函数定义域、值域经典习题及答案88322
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域 1、求下列函数的定义域:⑴33y x =+-(2)01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x f 。
定义域和值域(含答案)
D.
【答案】C
10.函数
的值域为( ) A.{y|y≥﹣1} C.{y|y∈R且y≠4} 【答案】(分离常数法)D 11.函数的值域是( ) A.或 B.或 C. D.或 【答案】(法)A. 12. 函数
的值域是( )
A.(0,1)
B.
C.
D.
B.{y|y∈R且y≠0} D.{y|y∈R且y≠﹣1}
定义域和值域(含答案)
一:例题讲解
1.下列四组函数,表示同一函数的是( )
A.
B.
C.
D.
【答案】D
2.函数的定义域是( )
A.
B.
C. D.
【答案】D
3.函数
的定义域为( ) A.
B.(-2,+∞) C.
D.
【答案】C 4.若
,则f(x)的定义域为( ) A.
B.
C.
D.
【答案】C
5.函数的定义域为
)
A.
B.
C.
D.
【答案】B
28.函数的值域是
.
【答案】
29.函数y=的值域是
A.[0,+∞)
B.[0,4]
4)
【答案】D
【解析】因为,所以,所以.
30.函数y=
C.(0,4)
D.[0,
的值域是( )
A[-1,1]
B(-1,1]
C[-1,1)
D.(-1,
1)
【答案】B
31.求下列函数的值域:
(1) (2) (3)
【答案】(反解法)A
13.函数的值域是
.
【答案】
14.设,则函数的值域为
.
【答案】(换元法)
函数定义域、值域、解析式习题及答案
函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
函数定义域、值域经典习题及答案
函数定义域和值域练习题1一、 求函数的定义域 1.求下列函数的定义域: ⑴221533x x y x --=+- ⑵211()1x y x -=-+ ⑶021(21)4111y x x x =+-+-+-二、求函数的值域 2.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ 262x y x -=+ ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ 245y x x =-++ ⑽ 2445y x x =--++ ⑾12y x x =-- 三、求函数的解析式3.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
4.已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
5.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
四、综合题6.判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ;⑷x x f =)(, 33()g x x =;⑸21)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 7.函数22()44f x x x =---的定义域是( ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}-函数的定义域值域练习题21.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( ) A .21x x+ B .212x x+-C .212x x+ D .21x x+-2.函数12log (32)y x =-的定义域是( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]3.函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( -- 4.(2006年广东卷)函数)13lg(13)(2++-=x xx x f 的定义域是( )A.),31(+∞- B. )1,31(- C. )31,31(- D. )31,(--∞ 5.函数2log 2y x =-的定义域是( ) A.(3,+∞) B.[3, +∞) C.(4, +∞) D.[4, +∞) 6.函数21lg )(x x f -=的定义域为( ) (A )[0,1] (B )(-1,1) (C )[-1,1](D )(-∞,-1)∪(1,+∞)7.函数1()lg4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,, D.(1](4)-∞+∞,, 8.函数()()lg 43x f x x -=-的定义域为9.函数()221x y x R x =∈+的值域是10.函数(1)y x x x =-+的定义域为( )A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤11.函数221()ln(3234)f x x x x x x=-++--+的定义域为( ) A. (,4][2,)-∞-+∞ B. (4,0)(0.1)-C. [-4,0)(0,1] D. [4,0)(0,1)-12.函数221()log (1)x f x x --=-的定义域为 .13.函数234x x y x--+=的定义域为( )A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-14.函数2ln(1)34x y x x +=--+的定义域为( )A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]-函数的定义域值域练习题31.函数y=2122--+-+x x xx的定义域是( ) (A ){x -21-≤≤x } (B ){x -21≤≤x } (C ){x x>2} (D ){R x ∈x 1≠} 2.函数6542-+--=x x x y 的定义域是(A ){x|x>4} (B)}32|{<<x x (C){x | x<2 或 x>3} (D) }32|{≠≠∈x x R x 且 3.函数y=122+-x x 的值域是( )(A )[0,+∞) (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ] 4.下列函数中,值域是(0,+∞)的是( ) (A)132+-=x x y (B) y=2x+1(x>0) (C) y=x 2+x+1 (D)21x y =5.函数y=13+-+x x 的值域是( ) (A)(0,2) (B)[-2,0] (C)[-2,2] (D)(-2,2) 6.函数y=1122-+-x x 的定义域是___________7.函数y=xx x --224的定义域为8.函数y= -2x 2-8x-9, x ∈[0,3]的值域是_______.9.函数2x x y -=的值域是 ;函数)11(2≤≤--=x x x y 的值域是 ;函数21x x y -=的值域是 。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域 1、求下列函数的定义域:⑴33y x =+-(2)01(21)111y x x =+-++-2、_ _ _;的定义域为________;3、若函数(1)f x+(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 已 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+(5)x ≥⑸ y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x f 。
函数定义域、值域经典习题及答案(精)
复合函数定义域和值域练习题一、求函数的定义域1、求下列函数的定义域:⑴⑵⑶2、设函数的定义域为,则函数的定义域为___;函数的定义域为________;3、若函数的定义域为,则函数的定义域是;函数的定义域为。
4、知函数的定义域为,且函数的定义域存在,求实数的取值范围。
二、求函数的值域5、求下列函数的值域:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾6、已知函数的值域为[1,3],求的值。
三、求函数的解析式1、已知函数,求函数,的解析式。
2、已知是二次函数,且,求的解析式。
3、已知函数满足,则=。
4、设是R上的奇函数,且当时,,则当时=_____在R上的解析式为5、设与的定义域是,是偶函数,是奇函数,且,求与的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴⑵⑶7、函数在上是单调递减函数,则的单调递增区间是8、函数的递减区间是;函数的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为()⑴,;⑵,;⑶,;⑷,;⑸,。
A、⑴、⑵B、⑵、⑶C、⑷D、⑶、⑸10、若函数= 的定义域为,则实数的取值范围是()A、(-∞,+∞B、(0,C、(,+∞D、[0,11、若函数的定义域为,则实数的取值范围是()(A (B (C (D12、对于,不等式恒成立的的取值范围是()(A (B 或 (C 或(D13、函数的定义域是()A、 B、 C、 D、14、函数是()A、奇函数,且在(0,1上是增函数B、奇函数,且在(0,1上是减函数C、偶函数,且在(0,1上是增函数D、偶函数,且在(0,1上是减函数15、函数,若,则=16、已知函数的定义域是,则的定义域为。
17、已知函数的最大值为4,最小值为—1 ,则= ,=18、把函数的图象沿轴向左平移一个单位后,得到图象C,则C关于原点对称的图象的解析式为19、求函数在区间[ 0 , 2 ]上的最值20、若函数时的最小值为,求函数当[-3,-2]时的最值。
复合函数定义域和值域练习题答案一、函数定义域:1、(1)(2)(3)2、;3、4、二、函数值域:5、(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)6、三、函数解析式:1、;2、3、4、;5、四、单调区间:6、(1)增区间:减区间:(2)增区间:减区间:(3)增区间:减区间:7、 8、五、综合题:C D B B D B14、 15、 16、17、18、解:对称轴为(1),,(2),,(3),,(4),,19、解:时,为减函数在上,也为减函数,。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习搜集整理向真贤一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y = ⑽4y =⑾y x =6、已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高中函数定义域、值域经典习题及答案
高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。
又因为分式中有$x-1$的项,所以还要满足$x\neq1$。
所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。
⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。
所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。
⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。
分式中有$x-1$的项,所以还要满足$x\neq1$。
分母不能为0,所以$x\neq\pm\sqrt{2}$。
所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。
2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。
3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。
4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。
由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。
解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。
函数定义域、值域经典习题及答案
函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。
⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。
⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。
2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。
若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。
3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。
同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。
要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。
根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+⑺31y x x =-++ ⑻2y x x =-⑼ y⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域值域经典习题及答案练习题
函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。
3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。
2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。
& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。
3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。
2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。
函数定义域、值域经典习题及答案(精)
复合函数定义域和值域练习题一、求函数的定义域1、求下列函数的定义域:⑴⑵⑶2、设函数的定义域为,则函数的定义域为___;函数的定义域为________;3、若函数的定义域为,则函数的定义域是;函数的定义域为。
4、知函数的定义域为,且函数的定义域存在,求实数的取值范围。
二、求函数的值域5、求下列函数的值域:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾6、已知函数的值域为[1,3],求的值。
三、求函数的解析式1、已知函数,求函数,的解析式。
2、已知是二次函数,且,求的解析式。
3、已知函数满足,则=。
4、设是R上的奇函数,且当时,,则当时=_____在R上的解析式为5、设与的定义域是,是偶函数,是奇函数,且,求与的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴⑵⑶7、函数在上是单调递减函数,则的单调递增区间是8、函数的递减区间是;函数的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为()⑴,;⑵,;⑶,;⑷,;⑸,。
A、⑴、⑵B、⑵、⑶C、⑷D、⑶、⑸10、若函数= 的定义域为,则实数的取值范围是()A、(-∞,+∞B、(0,C、(,+∞D、[0,11、若函数的定义域为,则实数的取值范围是()(A (B (C (D12、对于,不等式恒成立的的取值范围是()(A (B 或 (C 或(D13、函数的定义域是()A、 B、 C、 D、14、函数是()A、奇函数,且在(0,1上是增函数B、奇函数,且在(0,1上是减函数C、偶函数,且在(0,1上是增函数D、偶函数,且在(0,1上是减函数15、函数,若,则=16、已知函数的定义域是,则的定义域为。
17、已知函数的最大值为4,最小值为—1 ,则= ,=18、把函数的图象沿轴向左平移一个单位后,得到图象C,则C关于原点对称的图象的解析式为19、求函数在区间[ 0 , 2 ]上的最值20、若函数时的最小值为,求函数当[-3,-2]时的最值。
复合函数定义域和值域练习题答案一、函数定义域:1、(1)(2)(3)2、;3、4、二、函数值域:5、(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)6、三、函数解析式:1、;2、3、4、;5、四、单调区间:6、(1)增区间:减区间:(2)增区间:减区间:(3)增区间:减区间:7、 8、五、综合题:C D B B D B14、 15、 16、17、18、解:对称轴为(1),,(2),,(3),,(4),,19、解:时,为减函数在上,也为减函数,。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-'2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域,5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++>⑻2y x x=-⑼ y =⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
—3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y =[⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =(2)01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案
1复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--27、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案
1复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--27、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =(2)01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y =三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案
复合函数定义域和值域练习题一、 求函数的定义域 1、求下列函数的定义域:⑴33y x =+-(2)01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f ,52)(2-=x x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数定义域和值域练习题
一、 求函数的定义域 1、求下列函数的定义域:
2) y =
1
+ (2 x - 1)0+ 4 - x 2 1+ 1 x -1
2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______
3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函
数 f (1 + 2)的定义域为。
x
4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。
二、求函数的值域
5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2]
⑶y =3x -1
x + 1
⑷y =
3x -1
(x 5)
x +1
三、求函数的解析式
1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。
2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。
⑴y =
x 2 -2x -15 x +3-3
y =
2x - 6 x +2
3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。
4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _
f(x)在R 上的解析式为
5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且
f(x)+g(x)=1,求f(x)与g(x) 的解析表达式
x - 1
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ y= x2+2x+3
⑵ y = -x2+2x +3
⑶ y = x2- 6x -1
7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是
8、函数y = 2-x的递减区间是;函数y = 2-x的递减
3x + 6 3x + 6
区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( )
⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ;
x+3
⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 ,
f (x) = 2x - 5。
A、⑴、⑵
B 、⑵、
⑶
C 、⑷D、⑶、⑸
10、若函数f(x)=
x - 4的定义域为R ,则实数
m
mx2+ 4mx + 3
的取值范围是 ( )
A、(-∞,+∞) 3
B 、(0,3 ]
3
C 、(3,+∞ )
3
D 、[0, 3 )
11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )
(A) 0m 4 (B) 0m 4 (C) m 4 (D) 0m 4
13、函数f (x) = 4-x2- x2-4 的定义域是( )
A、[-2,2]
B、(-2,2)
C、(-,-2) U(2,+)
D、{-2,2}
14、函数f (x)= x+ 1(x0)是( )
x
A、奇函数,且在(0,1)上是增函数
B、奇函数,且在(0,1)上是减函数
C、偶函数,且在(0,1)上是增函数
D、偶函数,且在(0,1)上是减函数
x+ 2( x -1)
15、函数f(x)=x2(-1x2) ,若f(x)=3,则x=
2x( x2)
17、已知函数y = mx + n的最大值为4,最小值为—1 ,则m= ,n=
x2+ 1
18、把函数y = 1的图象沿x轴向左平移一个单位后,得到图象C,则C 关于原
x+1
点对称的图象的解析式为
19、求函数f(x)=x2- 2ax -1在区间[0 , 2 ]上的最值
20、若函数f (x) = x2-2x+2,当x[t,t +1]时的最小值为g(t),求函数g(t)当t[-3,-2]时
的最值。
复合函数定义域和值域练习题
答 案
3)增区间:[-3,0],[3, +) 减区间:[0,3],(-, -3]
7、[0,1]
8、 (-,-2),(-2,+)
(-2,2]
五、 综合题: C D B B D B 14、 3
15、(-a ,a +1]
16、 m = 4 n =3
17、 y = 1
x -2
18、解:对称轴为x = a (1)a 0时,f (x )min =f (0)=-1 , f (x )max = f (2)=3-4a
2)0 a 1时, f (x )min = f (a )=-a 2-1 , f (x )max = f (2) =3-4a
一、 函数定义域:
1、( 1){x | x 5或x -3或x -6}
2、[-1,1]; [4,9] 二、 函数值域:
5、( 1){y | y -4}
(5) y [-3,2) (9) y [0,3]
6、 a = 2, b = 2 三、 函数解析式: 1、f (x ) = x 2 -2x -3
4、 f (x ) =x (1-3 x ) 四、 单调区间:
6、( 1)增区间:[-1,+) 减区间:(-, -1] 2)
2){x | x 0}
3){x | - 2 x 2且x 0, 3、[0, 5]; (-
,-1]U[1,+
)
y [0,5] 6){y |y 5且y
1
}
10) y [1,4]
f (2x +1)=4x 2 -4 1 x
2 ,x 1} 4、-1 m 1
7
(3){y | y 3}
(4)y [7,3) 7){y | y 4}
(8)y R
(11) { y | y 1}
2、f ( x ) = x 2 - 2x -1
4
3、f (x )=3x +4
5、 f (x )= x 21
-1 g (x )= x 2x -1
2)增区间:[-1,1] 减区间:[1,3]
(3)1 a2时,f (x)min= f(a)=-a2-1 ,f(x)max=f(0)=-1
(4)a2时,f (x)min = f(2)=3-4a,f (x)max = f(0)=-1 t2+1(t0) 19、解:g(t) = 1(0 t1) Q t(-,0]时,g(t)=t2+1为减函数
t2- 2t + 2(t1)
在[-3,-2]上,g(t)=t2+1也为减函数
g(t)min = g(-2)=5,g(t)max=g(-3)=10。