xx y mx y≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y=-+的最大值不超过4,则实数m的取值范围是( D )A .(3,3)-B .[0,3] C.[3,0]- D .[3,3]-8.已知βα,均为锐角,53)3sin(,135)cos(=+-=+πββα,则)6cos(πα+=( A ) B.6533B.6563C.6533-D.6563-9.已知数列{}n a 是等比数列,若2588a a a =-,则151959149a a a a a a ++( D ) A .有最大值12B .有最小值12C .有最大值52D .有最小值5210.已知数列{}n a 的前n 项和为n S ,且)(,*N n S a a n n ∈+==+12111,在等差数列{}n b 中,52=b ,且公差2=d .使得n b a b a b a n n 602211>+++ 成立的最小正整数n 为( C )A .2B .3C .4D .511.已知122)(+-=x x ax f 为奇函数,)ln()(2b x x g -=,若对)()(,,2121x g x f R x x ≤∈∀恒成立,则b 的取值范围为( B ) A .]0,(-∞B .],(e --∞C .]0,[e -D .),[+∞-e12.在ABC ∆中,角A B C ,,所对的边是a b c ,,,0GA GB GC ++=且0GA GB ⋅=,若tan tan tan tan tan A B mA B C+=,则实数m 的值是( A ) A.12B.13C.14D.15二、填空题:本大题共4小题,每小题5分,共20分.13.在正方形ABCD 中,M N 、分别是BC CD 、的中点,若AC AM BN λμ=+,则λμ+= 8514.设函数()2sin(2)6f x x πω=+(),0x R ω∈>,若将)(x f y =的图像向左平移6π个单位后,所得图像关于y 轴对称.则ω的最小值为 1 ;15.若,,x y z 均为正实数,则222xy zy x y z +++的最大值为 216. 已知函数()()()⎪⎩⎪⎨⎧<++≥+=012012x x x x e xx f x ,若函数1))((--=a x f f y 有三个零点,则a 的取值范围是 11(1,1)(2,3]3ee ⎧⎫++⎨⎬⎩⎭ .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知正项数列{}n a 满足:211,(21)n n a a n a =--=211(21)(2).n n a n a n n N --++-≥∈且(1)求数列{}n a 的通项公式; (2)求3223111111n n a a a a a a ++++++---的值. 解(1)2211(21)(21)n n n n a n a a n a ----=+-111()()(21)()n n n n n n a a a a n a a -+-⇒-+=-+ 1021(2)n n n a a a n n -∴>∴-=-≥又112211()()()n n n n n a a a a a a a a ---=-+-++-+=2(21)(23)31n n n -+-+++=(2)2112222111111(2)1111(1)(1)11n n n n n a a n a a a n n n n n +-+==+=+=+=+-≥-----+-+ 1111111=(11)(1)(1)(1)3243511n n ∴+-++-++-+++-++原式1111111111=(n-1)+(1)324351121n n n n n -+-+-++-=+--+++ 18.(本小题满分12分)如图,在多面体111ABC A B C -中,1AA ⊥平面ABC ,11AA BB ∥, 111,2B C BC ∥12.2AB AC AA BC ===(1)求证:1AB //平面11AC C ;(2)求二面角11C AC A --的余弦值.解:(1)取BC 的中点D ,连结1,,AD DC由条件知11CD B C ,11BD B C ,∴四边形11B DCC 和11BDC B 为平行四边形, ∴11B D CC ,11C D BB ,∴11C D AA , ∴四边形11AAC D 为平行四边形,∴11,ADA C∴平面1AB D 平面11AC C ,则1AB 平面11AC C 。

江西重点中学2018届高三第二次联考数学(理)试题(图片版)

江西重点中学2018届高三第二次联考数学(理)试题(图片版)

江西省重点中学盟校2018届高三第二次联考数学(理科)试卷参考答案一、选择题二、填空题13.65π14. 4 15. 213+或 13+ 16.22116题提示:可设θ=∠APQ ,在三角形AOP 正弦定理可得:θsin 3=OP ,同理在三角形AOQ 可得:)3sin(3πθ+=OP .三、解答题17.(1)∵1310n n S S +--=⇒12,310n n n S S -≥--=.∴130n n a a +-=,又∵213a a = ∴{}n a 为等比数列13n n a -⇒=. ……5分 (2)33n n n n n b a ==.……6分231123133333n n n n n T --=+++⋅⋅⋅++⇒234111231333333n n n n n T +-=+++⋅⋅⋅++ 23121111333333n n n n T +⇒=+++⋅⋅⋅+-⇒n n n T 343243⋅+-=. ……12分 18.(1)连接AC 交BD 于点O ,显然AE OG//,⊄OG 平面AEF ,⊂AE 平面AEF ,可得//OG 平面AEF ,同理//BD 平面AEF ,O BD OG = , 又⊂OG BD ,平面BDGH ,可得:平面//BDGH 平面 AEF . ……5分(2)过点O 在平面BDEF 中作z 轴BD ⊥,显然z 轴、OB 、OC 两两垂直,如图所示建立空间直角坐标系. ……7分)0,3,0(C ,)3,0,1(-E ,)3,0,1(F ,)0,0,1(-D ,)33,1(,--=,)0,3,1(--=,)0,0,2(=.设平面CDE 与平面CDF 法向量分别为),,(1111z y x n = ,),,(2222z y x n =.⎪⎩⎪⎨⎧=--=+--0303311111y x z y x ,设)0,1,3(1-=n ;⎩⎨⎧==+--020331111x z y x ,设)1,3,0(2=n .…10分 43223,cos 21-=⋅->=<n n,综上:面CED 与平面CEF 所成角的余弦值为43. …12分19. 解:(1)由表中数据计算得:5.3=x ,525=y ,5.17)(261=-∑=x xi i,412)(261=-∑=y y i i ,∴75.099.04125.1784)()())((2126161>≈⨯=----=∑∑∑===y y x x y y x x r ni ii iii i.综上y 与x 的线性相关程度较高. ……4分又8.45.1784)())((ˆ26161==---=∑∑==x xy y x xbi ii i i,2.5088.45.3525ˆ=⨯-=∴a, 故所求线性回归方程:.25088.4ˆ+=x y.……7分(2)X 服从超几何分布,所有可能取值为1,2,3,4,)4,3,2,1(49436)(=-==k C kC k C k X P所以X 的分布列为期望3896442542110314522111)(=⨯=⨯+⨯+⨯+⨯=X E……12分20.(1)设1PF 的中点为M ,在三角形12PFF 中,由中位线得:212OM PF =, 当两个圆相内切时 ,两个圆的圆心距等于两个圆的半径差,即1122OM PF =-∴2112112422PF PF PF PF =-⇒+=, 即2a =, 又21=e∴1,c b == ∴椭圆方程为:22143x y +=……5分(2)由已知0≠PQ k 可设直线:1PQ x my =-,1122(,),(,)P x y Q x y22221(34)690143x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩122PQRPOQSSy y ==-=1t =≥,原式=212121313t t t t=++,当1t =时,min 1(3)4t t +=∴max()3PQR S=……12分21. (1)0sin )(),,0(=-⇒=∈x kx k x f x π,令()π,0,sin )(∈-=x x kx x g .此时x k x g cos )(-='①若1-≤k ,)(x g 在()π,0递减,0)0(=g ,无零点;②若1≥k ,)(x g 在()π,0递增,0)0(=g ,无零点;…… 2分③若11<<-k ,)(x g 在()0,0x 递减,()π,0x 递增,其中k x =0cos . Ⅰ.若01≤<-k ,则0)(,0)0(≤=πg g ,此时)(x g 在()π,0无零点; Ⅱ.若10<<k ,则0)(,0)0(>=πg g ,此时)(x g 在()π,0有唯一零点; 综上所述:当0≤k 或1≥k 时,无零点;当10<<k 时,有1个零点.… 5分(2)解法一:k x xx x x f =-='2sin cos )(,令)2,0(,cos sin )(2π∈-+=x x x x kx x h ,)2(sin )(k x x x h +='①若21≥k ,)(x h 在()π2,0递增,0)0(=h ,无零点;。

推荐-全国大联考2018届高三第二次联考数学试卷(理科湖

推荐-全国大联考2018届高三第二次联考数学试卷(理科湖

全国大联考(湖南专用)2018届高三第二次联考数学试卷(理科) 编审:江西金太阳教育研究所数学研究室考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟· 2.答题前,考生务必将密封线内的项目填写清楚.3.请将第Ⅰ卷答案填在第Ⅱ卷前的答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答题. 4.本试卷主要考试内容:①第一次联考内容占30%;②函数内容占70%.第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y| y=x+1},N={(x ,y)|x 2 +y 2 =1},则M N 中元素的个数是 A .0 B .1 C .2 D .多个 2.已知复数1z =a+i ,z 2=1+a 2 i ,若12z z 是实数,则实数a 的值等于 A .1 B .-1 C .-2 D .2 3.函数()x log a x f a x +=在区间[1,2]上的最大值与最小值之和为41-,最大值与最小值之积为83-,则a 等于 A .2 B .21 C .2或21 D .32 4.若函数f (x)= e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为A .2πB .0C .钝角D .锐角 5.已知实数a 、b 满足等式b log a log 32=,下列五个关系式:① 0<a<b<1;② 0<b<a<1; ③ a=b ;④ 1<a<b ;⑤ l<b<a . 其中不可能成立的关系式有A .1个B .2个C .3个D .4个 6.函数f (x)为奇函数且f (3x+1)的周期为3,f (1)=-1,则f (2018)等于 A .0 B .1 C .一1 D .2 7.设f (x)的定义域为R 且存在反函数,若f (2x -1)与()1x f1+-互为反函数,且已知()x f lim 1x -+∞→存在,则()x f lim 1x -+∞→)等于A .1B .21 C .2 D .23 8.函数()2ax x log y 2a +-=在[2,+∞]上恒为正数,则实数a 的取值范围是A .0<a<1B .1<a<2C .1<a< 25D . 2<a<39.连掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角90>θ 的概率是 A .21 B .31 C . 127 D . 12510.已知函数f (x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f (x) cosx<0的解集是A .(-3,-2π) (0,1) (2π,3) B .(-2π,一1) (0,1) (2π,3)C .(-3,-1) (0,1) (1,3)D .(-3,-π) (0,1) (1,3)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中的横线上11.在平面直角坐标系中,x 轴的正半轴上有4个点,y 轴的正半轴上有5个点,这9个点任意两点连线,则所有连线段的交点落入第一象限的最多有______个. 12.已知函数()()()()⎩⎨⎧≥<-+-=1x a1x 2a 7x 1a 2x f x 在(-∞,+∞)上单调递减,则实数a 的取值范围是_________________.13.若()()()()()11112210921x a 1x a 1x a a 2x 1x -++-+-+=-+ ,则()()=+++-+++2104221131a 10a 4a 2a 11a 3a ______(用数字作答).14.如图正六边形ABCDEF 中,AC ∥y 轴.从六个顶点中任取三点,使这三点能 确定一条形如y=ax 2+bx+c (a ≠0)的抛物线的概率是_______________. 15.购买手机的“全球通”卡,使用时须付“基本月租费” (每月须交的固定月租费)50元,在市区通话时每分钟另收话费0.4元;购买“神州行”卡,使用时不收“基本月租费”, 但市区内通话时每分钟另收话费0.6元.若某用户每月手机 费预算为120元,则在这两种手机卡中,购买__________卡 较合算.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤.16.(本小题满分12分)二次函数f (x)满足f (x+1)-f (x)=2x ,且f (0) =1. (1) 求f (x)的解析式;(2) 在区间[-1,1]上,y=f (x)的图象恒在y=2x 十m 的图象上方,试确定实数m 的取值范围.17.(本小题满分12分)小张有一只放有a 个红球,b 个黄球,c 个白球的箱子,且a+b+c =6 (a ,b ,c ∈N),小刘有一只放有3个红球,2个黄球,1个白球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时小张胜,异色时小刘胜. (1) 用a 、b 、c 表示小张胜的概率;(2) 若又规定当小张取红、黄、白球而胜的得分分别为1分、2分、3分,否则得0分,求小张得分的期望的最大值及此时a 、b 、c 的值.18.(本小题满分14分)已知函数f (x) = (x -a)(x -b)(x -c).(1) 求证:()x 'f = (x -a)(x -b)+(x -a)(x -c)+(x -b)(x —c);(2) 若f (x)是R 上的增函数,是否存在点P ,使f (x)的图象关于点P 中心对称? 如果存在,请求出点P 坐标,并给出证明,如果不存在,请说明理由.19.(本小题满分14分)某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p %的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件100p 170-元,预计年销售量将减少p 万件. (1) 将第二年商场对该商品征收的管理费y(万元)表示成p 的函数,并指出这个函数的定义域;(2) 要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p %的范围是多少?(3) 第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?20.(本小题满分14分)已知函数y= f (x)对于任意实数x ,y 都有f (x+y) =f (x)+f (y)+2xy . (1) 求f (0)的值;(2) 若f (1)=1,求f (2),f (3),f (4)的值,猜想f(n)的表达式并用数学归纳法证明你的结论(n ∈N*);(3) 若f (1)≥1,求证:021f n >⎪⎭⎫⎝⎛ (n ∈N*).21.(本小题满分14分)定义在(-1,1)上的函数f (x)满足:对任意x ,y ∈(-1,1)都有 ()()⎪⎪⎭⎫⎝⎛++=+xy 1y x f y f x f (1) 求证:函数f (x)是奇函数;(2) 若当x ∈(-1,0)时,有f (x)>0,求证:f (x)在(-1,1)上是减函数; (3) 在(2)的条件下解不等式:0x 11f 21x f >⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+.2018届高三第二次联考数学试卷(理科)参考答案(湖南专用)一、选择题1.A 2.B 3.B 4.C 5.B 6.B 7.A 8.C 9.D 10.B 二、填空题11.60 12.⎪⎭⎫⎢⎣⎡21,83 13.0 14.53 15.神州行提示:1.A 集合M 是函数y=x+l 的函数值的集合,集合N 是圆上的点集.2.B ()()1a i 1a a a z z 23212+++-=,故a 3+1=0,得a =-1. 3.B . 函数f(x)在区间[1,2]上是单调的,故有f(1)+f(2)=-41,f(1)f(2)=-83,所以可解得21a =. 4.C ()044sin e 24'f 4<⎪⎭⎫ ⎝⎛+=π.5.B 根据图象知:只有②、③、④有可能成立.6.B 由已知f (3x+1)=f[3(x+3)+1]=f(3x+1+9),所以f(x)的周期为9,f(2018)= f(2018-1)=f(-1)=-f(1)=1. 7.A 由已知得()[]()1x f 1x f 21y 11+=+=--,两边取极限可得. 8.C 4-2A+2>0,得a<3.令g(x)=x 2-ax+2,则g(x)最小为g(2)=6-2a . 当a>l 时,6-2a>1,得1<a<25 当0<a<l 时, g(x)在[2,+∞)上无最大值,这时符合题意的a 值不存在. 9.D 若使夹角90>θ,则有-m+n<0即m>n ,其概率为1253615=. 10.B 根据题意结合右边图象可得.11.60 构造凸四边形,凸四边形对角线的交点在凸四边形内.最多其有C C 2524⋅=60.12. ⎪⎭⎫⎢⎣⎡21,83 根据题意:⎪⎩⎪⎨⎧≥-+-<<<-a2a 71a 21a 001a 2.13. 0 两边求导,再分别把x 赋值x=2,x=0,最后把所得两式相乘即得.14.53由二次函数的性质知三点可确定一条抛物线,但两点连线不能与纵轴平行, 故其概率为5342C C 3636=⨯-.15.神州行 “全球通”卡的话费为120元时的通话时间为175分钟,“神州行”卡的话费120元时通话时间为200分钟,则“神州行”卡较合算. 三、解答题16.解:(1)令z=0,则f(1)-f(0)=0,∴f(1)=f(0)=1, ∴二次函数图象的对称轴为x=21, ∴可令二次函数的解析式为y= a (x 一21)2+h ………………………2分 由f(0)=0,又可知f(-1)=3得a=1,h=43∴二次函数的解析式为y=f(x)=(x 一21)2+43=x 2-x+1 ……………6分(2)∵ x 2-x+1 >2x+m 在[-1,l 上恒成立,∴ x 2-3x+1>m 在[-l ,1]上恒成立. ………………………………8分 令g(x)= x 2-3x+1,∴g(x)在[一1,1]上单调递减,……………………10分 ∴ g(x)min =g(1)=-l ,∴m<-1. …………………………………………12分17.解:(1)P(小张胜)=P(两人均取红球)+P(两人均取黄球)+P(两人均取白球) =636a ⨯ + 626b ⨯+ 616c ⨯=36c b 2a 3++ ……………………………5分 (2) 设小张的得分为随机变量ξ,则P(ξ=3)=616c ⨯,P(ξ=2)= 626b ⨯,P(ξ=1)= 636a ⨯, P(ξ=0)=1一P(小张胜)=1一36cb 2a 3++,……………………………9分∴E ξ=3×616c ⨯+2×626b ⨯+1×636a ⨯+0×(1一36cb 2a 3++)= ()36b2136b c b a 336c 3b 4a 3+=+++=++∵ a ,b ,c ∈N ,a+b+c=6,∴b 一=6,此时a=c=0,∴当b=6时,E‘=虿1+袅=了2,此时a=c=0,b=6…………………12分18.解:(1) ∵f (x)= (x -a)(x -b)(x -c)=x 3-(a+b+c)x 2+(ab+bc+ac)x —abc …3分∴ ()x 'f =3x 2-2(a+b+c)x+(ab+bc+ac)=[x 2-(a+b)x+ab]+[x 2-(a+c) x+ac]+[x 2-(b+c)x+bc]=(x -a)(x -b)+(x -a)(x —c)+(x -b)(x -c) …………………7分 (2) ∵f(x)是R 上的单调递增函数,∴()x 'f ≥0对x ∈R 恒成立, 即3x 2-2(a+b+c)x+(ab+bc+a c)≥0对x ∈R 恒成立∴ △≤0, 4(a+b+c)2- 12(ab+bc+ca )≤0,∴ (a -b)2+(a 一c)2+(b 一c)2≤0, ∴a=b=c .∴ f (x)= (x —a)3, f(x)关于点(a ,0)对称 ………10分 证明如下:设点P(x ,y)是f (x)= (x —a)3图象上的任意一点,y = (x —a)3, 点P 关于点(a ,0)对标的点P’(2a -x ,-y), ∴ (2a -x 一a)3=(a -x)3=-(x 一a)3=-y ,∴点P’在函数f (x)= (x —a)3的图象上,即函数f (x)= (x —a)3的图象关于点(a ,0)对称 ………………………………………………………14分19.解:(1)依题意,第二年该商品年销售量为(11.8-p)万件,年销售收入为100p 170- (11.8一户)万元, 则商场该年对该商品征收的总管理费为100p 170- (11·8一p)p %(万元)故所求函数为 y=()p p 8.11p1007-- 由11.8-p>0及p>0得定义域为0<p<11.8 ……………………………6分 (2) 由y≥14得()p p 8.11p1007--≥14化简得p 2-12p+20≤0,即(p -2)(p -10)≤0,解得2≤p≤l 0故当比率为[2%,10%]内时,商场收取的管理费将不少于14万元.…10分 (3) 第二年,当商场收取的管理费不少于14万元时,厂家的销售收入为g(p)=()p 8.11p100700-- (2≤p ≤10)∵ g(p)=()p 8.11p 100700-- =700(10+100p 882-)为减函数, ∴ g(p)max =g(2)=700(万元)故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元 ………………………14分 20.(1) 解:令x=y=0,则f(0)=2f(0),∴f(0)=0 …………………2分 (2) 解:∵f (1)=l ,∴f(2)=2f(1)+2=4, f(3)=f(2)+f(1)+4=9, f(4)=f(3)+f(1)+6=16,猜想:f (n)= n 2 (n ∈N*),下面用数学归纳法证明:……………………4分 当n=1时,显然成立·假设n=k (k ∈N*)时成立,则有f (k)= k 2 当n=k+1时,f (k+1)=f(k)+f(1)+2k= k 2+1+2k= (k+1)2,结论也成立.故f (n)= n 2 (n ∈N*)成立 ……………………………………………8分 (3) 证明:∵f (1)≥1,∴f(1)=2f(21)+21≥ l , ∴ f (21)≥22141=>0 ……………………………………………10分 可以证明02121f n2n >≥⎪⎭⎫⎝⎛. 假设n=k (k ∈N*)时结论成立.即02121f k2k >≥⎪⎭⎫ ⎝⎛,则 ∴k 21k 1k 1k k 212121221f 221f ≥⨯⨯+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+++∴()021)2221(2121f 1k 22k 2k 21k >=-≥⎪⎭⎫ ⎝⎛+++即n=k+1时也成立, ∴ 02121f n2n >≥⎪⎭⎫⎝⎛ (n ∈N*) …………………………………………14分 21.(1) 证明:令x=y=0,则f(0)+f(0)=f(0),故f(0)=0 令x+y=0,则f(x)+f(-x)=f(0)=0,即f(-x)=-f (x),∴函数f (x)是奇函数 ………………………………………………4分 (2) 证明:设1x ,2x ∈(-1,1),且1x <2x ,则 ()()()()⎪⎪⎭⎫⎝⎛--=-+=-21212121x x 1x x f x f x f x f x f ∵ 1x ,2x ∈(-1,1),且1x <2x ,∴ 1x -2x <0,-1<1x 2x <1 ,(1x +1)(2x -1)<0 ∴ 0x x 1x x 12121<--<-,0x x 1x x f 2121>⎪⎪⎭⎫ ⎝⎛--,即f(1x )>f(2x ) ∴ 函数f(x)在(-1,1)上是减函数.………………………………………9分 (3)解:∵ ⎪⎭⎫ ⎝⎛->⎪⎭⎫ ⎝⎛+1x 1f 21x f 函数f(x)在(-1,1)上是减函数,∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<-<+<--<+11x 11121x 11x 121x∴ 1x 23-<<-∴原不等式的解集为{x|1x 23-<<-}…………………………………14分。

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试题(解析版)

江西省景德镇市第一中学等盟校2018届高三第二次联考数学(理)试题(解析版)

江西省重点中学盟校2018届高三第二次联考数学(理科)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,复数满足,则()A. 1B. 2C.D.【答案】C【解析】分析:两边同乘以,利用复数的乘法法则化简可得从而可得结果.详解:,,,故选C.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2. 已知集合,,则()A. B. C. D.【答案】B【解析】分析:根据对数函数的性质化简集合,根据函数值域的求法化简集合,利用交集的定义可得结果详解:,,,故选B.点睛:本题属于基本题,解答这类问题都是先根据集合的特点,利用不等式与函数知识化简,然后根据集合的运算法则求解.3. 下图是2002年8月中国成功主办的国际数学家大会的会标,是我们古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作《周髀算经》中有详细的记载.若图中大正方形的边长为5,小正方形的边长为2,现作出小正方形的内切圆,向大正方形所在区域模拟随机投掷个点,有个点落在中间的圆内,由此可估计的所似值为()A. B. C. D.【答案】D【解析】分析:利用几何概型概率公式可得.详解:小正方形边长为,所以圆半径为,圆面积为,又大正方形的棱长为,所以正方形面积为,由几何概型概率公式可得,故选D.点睛:本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验及几何概型概率公式,列出符合条件的面积与总面积之间的方程求解.4. 命题“,”为真命题的一个充分不必要条件是()A. B. C. D.【答案】A【解析】分析:原命题等价于恒成立,求得,进而可得结果.详解:若“,”为真命题,则恒成立,时,,,不能推出,命题“,”为真命题的一个充分不必要条件是,故选A.点睛:本题主要考查全称命题、不等式恒成立、充分条件与必要条件相关问题,将全称命题、不等式恒成立、充分条件、必要条件、充要条件相关的问题联系起来,体现综合应用数学知识解决问题的能力,是基础题. 5. 已知定义在上的偶函数满足:当时,,若,,,则,,的大小关系是()A. B. C. D.【答案】A【解析】分析:由当时,,判断函数的单调性,由是偶函数可得,只需比较出即可得结果.详解:时,,在上递增,,,,,,,故选A.点睛:本题主要考查函数的奇偶性以及对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6. 如图,网格纸上小正方形的边长为1,粗线描绘的是某几何体的三视图,其中主视图和左视图相同如上方,俯视图在其下方,该几何体体积为()A. B. C. D.【答案】C【解析】分析:由三视图可知,该几何体是一个组合体,组合体上面是一个半径为的半圆,下面是一个圆台,高为,上底面半径为,下底面半径为,利用球的体积公式与圆台的体积公式可得结果.详解:由三视图,该几何体是一个组合体,组合体上面是一个半径为的半圆,下面是一个圆台,高为,上底面半径为,下底面半径为,所以组合体体积为:,故选C.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7. 实数满足,则最大值为()A. 3B. 5C.D.【答案】B【解析】分析:画出可行域,将目标函数转化为,根据表示可行域内与原点连接的斜率,结合图形即可得结果.详解:画出表示的可行域,如图,化简,表示可行域内与原点连接的斜率,由,得,最大值为,的最大值为,即最大值为,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 运行如下程序框图,若输入的,则输出取值为()A. B. C. D.【答案】C【解析】分析:由程序框图可知,该程序表示分段函数,分别求出两段函数的取值范围,即可得结果.详解:由程序框图可知,该程序表示分段函数,,当时,解析式化为,,当时,,,综上所述,的取值范围是,故选C.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常背新颖,并与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.9. 已知菱形满足:,,将菱形沿对角线折成一个直二面角,则三棱锥外接球的表面积为()A. B. C. D.【答案】A【解析】分析:设外心为外心为,过作平面的垂线与过作平面的垂线交于,则是外接球球心,利用棱锥的性质求出球半径即可得结果.详解:设外心为外心为,过作平面的垂线与过作平面的垂线交于,则是外接球球心,由正三角形性质得,,外接球表面积为,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.10. 已知函数是上的偶函数,且图像关于直线对称,且在区间上是单调函数,则()A. B. C. 或 D.【答案】D【解析】分析:由函数是上的偶函数,求得,由图象关于直线对称,且在区间上是单调函数,求得.详解:在上是偶函数,,,图象关于对称,,又在上是单调函数,,只有时,符合题意,故选D.11. 若函数有两个极值点,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:函数有两个极值点,等价于有两个根,换元后利用一元二次方程根与系数之间的关系求解即可.详解:,,有两个极值点,有两个根,设,则关于的方程有两个正根,可得,实数的取值范围是,故选B.点睛:对于一元二次方程根与系数的关系的题型常见解法有三个:一是对于发方程的解为不做限制的题型可以直接运用判别式解答;二是已知根的符号,根据韦达定理结合判别式列不等式组求解;三是方程的解在区间上的题型,一般采取列不等式组(主要考虑判别式、对称轴、的符号)的方法解答.12. 已知抛物线,过点的直线与抛物线交于,两点,交轴于点,若,,则实数的取值是()A. B. C. D. 与有关【答案】B【解析】分析:由,得,可得,直线与抛物线方程联立,利用韦达定理可得,由在直线上可得,从而可得,化简,进而可得结果.详解:由,得,由韦达定理知,,由,得,,得,,又,,由,得,,故选B.点睛:探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,,,则与夹角为__________.【答案】.【解析】分析:由,,求出,利用平面向量数量积公式可得结果.详解:,由,得,,,故答案为.点睛:本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14. 已知展开式中的常数项为60,则__________.【答案】4.【解析】分析:的通项公式为,令,,于是,利用微积分定理求解即可.详解:的通项公式为,令,,,故答案为.点睛:本题主要考查定积分以及二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15. 已知双曲线的左右焦点分别为,若双曲线上存在关于轴对称的两点,使得等腰梯形满足下底长是上底长两倍,且腰与下底形成的两个底角为,则该双曲线的离心率为__________.【答案】或.【解析】分析:详解:若为梯形的上底,连接,设中点为,则长为的一半,,为等腰三角形,为正三角形,,,,,若为梯形的下底,同理可得,可得,,,故答案为或.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据等腰梯形的性质以及双曲线的定义,找出之间的关系,求出离心率.16. 已知等边边长为6,过其中心点的直线与边,交于,两点,则当取最大值时,__________.【答案】.【解析】分析:设,在中,由正弦定理可得,在中,由正弦定理可得,,详解:设,在中,,,在中,,,,当,即时,有最大值,此时,故答案为.点睛:本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列首项为1,其前项和为,且.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(1).(2) .【解析】分析:(1)由,两式相减可得,又∵∴为等比数列.;(2)结合(1)可得,结合等比数列求和公式,利用错位相减法求和即可.详解:(1)∵.∴,又∵ ∴为等比数列.(2)..点睛:本题主要考查等比数列的定义、通项公式、求和公式以及错位相减法求数列的前 项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.18. 如图,在多面体中,底面是边长为2的菱形,,四边形是矩形,和分别是和的中点.(1)求证:平面平面;(2)若平面平面,,求平面与平面所成角的余弦值.【答案】(1)见解析.(2).详解:(1)连接交于点,显然,平面, 平面,可得平面,同理平面,, 又平面,可得:平面平面.(2)过点在平面中作轴,显然轴、、两两垂直,如图所示建立空间直角坐标系.,,,,,,.设平面与平面法向量分别为,.,设;,设.,综上:面与平面所成角的余弦值为.点睛:本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. 为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.学期总分(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位..小数);(2)在第六个学期.....测试中学校根据《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.参考公式:,;相关系数;参考数据:,.【答案】(1).(2)分布列见解析,期望是.【解析】分析:(1)根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程;(2)的可能取值为,根据超几何分布概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)由表中数据计算得:,,,,.综上与的线性相关程度较高.又,,故所求线性回归方程:.(2)服从超几何分布,所有可能取值为,,,,所以的分布列为期望点睛:求回归直线方程的步骤:①依据样本数据,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆于两点,以为直径的动圆内切于圆.(1)求椭圆的方程;(2)延长交椭圆于点,求面积的最大值.【答案】(1).(2)3.【解析】分析:(1)由,可得,结合离心率为可得,从而可得椭圆方程为:;(2)直线,由,可得,换元后利用基本不等式求解即可.详解:(1)设的中点为M,在三角形中,由中位线得:,当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即∴,即,又∴∴椭圆方程为:(2)由已知可设直线,令,原式=,当时,∴点睛:本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形面积最值的.21. 已知函数.(1)若,讨论方程根的情况;(2)若,,讨论方程根的情况.【答案】(1)当或时,无零点;当时,有个零点.(2),方程无解.【解析】分析:(1)由,令,利用导数研究函数的单调性,可得或,的图象与轴无交点,再分两种情况讨论的范围,分别利用导数求出的最值,结合函数图象列不等式可得结果;(2),令,,讨论两种情况,分别利用导数判断函数的单调性,求出函数最值,结合函数图象与零点存在定理,即可得结果.详解:(1),令.此时①若,在递减,,无零点;②若,在递增,,无零点;③若,在递减,递增,其中.Ⅰ.若,则,此时在无零点;Ⅱ.若,则,此时在有唯一零点;综上所述:当或时,无零点;当时,有个零点.(2),令,①若,在递增,,无零点;②若,在递增,递减,递增.其中,显然消元:,其中,令,,即,无零点.综上所述:,方程无解.点睛:本题主要考查利用导数研究函数的单调性与函数的零点、分类讨论思想及方程的根与系数的关系.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.22. 平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的参数方程为(为参数,),曲线(为参数).(1)求直线及曲线的极坐标方程;(2)若曲线与直线和曲线分别交于异于原点的,两点,且,求的取值.【答案】(1)直线:,曲线.(2) .【解析】分析:(1)分别利用代入法与平方法消去参数可得直线及曲线的普通方程,再利用即可得直线及曲线的极坐标方程;(2)将分别代入直线和曲线的极坐标方程可得交点极径,利用极径的几何意义与,列方程可得的取值.详解:(1)分别利用代入法与平方法消去参数可得直线及曲线的普通方程,再利用利用即可得直线:,曲线;(2)将分别代入直线和曲线的极坐标方程可得点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数.(1)解不等式;(2)若不等式有解,求的取值范围.【答案】(1).(2) .【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得等式的解集;(2)不等式有解等价于有解,利用基本不等式求出的最小值,从而可得结果.详解:(1);(2)①若,显然无解;②若,则,令(当且仅当时等号成立)点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【全国校级联考】江西省重点中学协作体2018届高三第二次联考数学(理)试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 若(为虚数单位),则复数()
A.B.C.D.
2. 设集合,,,则
中的元素个数为()
A.B.C.D.
3. 已知命题直线过不同两点、,命题直线的方程为
,则命题是命题的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
4. 《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五只鹿.欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分
只鹿,则公士所得鹿数为()
A.只
B.只C.只D.只
5. 函数的减区间为()
A.
B.C.D.
6. 已知双曲线的焦距是虚轴长的倍,则该双曲线的渐近线方程为()
C.D.
A.B.
7. 如图所示的程序框图,则满足的输出有序实数对的概率为()
A.B.C.D.
8. 已知关于的方程在区间上有两个根
,且,则实数的取值范围是()
A.
B.C.D.
9. 已知一个三棱锥的三视图如图所示,主视图和俯视图都是直角梯形,左视图是正方形,则该几何体最长的棱长为()
A.B.C.D.
10. 已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()
A.B.C.D.
11. 已知向量、、为平面向量,,且使得与
所成夹角为.则的最大值为()
A.B.C.D.
12. 已知函数(),,对任意的
,关于的方程在有两个不同的实数根,则实数
的取值范围(其中为自然对数的底数)
为()A.B.C.D.
二、填空题
13. 多项式的展开式中常数项是_____________.
14. 若实数满足,则的最小值为_____________
15. 设是过抛物线焦点的弦,其垂直平分线交轴于点,设
,则的值是________
16. 在中,点、在边上,满足.若
,,则的面积为________
三、解答题
17. 已知等差数列的公差,其前项和为,且,,
成等比数列.
(1)求数列的通项公式;
(2)若,数列的前项和为,求证:.
18. 如图,在四棱锥中,底面是平行四边形,,
,,.
(1)求证:平面平面;
(2)若,试判断棱上是否存在与点不重合的点,使得直
线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.
19. 某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.
组别
频数
(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分
布的知识求;
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
赠送的随机话费/元
概率
现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:,若,则,
,.
20. 已知椭圆:的离心率为,短轴为.点
满足.
(1)求椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数
使得为定值?若存在,求出的值;若不存在,请说明理由.
21. 已知,.
(1)证明:;
(2)若时,恒成立,求实数的取值范围.
22. 在平面直角坐标系中,曲线的参数方程为(为参数,
)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方
程为().
(1)求曲线、的直角坐标方程.
(2)若、分别为、上的动点,且、间距离的最小值为,求实数的值.
23. 已知函数.
(1)若不等式对恒成立,求实数的取值范围;
(2)当时,函数的最小值为,求实数的值.。

相关文档
最新文档