电磁场课后答案5
电磁场课后答案5
k1 sin θ B = k 2 sin θ 2
案
ε 2 k1 cosθ B = ε 1k 2 cosθ 2
cos θ 2 =
网
= 0, k z2 ε 1 − k z1 ε 2 = 0
ww w
Z 2 − Z 1 ωε 2 = k z2 Z 2 + Z1
− +
ωε 2
.k hd
k z1
对于 TM 模
ωε 1
所以
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
θ B = arccos
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
co
m
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
当
μ1 = μ 2 ,θ B = arccos
ε1 + ε 2
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ρs
y =d
=0
案
网
ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠
电磁场课后习题答案
电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。
在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。
本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。
1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。
洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。
将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。
因此,速度与运动半径之间的关系是v 与R成正比。
2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。
答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。
可以看出,磁场强度与距离的关系是B与1/r成反比。
3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。
答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。
可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。
4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。
当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。
电磁场与电磁波课后习题解答(第五章)
习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为 2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+= 移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d ) 处,镜像电荷为-q ,在(错误!无效。
镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为 ]2)22(2[04R D DRq D D qR Q q F--+=επ 其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
由于导体球不接地,本身又带电Q ,必须在导体球加上两个镜像电荷来等效导体球对球外的影响。
在距离球心b=R 2/D 处,镜像电荷为q '= -Rq/D ;在球心处,镜像电荷为D Rq Q q Q q /2+='-=。
电磁场课后习题答案.
一 习题答案(第二章)2.4 由E =-∇ϕ 已知ϕ=+2ax b 得2E a =-∇ϕ=-x ax 根据高斯定理:0.E ∇=ρε得 电荷密度为:00.E ==∇-2a ρεε2.6取直角坐标系如图所示,设圆盘位于xoy 平面,圆盘中心与坐标原点重合方法1:由 '04s sds R ρϕ=πε⎰在球坐标系求电位值,取带点坐标表示源区2'''0004a sπρϕ=πε⎰⎰02s z ρ⎤=⎦ε因此,整个均匀带电圆面在轴线上P 点出产生的场强为001 z>0 21 z<02s z s z ⎧⎡⎤ρ⎪⎢ε⎪⎣=-∇ϕ=⎨⎡⎤ρ⎪+⎢⎪ε⎣⎩a E -a方法2 :(略) 2.7当r>a (球外)时,1.E ∇=ρε 221.(.)0E ∂∇==∂r r E r r10.E ∴=∇=0ρε 当r<a (球内)时,2.E ∇=ρε 20231.(.)E ∂∇==∂rE r E r r a00203.E ∴=∇E=aερε2.11两个点电荷-q,+q/2在空间产生的电位:01(,,)4x y z ⎡⎤ϕ=+πε令(,,)0x y z ϕ= 得方程:104⎡⎤=πε方程化简得222242()33x a y z a ⎛⎫-++= ⎪⎝⎭由此可见,零电位面是以点(4 a /3,0,0)为球心,2 a /3为半径的球面。
2.20由高斯定理.sD dS q =⎰由 00r x r x D E E =εε=εεa 得 0()xqdE s x d =ε+a由0.dx U E dx =⎰ 得 0ln 2qdU s=ε 由qC U =得 0ln 2s C d ε= 2.22由于da ,球面的电荷可看作均匀分布的先计算两导体球的电位1ϕ、2ϕ: 则112...daadE dr E dr E dr ∞∞ϕ==+⎰⎰⎰112001144d a dq q q r r ∞+⎛⎫⎛⎫=-+- ⎪ ⎪πεπε⎝⎭⎝⎭ 120044q q a d=+πεπε '''212...daadE dr E dr E dr ∞∞ϕ==+⎰⎰⎰212001144da dq q q r r ∞+⎛⎫⎛⎫=-+- ⎪ ⎪πεπε⎝⎭⎝⎭ 120044q qd a=+πεπε 得 1122014P P a ==πε,1221014P P d==πε由11221212C P P P =+-得 02ad C d a πε=-2.25方法1:设其中一个极板在yoz 平面,另一极板在x=a 位置 则电容器储能:220122e U W CU aε==当电位不变时,第二个极板移动受力:2022ea W U F aaϕ∂ε==-∂ 式中负号表示极板间作用力为吸引力方法2:设其中一个极板在yoz 平面,另一极板在x=a 位置 当电荷不变时,由0.ax U E dx =⎰ 得 x U E a =由高斯定理有0.sq E dS =ε⎰ 则0x q E =ε得 0qaU =ε 由 20122e q a W qU ==ε 得 2202022e a q W U q F a a ∂ε=-=-=-∂ε式中负号表示极板间作用力为吸引力二 习题答案(第三章)3. 7方法1:设流入球的电流为I ,球的半径为a , 导体球的电流分布为22==r IJ e r π电场强度为22r JI E e r σπσ==以无穷远处为零点电位,则导体球的电压为222∞∞===⎰⎰a a I I U Edr dr r aπσπσ接地电阻为土壤损耗的功率为2261.5910 (W)2===⨯I P I R aπσ方法2:设半球表面的总电荷为q ,球的半径为a电场强度为22=r qE r πε以无穷远处为零点电位,则导体球的电压为2∞==⎰r a qU E dr aπε导体球的电容由静电比拟法可直接得: G=2a πσ接地电阻为 12=R aπσ土壤损耗的功率为2261.5910 (W)2===⨯I P I R aπσ3.12在圆柱坐标系计算,取导体中轴线和z 轴重合,磁场只有e φ方向分量,大小只跟r 有关,由安培环路定理:'0.2B l ==⎰Cd rB I φπμ当≤r a 时,'0=I ,0=B φ12==U R I aπσ2==qC a Uπε当<≤a r b 时,22'22-=-r a I I b a 22022()2()-=-r a B I r b a φμπ当>r b 时,'=I I02=IB rφμπ 写成矢量形式2202200 () 2() 2B e e ⎧⎪≤⎪-⎪=<≤⎨-⎪⎪>⎪⎩r a r a I a r b r b a Ir b rφφμπμπ3. 21解: 球内:磁化电流体密度为得:0=∇⨯=m J M球表面:磁化电流面密度为因球面上 c o s z a θ=22002cos sin J =⨯=⨯=msz r z M n a M a a M aφθθ3.29同轴线的内外导体之间的磁场沿φ方向 根据安培环路定理,当r a <时,有222=I rB r aπμππ 所以 022=IB r a μπ ()r a < 当≤<a r b 时,有 '02=rB I πμ所以得到'02=IB rμπ ()≤<a r b 同轴线中单位长度储存的磁场能量为 2'2000112222=+⎰⎰a b m a B B W rdr rdr ππμμ2200ln 164=+I I b aμμππ (2)由212m W LI =,得到单位长度的自感为 0022ln 82==+m W bL I aμμππ补充题:两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。
电磁学答案第二版习题答案第五章
B=
解: (1) (2)
l u0 nI 2 (2 × − 1) 2 2 l + 122 4
l总 = 2nlπ R
5.2.10 附图中的A、C是由均匀材料支撑的铁环的两点,两根直载流导线A、C沿半径方向伸出,电流 方向如图所示,求环心O处的磁场B。 解:∵
B10 = B40 = 0 ,
6
5.3.3 电子在垂直于均匀磁场B的平面内作半径为1.2cm,速率为 10 m/s的圆周运动(磁场对它的洛伦 兹力充当向心力, )求B对此圆轨道提供的磁同通量。 解:∵
Φ m = Bπ R 2 ,而B由R=mv/qB Φm = mvπ R q
∴
5.4.1 ‐同轴电缆由一导体圆柱和同一轴导体圆筒构成,使用时电流I从一导体流去,从另一导体流回, 电流都是均匀地分布在横截面上,设圆柱的半径为R1,圆筒的半径分别为R2和R3(见附图) ,以r代表 场点到轴线的距离,求r从O到无穷远的范围内的磁场(大小)B。
∴
B = ∫ dB =
u0 N u NI cos 2 θ dθ = 0 ∫ πR 4R
5.2.16 有一电介质薄圆盘,其表面均匀带电,总电荷为Q,盘半径为a,圆盘绕垂直于盘面并通过圆 心的轴转动,每秒n转,求盘心处的磁场(大小)B。 解:与半径不同的一系列圆心载流3圆等效,
B=
∵ 圆电流圆心处
l
B=
u0 ΔI 2π R , B= u0 h πR
∵ ΔI = 2 h ∴
5.2.13 将上题的导体管沿轴向割去一半(横截面为半圆) ,令所余的半个沿轴向均匀地流过电流I,求 轴线上的磁场(大小)B。
dB =
解:∵
u0 dI 2π R , dI = I Rdα πR
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q 根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(3 0 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇ 矢量磁位微分方程的解:V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
电磁场与电磁波5答案
式中, 是长为l的圆柱形电容器的电容。
流过电容器的传导电流为
可见
6.6由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程
和
由 得
据散度定理,上式即为
利用球对称性,得
故得点电荷的电场表示式
由于 ,可取 ,则得
即得泊松方程
5.7试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解如题6.12图所示,设第2区为理想导体( )。在分界面上取闭合路径 。对该闭合路径应用麦克斯韦第一方程可得
(1)
因为 为有限值,故上式中
而(1)式中的另一项
为闭合路径所包围的传导电流。取N为闭合路径所围面积的单位矢量(其指向与闭合路径的绕行方向成右手螺旋关系),则有
因
故式(1)可表示为
(2)
应用矢量运算公式 ,式(2)变为
第5章时变电磁场
5.1有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 之中,如题6.1图所示。滑片的位置由 确定,轨道终端接有电阻 ,试求电流i.
解穿过导体回路abcda的磁通为
故感应电流为
5.2一根半径为a的长圆柱形介质棒放入均匀磁场 中与z轴平行。设棒以角速度 绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解(1)在直角坐标中
(2)在圆柱坐标中
(3)在球坐标系中
5.8已知在空气中 ,求 和 。
提示:将E代入直角坐标中的波方程,可求得 。
解电场E应满足波动方程
将已知的 代入方程,得
式中
故得
则
由
得
将上式对时间t积分,得
电磁场与电磁波(第4版)第5章部分习题参考解答
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
电磁场原理习题与解答(第5章)
第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。
在轴与圆盘边缘上分别接有一对电刷。
这一装置称为法拉第发电机。
试证明两电刷之间的电压为22ωBa 。
证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。
求s t 0.1=时极板间任意点的位移电流密度。
解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。
忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。
电磁场与电磁波(第三版)课后答案第5章
第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。
解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。
将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。
由此可见,空腔内的磁场是均匀的。
5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。
dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。
电磁场与电池波第五章 习题答案
+ a y 3e -j β z
由∇ × E = − jωμ0 H 得
H= ∇× E −1 = (a x 3 − a y 4)e -jβ z V / m − jωμ0 120π
(2) E ( z , t ) = ax 4 cos(ωt − β z ) + a y 3cos(ωt − β z )
2 2 2 2
H + ∇ × ∇ × H
∇ × E = − j ωμ H 代入上式 H = ( σ + j ωε ) ⋅ ( − j ωμ ) H H − ω H − k
2 2
H = j ωμσ H = j ωμσ
με H
H
同理 : ∇ 2 E = j ωμσ E − k 2 E
5.15 设电场强度和磁场强度分别为 解:
解:
∇ 2 E = jwμσ E − k 2 E ∇ 2 H = jwμσ H − k 2 H
式中
∇ × H = J + j ω D = σ E + j ωε E ∇ × ∇ × H = ∇ × ( σ E + j ωε E ) 将 ∇ (∇ ⋅ H ) = ∇ ∇ (∇ ⋅ H ) − ∇ ∵ ∇ ⋅H = 0 ∴ ∇ 即 ∇
β B sin(ωt-βz) μ0 ε0 m
∂B , 满足电磁场基本方程 ∂t
所以 ∇ × E = − a z ωBm cos(ωt-βz)= −
5.12 对于线性,均匀和各向同性导电媒质,设媒质的介电常数为 ε ,磁导率为 μ ,电导率为
σ ,试证明无源区域中时谐电磁场所满足的波动方程为
k 2 = w2 με
π
2
)
E ( x , y , z , t ) = a y 3 co s( k x co s θ ) R e[ e
电磁场课后习题第五章
?
?K
2
uuv ey
?
?K uuv
2 ey
? uuv
uuv
? 0.998 0 ? 80ey ??100.9 10?6 e y T
uuuv H2 ?
uuv B2
?
?
uuv 80e y
A/ m
uuuv M2
?
uuv B2
?
?
uuuv H2
?
uuv ? 0.16e y
A/ m
⑵在区域①,③内与上面的结论一致,在区域②内
2??
??? BH? 0 r ? 4 ? 10?7 ? 500? 144.96 ? 9.1? 10?2
B ,H 方向均沿安培环路的切线方向。
3-9 已知在 Z ? 0 的区域中,? r1 ? 4 ,在 Z ? 0 的区域中 ? r 2 ? 1 ,设在
Z ? 0 处B 是均的,其方向为 ? ? 60o,? ? 45o ,量值为 1Wb / m2 ,试求
?
l?z 2
1
? ??
z
?
l ?2 ?2
2 ??
? ?
?
?? ?
uuv ez
?
?
??
⑵当远离圆柱时,即 z ? l ,? ? a 时,可将此圆柱视为一个磁偶极子,磁
2
? 偶极矩 uuv
uuv
uuv
me? ImS z ? M0l a 2 ez
uvu
它在空间中产生的磁场可用磁矩 m 表示为
? ? uv ? ? ? ? ? B ?
式中 dz?是小圆环的宽度,每个小圆环电流在轴线上某点均产生磁感应强度。利
用圆环电流在其中心轴线一点的磁感应强度的表达式,可以写出 dI m 在轴线上产
电磁场与电磁波课后习题及答案五章习题解答
五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。
解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。
将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。
电磁场课后答案 第5章 时变电磁场和平面电磁波-1
& + H e jω t
]
故 S (t ) =
1 & & & & & & & & [ E × H + E × H + E × H e j 2ω t + E * × H e j 2ω t ] 4 1 & & & & = Re[ E × H + E × H e j 2 ω t ] 2
坡印廷矢量代表瞬时电磁功率流密度。 坡印廷矢量代表瞬时电磁功率流密度。
& & 由(a ), × × E = jω × H
& & & 将(b )代入,有 E 2 E = ω2εE
将(c )代入,得 & & 2 E + k 2 E = 0
( )
k = ω ε
& & 同理, 2 H + k 2 H = 0
复矢量边界条件
& & n × ( E1 E2 ) = 0 & & & n × ( H1 H 2 ) = J s & & & n ( D1 D2 ) = ρ s & & n (B B ) = 0
[
jω t
] = y ω
k
E 0 cos( ω t kz
0
π
2
)
η0
E0
sin( ω t kz )
ω
k
0
ω 0 = ω 0ε
=
0
0 = η ε0
0
14
复数形式Maxwell方程组 §5.2 复数形式 方程组
工程电磁场课后答案
用正边沿D触发器实现1101序列检测器
第一章节
Q1
Q0
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
试用负边沿D触发器组成4位二进制异步加计数器,画出逻辑图。
7.1.4 试用正边沿D触发器组成3位二进制同步加计数器,画出逻辑图。
规律:
加:
减:
试用正边沿D触发器和门电路设计一个同步三进制减计数器。
5.2.11 触发器转换
6.1.1 由状态表作状态图
6.1.3 由状态图作状态表
5电路的初始状态为01,当序列X=100110时,求该 电路输出Z的序列。
解:011010
6.2.5 同步时序电路分析
6.2.9 异步时序电路分析
可自启动的异步七进制计数器
用同步结构实现状态度,要求电路最简,采用正边沿JK触发器。 解:(1) 画出状态表 列出真值表 写出逻辑表达式
7.1.18 用74161采用两种不同方法构成24进制。
试用两片74194构成8位双向移位寄存器。
并 联
第五章 触发器 5.1.1 R、S输入高电平有效 5.1.3 画同步RS触门组成的同步RS触发器功能
分析各种结构触发的翻转特点
同步触发器:有CP信号控制,高(低)电平期间Q状态保持, (高)低电平期间Q状态由输入端决定;
基本RS触发器:没有CP信号,Q状态由R/S直接决定;
7.1.9 分析计数器改制电路
7.1.11 分析计数器改制电路
异步清零反馈法 译码反馈状态(过渡状态):1010
有效状态:0000~1001 结论:十进制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.8 光从水以θ=30°角投射到与空间交界面(见图P5.8) ,设光频时水的介电常数为ε=1.7
.k hd
εr
1
1
1
= 11.35°
εr
aw .
=24.09°
5.4 计算从下列各种介质斜入射到它与空气的平面分界面时的临界角。
(4)云母εr= 6;
co
所以 z ≤ 0 区域合成电场强度的瞬时值 E = 2 E 0 sin kz sin wtx 0 − 2 E 0 sin kz cos wty 0
m
E x , E y 与 E x , E y 都有 180°相移,且波传播方向相反, 反射波, 为满足导体表面边界条件,
所以 E r = E 0 (− x 0 + jy 0 )e jkz ,所以是左手圆极化。
r
r
i
i
x0 1 ∇×E ∂ =− (2) H = − jωμ jωμ ∂x E 0 e − jkz J s = n × H = − z 0 × ( jx 0 + y 0 )
ε1
5.11 垂直极化平面波由媒质I倾斜投射到媒质II,如图P5.11,ε1=4ε0,ε2=ε0,求 (1) 产生全反射时的临界角; (2) 当θ=60°时,求kx,kz1(用k0=ω
μ 0 ε 0 表示);
(3) 求kz2(用k0表示); (4) 在媒质 II,求场衰减到 1/e 时离开交界面的距离; (4) 求反射系数Γ。 解: (1) (2)
d
y
为常数,平行板外空间电磁场为零,坐标如图 P5.2 所示。 试求: (1) ∇ ⋅ E, ∇ × E ; (2) E 能否用一位置的标量函数的负梯度表示,为什么? (3) 求与 E 相联系的 H; (4) 确定两板面上面电流密度和面电荷密度.
ε0μ0 x 图 P5.2
(3) H = −
1 jωμ 0
∇ × E = y0
π 1 ⎛π ⎞ ⎛π ⎞ sin ⎜ y ⎟e j (ωt − kz ) + z 0 A cos⎜ y ⎟e j (ωt − kz ) ωμ 0 ⎝ d ⎠ d jωμ 0 ⎝d ⎠
kA
⎤ ⎞ y ⎟e j (ωt − kz ) ⎥ ⎠ ⎦
(4) J s = n × A
同理
ρs = D ⋅ n
5.1 完纯导体表面Ht=3x0+4z0 A/m, 求表面电流Js。
ˆ × (H1 − H 2 ) = J s 答: n
由于完纯导体内部磁场为 0, 则Js= Ht=3x0+4z0 A/m 。
5.2
两无限大平板间有电场 E = x 0 A sin ⎜
⎛π ⎝d
⎞ y ⎟e j (ωt − kz ) ,式中 A ⎠
图 P5.9
−
ωμ1
由(1)
cos θ 2 =
μ 2 k1 μ 2 k12 cosθ B , sin θ 2 = 1 − cos 2 θ 2 = 1 − 2 cos 2 θ B 2 2 μ1 k 2 μ1 k 2
2 2 μ2 k1 cos 2 θ B 2 2 μ1 k 2
(3)
(3)代入(2)
k1 sin θ B = k 2 1 −
θ b = tg −1 ε r ε r = 60 o ,
2 1
后 答
解: 将该圆极化波分解为TE、TM,如果θb = 60°,则反射波只有TE,由θb = 60°,得到
案
5.5 一圆极化均匀平面波自空气投射到非磁性媒质表面z = 0,入射角θi = 60°,入射面为x-z 面。要求反射波电场在y方向,求媒质的相对介电系数εr。
ε 1 = 4ε 0 , ε 2 = ε 0 , θ c = sin −1
ε2 ⎛1⎞ = sin −1 ⎜ ⎟ = 30 o ε1 ⎝ 2⎠
α2
2k 0
(5)
Γ=
案
入射波的多少功率(以百分比表示)为铜板吸收?
网
5.12 平面波从空气垂直投射到一块铜板,铜的电导率σ=5.8 × 107S/m,求频率 500MHz时,
aw .
(1) (2) (3)
当
ε 1 = ε 2 ,θ B = arccos
μ1 + μ 2
μ1
(3)代入(2)
课
k1 sin θ B = k 2 1 −
k1 ε 2 k12 1 − cos 2 θ B = 1 − 2 cos 2 θ B 2 2 k2 ε1 k 2
两边平方,均整理后得到
cos 2 θ B =
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ε0 μ0
2 2.3 2.3 + 5.1
反射系数为: ΓTE = 对于 TM 波, Ya =
Y水 − Ya Y水 + Ya =
=
2.3 − 5.1 2.3 + 5.1
,透射系数为:TTE = 1 + ΓTE =
ωε
ka
ωε 0 2 5.1 ε 0 = , Y水 = 3 μ0 k水
= 3 − 11.73 3 + 11.73
k
y0 ∂ ∂y − jE 0 e − jkz
E 0 e − jkz
ωμ
z0 ∂ k = ( jx 0 + y 0 ) E 0 e − jkz ωμ ∂z 0 k = (− jy 0 + x 0 ) E 0 e − jkz
ωμ
(3) 此入射波可看成是两个平面波的叠加。 E1 = E 0 e 个坐标系下两个均为 TEM 波,
k z1
=
k z2 ε 1 − k z1 ε 2
ωε 1
k z2 ε 1 + k z1 ε 2
后 答
ε 2 k1 ε 2 k12 cos θ B , sin θ 2 = 1 − cos 2 θ 2 = 1 − 2 cos 2 θ B 2 2 ε 1k 2 ε1 k 2
2 2 k1 ε2 cos 2 θ B 2 2 ε1 k 2
后 答
答: 由 5.4.10 式, 铜的纵向传播常数为 k c ≈
5.4.12 式,铜的波阻抗为Zm=R(1+j)= 0.583379 × 10-2 (1+j)
ww w
k z1 − k z 2 k 0 − j 2 k 0 = = 1e − jψ (0 ) , k z1 + k z 2 k 0 + j 2 k 0
− jkz
− e jkz ) = −2 E0 sin kz
(1)蒸馏水εr=81.1 答:(1)
(2)酒精εr= 25.8
(3)玻璃εr=9
θ c = sin −1 θ c = sin −1
εr
1
=6.37° (2)
θ c = sin −1
εr
ww w
(3)
= 19.47 °(4)
θ c = s案
网
ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠
后 答
ΓTE =
kz k z1 μ 2 k z1 − μ1 k z2 Z 2 − Z1 = 2 = Z 2 + Z 1 ωμ 2 ωμ 1 μ 2 k z1 + μ 1 k z2 + k z2 k z1
ωμ 2
要使 即
ΓTE = 0, μ 2 k z1 − μ 1 k z 2 = 0
μ 2 k1 cosθ B = μ1 k 2 cosθ 2
(1) E = E 0 (x 0 − jy 0 )e − jkz ,所以入射波是右手圆极化 解:
后 答
Js
y =0
⎡ π 1 kA ⎛π ⎞ ⎛π sin⎜ y ⎟e j (ωt − kz ) + z 0 = y 0 × ⎢y 0 A cos⎜ d jωμ 0 ⎝d ⎠ ⎝d ⎣ ωμ 0 π 1 = x0 Ae j (ωt − kz ) d jωμ 0 π 1 J s y =d = −x 0 Ae j (ωt − kz ) d jωμ 0
aw .
co
45° 45° k2 (1) (2)
m
Ei
kt 30°
2)由图所示,该平面波为 TM 波,
μ1 ≠ μ 2 , ε 1 ≠ ε 2 ,求入射波平行极化、垂直极化两种情形下的布儒斯特角θB。
B
解:对于 TE 模
课
5.10 两 个 各 向 同 性 媒 质 组 成 的 交 界 面 , 两 边 的 磁 导 率 、 介 电 常 数 均 不 相 等 ,
5.6 若要求光波以任何角度入射到玻璃板的一端,都在板内发生全反射,从而将光波约束在 板内传至另一端,求玻璃的介电常数最小应为多少? 答:要在玻璃板侧面永远都是全反射,则在内部投射到交界面的入射角应该大于临界角, 那么有: sin θ =