五年级奥数算式谜(二)教师版
小学奥数之算式谜(二)
小学奥数之算式谜(二)1.2.下面的算式里,相同的汉字代表同一数字,不同的汉字代表不同的数字。
如果以下的3个等式成立: 迎迎×春春=杯迎迎杯 数数×学学=数赛赛数 春春×春春=迎迎赛赛那么,迎+春+杯+数+学+赛的和是多少?3.在右面算式的□内,填上适当的数字,使算式成立。
少年儿童的心灵美× 美 少少少少少少少少 1 □ 3 9□ 2 □ □ × □ 6 □ □ □ 4 □ □ 5 3 □ □ □ □ □4.在下图中的□内各填入一个合适的数字,使算式成立。
5.填出右面除法算式中用字母表示的数字(不同的字母表示不同的数字)。
6.在下面算式的□中填入适当的数,使算式成立。
(1) (2)□ □□□2 )□ 0 □ □4 □ 4 1 □ 9 □ 1 3 □ □D IB E F )B AC E GC B G E B H A G B H A G5 9□ □) □ □ □ □□ □ □□ □ □2 8 5× □ □ 1 □ 2 □ □ □ □(4)7.右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?下面算式中同一个汉字代表相同的数,不同的汉字代表不同的数。
问每个汉字各代表什么? 优优优优优优÷学=学习再学习□ □ □ □ × 6 □ 4 □ 4□ □ 8 × □ 3 1 □ 2A B C D E × A E E E E E E8.如果A、B满足下面的算式,则A+B等于什么?A B× B A1 1 43 0 43 1 5 49.在□里填数,使算式成立。
2 □□□4 □)□□□□□□□4□□□□□□44 □□□□□10.补全*处的数。
* *7 * *) 8 * * * ** * 3* * * ** * 6 *。
小学数学奥数基础教程(五年级)--02
小学数学奥数基础教程(五年级)数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
又由竖式特点知a=9,从而除数应是96的两位数的约数,可能的取值有96,48,32,24和16。
因为,c=5,5与除数的乘积仍是两位数,所以除数只能是16,进而推知b=6。
因为商的后三位数是125的奇数倍,只能是125,375,625和875之一,经试验只能取375。
至此,已求出除数为16,商为6.375,故被除数为6.375×16=102。
右式即为所求竖式。
求解此类小数除法竖式题,应先将其化为整数除法竖式,如果被除数的末尾出现n个0,则在除数和商中,一个含有因子2n(不含因子5),另一个含有因子5n(不含因子2),以此为突破口即可求解。
例5 一个五位数被一个一位数除得到下页的竖式(1),这个五位数被另一个一位数除得到下页的竖式(2),求这个五位数。
小学奥数教程:最值中的数字谜(二)全国通用(含答案)
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□【考点】混合计算中的数字谜 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第9题 【解析】 题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二),,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
五年级奥数第23讲算式与文字谜(教师版)
五年级奥数第23讲算式与文字谜〈教师版〉教学目标解有余数的除法这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。
知识梳理一、算式迷⒈算式谜:一般是指那些含有未知数字或缺少运算符号的算式。
⒉解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似于平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
注意:解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
3、解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
二、文字迷一般说来,算式都是由一些数字和运算符号组成的,可有些算式却由汉字或英文字母组成,我们称它为文字算式。
文字算式是一种数字谜,解答时要注意在同一道题中,相同的文字或英文字母应表示相同的数字,不同的文字或英文字母应表示不同的数字。
解文字算式谜与填竖式的步骤与方法基本是一样的,都要仔细观察算式的特征,认真分析,正确选择解题的突破口,最后通过尝试找寻正确答案。
题型一:算式谜例⒈在下面算式的括号里填上合适的数。
【解析】根据题目特点,先看个位:7+5=12,在和的个位〈 〉中填2,并向十位进一;再看十位,〈 〉+4+1的和个位是1,因此,第一个加数的〈 〉中只能填6,并向百位进1;最后来看百位、千位,6+〈 〉+1的和的个位是2,第二个加数的〈 〉中只能填5,并向千位进1;因此,和的千位〈 〉中应填8。
例⒉在□里填上适当的数,使算式成立。
【解析】例3、□里填哪些数字,可使这道除法算式成为一道完整的算式?【解析】已知除数和商的某些位上的数,求被除数,可以从商的末位上的数与除数相乘的积想起,5630⨯=,可知被除数个位为0,再想商十位上的数与6的乘积为一位数,这个数只能是1,这样确定商的十位为1,最后被除数十位上的数为369+=。
小学奥数 数字谜(加减法)专项练习30题(有答案)
小学奥数数字谜(加减法)专项练习30题(有答案)第9讲数字谜(二)专项练习30题(有答案)1.在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=()A .2 B.4 C.7 D.132.计算右面小题()A .趣=5味=6 B.趣=4味=7 C.趣=6味=5 D.趣=3味=83.下边的竖式加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,当算式成立时,我+爱+奥+数=_________.4.在下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么,车+马+炮+卒=_________.5.如图式中,不同的汉字代表不同的数字,“马年好”代表的三位数是_________.6.图竖式A、B、C分别表示不同的数字,且A+B+C最小值是_________.7.图中的△、□、○分别代表不同的数字,要使算式成立,则△代表数字_________,□代表数字_________,○代表数字_________.8.竖式中“兔子”图案表示的数字是_________.9.在如图的算式中,每个字母代表一个1 至9 之间的数,不同的字母代表不同的数字,则A+B+C=_________.10.如图是两个两位数的减法竖式,其中A,B,C,D代表不同的数字.当被减数取最大值时,A×B+(C+E)×(D+F)=_________.11.在横线里填上汉字所代表的数字:“数”=_________,“学”=_________,“好”=_________.12.在右面的算式中,学习优秀=_________.13.不同的汉字表示不同的数,在下面的竖式中,“争”表示_________,“先”表示_________,“创”表示_________,“优”表示_________.14.在图所示的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.则“奥”表示数字_________,“数”表示数字_________,“好”表示数字_________.15.已知除法竖式如图:则除数是_________,商是_________.16.A、B、C、D各代表不同的数字.要使右式成立,A=_________B=_________C=_________D=_________.17.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是_________.18.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么这些不同的汉字代表的数字之和是_________.19.在如图的式子中,字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如图,那么三位数ABC是_________.20.如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字.则数+学+竞+赛=_________或_________.21.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字.当它们各代表什么数字时,下列的算式成立.巨=_________龙=_________腾=_________飞=_________.22.在如图的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是_________.23.下面的算式中相同的汉字代表相同的数字,不同的汉字代表不同的数字.24.不同汉字表示不同数字,用数字0﹣9组成了下面一个加法算式,已经填出了数字6,4,0,请补充完算式,那么这个算式的和是_________.25.如图的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立.申=_________;办=_________;奥=_________;运=_________.26.“爱好数学”代表的四位数是_________.27.在右边的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果“纪”=3,那么“北京奥运新世纪”七个字的乘积是_________.28.在右图的算式中,不同的汉字表示不同的数字,相同的谜汉字表示相同的数字,如果,巧+解+数+字+谜=30,那么,字谜“数字谜”所代表的三位数是_________.29.请你猜一猜,每个算式中的汉字各表示几?30.猜一猜,下面每个算式中的汉字所代表的数字是几?数=_________学=_________.参考答案:1.根据题干分析可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,则x+y=1+3=4.故选:B.2.根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,0+1=1,十位上,2+ 趣=8,趣=8﹣2=6,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味=11;十位上,2+趣+1=8,趣=8﹣1﹣2=5,那么,味=11﹣5=6;根据以上推算可得竖式是:故选:A3.由竖式可得:个位上,数×3的末尾是7,由9×3=27,可得,数=9,向十位进2;十位上,奥×3+2的末尾是0,由6×3+2=20,可得,奥=6,向百位进2;百位上,爱×2+2的末尾是0,由4×2+2=10,9×2+2=20,可得,爱是4或9,当爱为9时与数=9重复,不符合题意,故爱=4,向千位进1;千位上,我+1=2,可得:我=1.由以上分析可得竖式是:所以,我+爱+奥+数=1+4+6+9=20.故填:20.4.车=1,炮=0,马=8,卒=5,故车+马+炮+卒=14;故答案为:145.根据竖式可知,好×7的末尾是好,由5×7=35,可得,好=5,向十位进3;马×7+3=马年,由1×7+3=10,可得,马=1,年=0;由以上分析可得竖式是:故答案为:1056.根据竖式可知,B+B的末尾是4,由2+2=4.或7+7=14可得,B是2或7;当B=2时,十位上,A+C=4,那么,A+B+C=2+4=6;当B=7时,要向十位进1,十位上,A+C+1=4,A+C=4﹣1=3,那么,A+B+C=7+3=10;6<10,所以,A+B+C最小值是6.故答案为:67.竖式结果中千位上是2,可以得知△代表的数字可以能是1或2,在个位上,□+○=□,可以推知○代表的数字是0,那么百位上结果就是0,△、□、○分别代表不同的数字,可以推知千位上的2,是进位后和△相加得出来的,可以推知△代表的数字是1.十位上△+□=0可以知道1+9=10推知□代表的数字是9.故△代表数字1,□代表数字9,○代表数字08.根据题干分析可得:故答案为:69.解:根据题得:DEF+HIJ=ABC,又因为1+2+3+4+5+6+7+8+9=45,假设个位与十位相加都进位,则可得:F+J=10+C,E+I=10+B﹣1=9+B,D+H=A﹣1,则D+E+F+H+I+J=10+C+9+B+A﹣1=A+B+C+18,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+18=45,即A+B+C=,不符合题意;则假设只有个位数字相加进位,则F+J=10+C,E+I=B﹣1,D+H=A,则D+E+F+H+I+J=10+C+B﹣1+A=A+B+C+9,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+9=45,即A+B+C=18,符合题意;答:A+B+C=18.故答案为:18.10.A,B,C,D代表不同的数字.当被减数取最大值可以是98,所以C、D都是小于8的数,则F+D=B=8,C+E=A=9,所以A×B+(C+E)×(D+F)=9×8+9×8=72+72=144,故答案为:14411.根据题干分析可得:答:数=8,学=5,好=2.故答案为:8;5;212.根据竖式是特点,先确定学代表的数字,即为2或1,当学代表2时,此是习应该为8,这样千位上的数会是3,与题干矛盾,所以学代表1,习代表8,优代表0,秀代表3,根据以上推算可得竖式是:故答案为:180313. 根据竖式可知,优+优+优的末尾是2,由4+4+4=12可得,“优”表示4,向十位进1;创+创+创+1的末尾是6,由5+5+5+1=16可得,“创”表示5,向百位进1;先+先+1的末尾是3,由1+1+1=3,6+6+1=13可得,“先”表示3或6,当“先”表示3时,“争”只能表示4,与优重复不符合,所以,“先”表示6,向千位进1;争+1=4,争=4﹣1=3,所以,“争”表示3.由以上分析可得竖式是:故答案为:3,6,5,414.根据题意,由竖式可得:“数”代表的数字是1;千位上:“奥”+1要想得到11,最大的数字9+1才等于10,也就是9+1再加上进位的1才能得到11,因此“奥”代表的数字是9;个位上:9+1=10,那么,“好”代表的数字是0;由以上可得竖式是:.故答案为:9,1,015.根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,2916. 根据题意,由竖式可得:A=1;百位上,B+A=9,B=8,或B+A+1=9,B=7;十位上,C+B+A=2,B+A大于2,所以,十位上一定满十,要向百位上进一,所以,B+A+1=9,B=7,符合题意;那么,C+B+A=12,C=4或C+B+A+1=12,C=3;个位上,D+C+B+A=7,因为C+B+A=12,大于10了,所以个位上也满十,向十位上进一,因此,C+B+A+1=12,C=3符合题意;那么,D+C+B+A=17,D=6.根据以上推算可得竖式是:故答案为:1,7,3,617.根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:29618.由以上分析可知:“我”=1,“爱”=7,“数”=9,“学”=3;算式是:;数字之和是:1+7+9+3=20;故答案为:2019.根据题意可知,可知A+B+C=7,A、B、C都不是0,字母A、B、C代表三个不同的数字,A比B大,B比C大,可知A>B>C,因1+2+4=7,那么A=4,B=2,C=1,所以三位数ABC是421.故填:42120.根据竖式可知,赛×5的末尾是赛,由0×5=0,5×5=25,可得赛是0或5,当赛是0时,竞×4的末尾是竞,由0×4=0,可得,竞是0,与题意不符,所以,赛只能是5,向十位进2;十位上,竞×4+2的末尾是竞,由6×4+2=26,可得,竞是6.向百位进2;百位上,学×3+2的末尾是学,由4×3+2=14,9×3+2=29,可得,学是4或9;当学是4时,向千位进1,千位上,数×2+1的末尾是数,由9×2+1=19,可得数是9,向万位上进1,万位上1+1=2,符合题意;当学是9时,向千位进2,千位上,数×2+2的末尾是数,由8×2+2=18,可得数是8,向万位上进1,万位上1+1=2,符合题意;由以上分析可得竖式是:或所以,数+学+竞+赛=9+4+6+5=24,或数+学+竞+赛=8+9+6+5=28;故答案为:24,2821.根据题意.由竖式可得:个位上:“飞”+“飞”+“飞”的末尾是1,由7+7+7=21,可得:“飞”=7,向十位进2;十位上:“腾”+“腾”+“腾”+2的末尾是0,由6+6+6+2=20,可得:“腾”=6,向百位进2;百位上:“龙”+“龙”+2的末尾是0,由4+4+2=10,可得:“龙”=4,向千位进1;千位上:“巨”+1=2,“巨”=1;所以,“巨”=1,“龙”=4,“腾”=6,“飞”=7;由以上可得竖式是:故答案为:1,4,6,222.根据竖式可知,在最高位上,我+8=赛,不能有进位,所以,我=1,赛=9,个位上,9+2=11,向十位进1;爱+6=竞,也不能有进位,所以,爱只能是2或3,由竞+3的末尾是爱,当爱=3时,9+3+1=13,竞=9,与题意不符,当爱=2时,8+3+1=12,可得,爱=2,竞=8,十位上,8+3+1=12,向百位进1;由学+5+1=希,希+4=学,可知学+5+1有进位,末尾是希,8与9数字已经使用,当学是5时,5+5+1=11,与我=1重复,不符合,当学是6时,6+5+1=11,末尾是2,与爱=1重复,不符合,那么学只能是7,7+5+1=13,希=3,向千位进1;剩下的数字有4、5、6,由杯+9的末尾是杯,9+4=13,9+5=14,9+6=15,可得,数+7+1有进位,末尾是望,4+7+1=12,重复,不符合,5+7+1=13,重复,不符合,6+7+1=14,可得,数=5,望=4,那么杯只能是5.竖式是:1 2 3 4 5 6 7 8 9+8 6 4 1 9 7 5 3 2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 8 7 6 5 4 3 2 1所以,这个加法算式的和是987654321.故答案为:98765432123.根据题意,由竖式可知,4×习的末尾是0,可得习是0或5;当习=0时,4×学的末尾也是0,那么学是0或5,当学=0,不符合题意,故学是5,向百位进2,3×爱+2的末尾是0,由3×6+2=20,可知爱是6,向千位进2,我+们+2的末尾是0,只能是我+们+2=10,向万位进1,我+1=2,可得我是1,们=10﹣2﹣1=7,竖式是:5 06 5 01 6 5 0+1 7 6 5 0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5时,向十位进2,4×学+2的末尾是0,由4×2+2=10,4×7+2=30,可知,学是2或7;当学=2时,向百位进1,3×爱+1的末尾是0,由3×3+1=10,可知爱是3,向千位进1,我+们+1的末尾是0,只能是我+们+1=10,向万位进1,我+1=2,可得我是1,们=10﹣1﹣1=8,竖式是:2 53 2 51 32 5+1 8 3 2 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5,学=7时,向百位进3,3×爱+3的末尾是0,由3×9+3=30,可知爱是9,向千位进3,我+们+1的末尾是0,只能是我+们+3=10,向万位进1,我+1=2,可得我是1,们=10﹣3﹣1=6,竖式是:7 59 7 51 9 7 5+1 6 9 7 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 024.根据题意可得:欢一定是1.嘉一定不小于3,因为要进位,迎可以取值不大于5(因为嘉最大取9,6+9=15),然后再从0﹣5中扣掉不合适的0、1、4,只剩2 3 5;中=2,则,你=6,不成立;以此类推得出祥可能的值3(对应你=7),5(9),8(2),9(3);由于十位为0,则七+祥=10 或者要么个位进一即七+祥+1=10;由上得出嘉大于等于3,迎=2、3、5,中=3、5、8、9对应的你=7、9、2、3,七+祥=10或者七+祥+1=10.假设,七+祥+1=10即中+4>10,那么,中可取值8、9,你=2、3.设,中=8,你=2,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(迎=2)、6(重复)、7(迎=4)、8(与中重复)、9(迎=6)均不可取,所以中不能取8;设,中=9,你=3,6+嘉+1=欢迎,嘉取值:3、4、6、7、9不可,5、8可行;若嘉取5,剩余数值为7、8,即十位数7+8+1=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、7,十位数2+7+1=10,符合;所以,得出629+874=1503或者679+824=1503.再假设,七+祥=10即中+4<10,那么,中可取值3、5,你=7、9.设,中=3,你=7,6+嘉+1=欢迎,嘉取值:3(与中重复)、4(重复)、6(重复)、7(与你重复)、9(迎=6)不可,5、8可行;若嘉取5,剩余数值是8、9,即十位数8+9=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、9,十位数2+9=10,不成立,所以中不能取3;设,中=5,你=9,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(与中重复)、6(重复)、7(迎=4)、8(迎=5)、9(与你重复)均不可取,所以中不能取5;所以,七+祥=10不成立.由以上分析可得竖式是:故答案为:150325.根据题干分析可得:所以申=1,办=6,奥=7,运=2.故答案为:1;6;7;2.26.根据题干分析可得:答:“爱好数学”代表的四位数是2156.故答案为:215627.根据以上分析知:北京奥运新世纪,这七个字可能是:(1)1,3,4,5,6,7,8,它们的乘积是20160;(2)0,3,4,5,6,7,9,它们的乘积是0.故答案为:20160或028.根据竖式可知:5×迷的末尾还是迷,因为5×5=25,所以迷为5,向十位进2;4×字+2的末尾是字,字只能是偶数,4×6+2=26,所以字为6,向百位进2;数×3+2的末尾是数,4×3+2=14,9×3+2=29,所以数为4或9,当数为4时,解×2+1的末尾为解,解只能为奇数,9×2+1=19,解为9;由巧+解+数+字+谜=30,可知,巧为6,与字为6重复,不符合题意,那么数只能是9,向千位进2;解×2+2的末尾为解,解只能为偶数,且不为4,6,8×2+2=18,解为8,向万位进1;由巧+解+数+字+谜=30,可知,巧为2,赛为1,符合题意.所以”数字谜”所代表的三位数是965.故填:96529.学=6﹣1=5,好=7﹣5=2,数=5+2+1=830.根据给出的竖式,得出学代表的字大于等于6,如果学等于6,则由个位学﹣数=3,得出数等于3,但这样就是636﹣63=573,得数的百位上不是6,与原题不一致,当学=7,这时数=4,此时为747﹣74=673,与题意相符;所以数=4,学=7,故答案为:4、7。
五年级奥数(基础班)第二讲 页码和数字谜
第二讲页码与算式谜辅导教师:王海生Email:bltwhs@人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。
比如:12345679*9=11111111112345679*18=22222222212345679*27=333333333……第一部分:页码问题(重点:分段统计)页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数(1—9)共有9个,组成所有的一位数需要9个数码;两位数(10—99)共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有(100—999)900个,组成所有的三位数需要3×900=2700(个)数码。
现在我们来看几道例题.例1一本书共300页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码10~99页每页上的页码是两位数,共需数码100~300页每页上的页码是三位数,共需数码综上所述,这本书共需数码【巩固】一本书有120页,共要多少个数码来编页码?【巩固】一本325页的故事书,排版时共用了多少个数码?例2 给一部长篇小说编页码,共用了3005个铅字数字,这本书共有多少页?分析:还是用分段统计的方法。
先统计1~9页一位数用了多少个页码,再统计10~99页两位数用了多少页码,接着是100~999页三位数用了多少页码……,再用总和减去前面一段、两段、三段的总字数,得到剩下的字数,再考虑最后一段的编排情况,确定最后一段的页码数。
解答:1~9页:10~99页:100~999页:比较:【巩固】给一本书编页码,共用了2049个数码,这本书有多少页?例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?【巩固】有一本85页的书,小明将这本书所有的页码数相加时,漏加了一张纸,结果得到的和是3560,被漏加的那张纸页数分别是多少?例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?【巩固】爸爸告诉小明:“有一张电影票夹在书的21页和22页之间。
小学奥数教程:乘除法数字谜(二)全国通用(含答案)
【例 12】一个六位数 ,如果满足 ,则称 为“迎春数”(如 ,则 就是“迎春数”).请你求出所有“迎春数”的总和.
【考点】与数论结合的数字谜之整除性质【难度】4星【题型】填空
【解析】方法一:显然, 不小于4,原等式变形为
化简得 ,当 时, ,于是 为 .同理. ,6,7,8,9,可以得到 为 , , , , .
①若“ ”=3,则盼盼盼盼盼盼盼盼盼÷3的商出现循环,且周期为3,这样就出现重复数字,
因此“ ”≠3。
②若“ ”=9,因为盼盼盼盼盼盼盼盼盼÷9=盼×(111111111÷9)=盼×12345679
若“盼”=1,则“开放的中国盼奥运”=12345679×1=12345679,“盼”=6,前后矛盾,所以“盼”≠1。
【答案】
【例 6】“迎杯×春杯=好好好”在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。那么“迎+春+杯+好”之和等于多少?
【考点】与数论结合的数字谜之特殊数字【难度】3星【题型】填空
1【解析】好好好=好×111=好×3×37,100以内37的倍数只有37和74,所以“迎杯”或“春杯”中必有1个是37或74,判断出“杯”是7或4。若杯=7,则好=9,999/37=27,所以,迎+春+杯+好=3+2+7+9=21若杯=4,则好=6,666/74=9,不是两位数,不符合题意。迎+春+杯+好=3+2+7+9=21。
【关键词】希望杯,4年级,初赛,20题
【解析】赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=99999母代表相同的数字,不同的字母代表不同的数字,问A和E各代表什么数字?
小学奥数 5-1-2-3 乘除法数字谜(二).教师版
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题 【解析】 “变”就是7,19999987285714÷= 【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题 【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
小学奥数5-1-1-2 算式谜(二).专项练习-精品
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.例题精讲知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.【例2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【例3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□模块二、填横式数字谜综合【例4】将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 将1~8这八个数字分别填入下面算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每个算式都成立.【例 8】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则=_________+++++===+ dcba+++++===+ 1287546213+===+++++【例9】将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中a,b,c,d四个数的乘积为多少?a+b=+++cd+=+=【例10】请将1~12这12个自然数分别填入到右图的方框中,每个数只出现1次,使得每个等式都成立.那么乘积A B C D⨯⨯⨯=____________()28||||||126+÷=+-÷--=----⨯=-+÷+÷=模块三、数字谜与逻辑推理【例11】题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C处填的数各是多少?【例12】自然数M N满足:.410-=-=-NNMM则=+NM()【例13】用下图的3张卡片,能组成29的倍数的数是【例14】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。
五年级奥数算式谜题
五年级奥数算式谜题一、加法算式谜题。
1. 在下面的加法算式中,每个字母代表一个数字,相同的字母代表相同的数字,不同的字母代表不同的数字。
求A、B、C的值。
ABC + CBA = 1232.解析:根据加法的竖式计算规则,个位上C + A = 2或者C + A = 12。
十位上B + B的结果个位是3,这是不可能的,因为B + B是偶数,所以个位上C+A = 12,向十位进1。
十位上B + B+1 = 13,则2B = 12,B = 6。
因为C + A = 12,假设A = 5,C = 7(答案不唯一)。
2. 求下面算式中□里的数字。
begin{array}{r}2□3 +□5□ hline 891end{array}解析:个位上3 + □=1,这是不可能的,所以个位上是3+□ = 11,□ = 8,向十位进1。
十位上□+5 + 1=9,□+6 = 9,□ = 3。
百位上2+□ = 8,□ = 6。
二、减法算式谜题。
3. 在下面的减法算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。
求A、B、C的值。
ABC CBA = 198.解析:根据减法的竖式计算规则,个位上C A = 8或者C A=-2(因为不够减借位)。
假设C> A,C A = 8,那么C = 9,A = 1。
百位上A C不够减,向十位借1,10 + A C = 1,把A = 1,C = 9代入验证成立。
十位上B B = 0(因为被借位后相减为0)。
4. 求下面算式中□里的数字。
begin{array}{r}□2□ -□□1 hline 318end{array}解析:个位上□-1 = 8,□ = 9。
百位上□-□ = 3,因为十位上相减没有借位给百位,所以只能是4 1 = 3或者5 2=·s等情况,假设被减数的百位是4,减数的百位是1。
十位上2 □ = 1,□ = 1(因为个位相减没有向十位借位)。
三、乘法算式谜题。
(完整版)算式谜.教师版
算式谜知识点拨一、算式迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、算式谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;例题精讲模块一、加法类型【例 1】 在下边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:+++☆=_______.+☆☆【考点】加法数字谜 【难度】3星 【题型】填空 【解析】 比较竖式中百位与十位的加法,如果十位上没有进位,那么百位上两个“□”相加等于一个“□”,得到“□”0=,这与“□”在首位不能为0矛盾,所以十位上的“□+□”肯定进位,那么百位上有“□+□110+=+□”,从而“□”9=,“☆”8=。
再由个位的加法,推知“○+△8=”.从而“+++=☆98825++=”.【答案】+++=☆98825++=【巩固】下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A +B +C +D +E +F +G = 。
+072E F G D C B ADC B A E F G 9378+【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 突破口是A=1,所以E=6,B=3或4.若B=3,F=5,C=4,G=9,D=8,满足题目;若B=4,F=4,矛盾,舍.综上,A +B +C +D +E +F +G=1+3+4+8+6+5+9=36.【答案】36【例 2】 下面的算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字.如果巧+解+数+字+谜=30,那么“巧解数字谜”所代表的五位数是多少?+巧赛解解解数数数数字字字字字谜谜谜谜谜谜【考点】加法数字谜 【难度】3星 【题型】填空 【解析】 观察算式的个位,由于谜+谜+谜+谜+谜和的个位还是“谜”,所以“谜”=0或5。
小学奥数 乘除法数字谜(二) 精选练习例题 含答案解析(附知识点拨及考点)
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998 学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)【解析】 “变”就是7,19999987285714÷=【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A = ①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
算式迷 小学数学五年级奥数专题学案汇编(附经典详解)
第32讲算式谜一、专题简析:算式谜一般是指一些含有未知数或缺少运算符号的算式。
解决这类问题,可以根据四则运算的规定,四则运算算式中的数量关系以及数的组成,逐步确定算式中的未知数和运算符号。
解答算式谜的关键是找准突破口,推理时应注意:1、认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件,选择有特征的部分作出局部判断;2、采用列举和筛选相结合的方法,逐步排除不合题意的数字;3、算式谜解出后,务必要验算一遍。
二、精讲精练例题1 有一个六位数,它的个位数字是6,如果将6移至第一位前面,所得的新六位数是原数的4倍。
求原六位数。
练习一1、已知六位数1ABCDE,这个六位数的3倍正好是ABCDE1,求这个六位数。
2、下面式子中每个汉字代表一个数字,不同的汉字代表不同的数字,请说出各个汉字分别代表什么数字。
2华罗庚金杯×3=华罗庚金杯2例题2 下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
2 8 5×□□1 □2 □□□□□ 9 □□练习二1、把下面的算式写完整。
□□□× 8 9□□□□□□□□□□□2、在算式的()里填上合适的数字。
() 2 ()()×() 6()() 0 4()() 7 ()()()()()()例题3下图的五个方格中已经填入84和72两个两位数,请你在其余的三格中也分别填入一个两位数,使得横行的三个数与竖行的三个数之和相等,并且这五个两位数正好由0~9十个数字组成。
练习三1、把0~9这十个数字填到圆圈内,每个数字只能用一次,使三个算式成立。
○+○=○○-○=○○×○=○○2、将1~9九个数字填入下列九个○中,使等式成立。
○○○×○○=○○×○○=5568例题4 把0、1、2、3、4、5、6、7、8、9这十个数字填入下面的小方格中,使三个等式都成立。
□+□=□□-□=□□×□=□□练习四1、将1、2、3、4、5、6、7、8、9九个不同的数字分别填在○中,使下面的三个算式成立。
小学奥数5-1-1-2 算式谜(二).专项练习及答案解析
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.例题精讲知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空 【关键词】迎春杯,高年级,初赛,3试题 【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。
(小学奥数)算式谜(二)
5-1-1-2.算式謎(二)教學目標數字謎從形式上可以分為橫式數字謎與豎式數字謎,從運算法則上可以分為加減乘除四種形式的數字謎。
橫式與豎式亦可以互相轉換,本講中將主要介紹數字謎的一般解題技巧。
主要橫式數字謎問題,因此,會需要利用數論的簡單奇偶性等知識解決數字謎問題知識點撥一、基本概念填算符:指在一些數之間的適當地方填上適當的運算符號(包括括弧),從而使這些數和運算符號構成的算式成為一個等式。
算符:指+、-、×、÷、()、[]、{}。
二、解決巧填算符的基本方法(1)湊數法:根據所給的數,湊出一個與結果比較接近的數,再對算式中剩下的數字作適當的增加或減少,從而使等式成立。
(2)逆推法:常是從算式的最後一個數字開始,逐步向前推想,從而得到等式。
三、奇數和偶數的簡單性質(一)定義:整數可以分為奇數和偶數兩類(1)我們把1,3,5,7,9和個位數字是1,3,5,7,9的數叫奇數.(2)把0,2,4,6,8和個位數是0,2,4,6,8的數叫偶數.(二)性質:①奇數≠偶數.②整數的加法有以下性質:奇數+偶數=奇數;偶數+偶數=偶數.③整數的減法有以下性質:奇數-奇數=偶數;奇數-偶數=奇數;偶數-奇數=奇數;偶數-偶數=偶數.④整數的乘法有以下性質:奇數×奇數=奇數;奇數×偶數=偶數;偶數×偶數=偶數.例題精講模組一、填橫式數字謎【例1】將數字1~9填入下麵方框,每個數字恰用一次,使得下列等式成立;()2007□□□□□□□現在“2”、“4”已經填入,當把其他數字都填+÷+-★24=入後,算式中唯一的減數(★處)是.【例2】將1~9這九個數字分別填入下麵算式的空格內,其中有一個數字已經知道,每個空格內只許填一個數字,使算式成立:==7÷--□□□□□□□□【例3】1~9這九個數字分別填入下麵算式的空格中,每個空格只許填一個數字,使算式成立:==÷÷÷□□□□□□□□□模組二、填橫式數字謎綜合【例4】將1~9分別填入下麵算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每個算式都成立,其中1,2,5已填出.【例 5】 下題是由1~9這九個數字組成的算式,其中有一個數字已經知道,請將其餘的數字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9這九個數字組成的算式,請將這些數字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 將1~8這八個數字分別填入下麵算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每個算式都成立.【例 8】 將1,2,3,4,5,6,7,8這八個數字分別填入右圖的八個○中,使得圖中的六個等式都成立.則=_________ +++++===+d c b a +++++===+ 1287546213+===+++++【例 9】將1,2,3,4,5,6,7,8這八個數字分別填入右圖的八個○中,使得圖中的六個等式都成立.那麼圖中a ,b ,c ,d 四個數的乘積為多少?a+b =+++c d +=+=【例 10】 請將1~12這12個自然數分別填入到右圖的方框中,每個數只出現1次,使得每個等式都成立.那麼乘積A B C D ⨯⨯⨯=____________()2008||||||126+÷=+-÷--=----⨯=-+÷+÷=模組三、數字謎與邏輯推理【例 11】 題目中的圖是一個正方體木塊的表面展開圖.若在正方體的各面填上數,使得對面兩數之和為7,則A 、B 、C 處填的數各是多少?【例 12】 自然數M N 滿足:.410-=-=-N N M M 則=+N M ( )【例13】用下圖的3張卡片,能組成29的倍數的數是【例14】如果一個至少兩位的自然數N滿足下列性質:在N的前面任意添加一些數字,使得得到的新數的數字和為N,但無論如何添加,這樣得到的新數一定不能被N整除,則稱N為“學而思數”。
五年级奥数基础教程-数字谜小学
数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
解:将5568质因数分解为5568=26×3×29。
由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。
显然,符合题意的只有下面一种填法:174×32=58×96=5568。
例3 在443后面添上一个三位数,使得到的六位数能被573整除。
分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。
由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。
五年级奥数乘除法数字谜(二)教师版
五年级奥数乘除法数字谜(二)教师版1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2.数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3.解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字;⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜(1)、特殊数字【例 1】如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空【关键词】学而思杯,4年级,第9题【解析】 “变”就是7,19999987285714÷=【答案】285714例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)【例 2】右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
杯小9望99999×赛赛希学 【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【关键词】希望杯,4年级,初赛,20题【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AE D EE E E E ×3C B【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分, 将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1-1-2.算式谜(二)教学目标五年级奥数算式谜(二)教师版知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空【关键词】迎春杯,高年级,初赛,3试题【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。
所以,后一式乘以4得到7□□□+2+4×□□-4×★被9整除,减去前一式得到3×□□-4-5×★被9整除。
所以,★被3除余1,而4和7都已用,则★=1。
【答案】1【例 2】 将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空【解析】 观察此横式,共三个算式,÷□□□□□、-□□、7-□,要使这三个算式的运算结果相同.由于第三个算式的减数已经知道,所以选择第三个算式7-□的差作为解题的突破口.因为7-□中被减数可填8和9,所以7-□,的差就可以为1和2这两种情况.(1)若第三个算式为87-,由于第一个算式÷□□□□□,不论这五个空格内填什么数字,都不能出现商为1,因此第三个算式不可能为87-.(2)若第三个算式为97-,那么第一个算式为:=÷□□□□□2,即=2⨯□□□□□,从而积的百位数为1,此时还有2,3,4,5,6,8可填,由数字不重复出现可得两位乘数只能为86、83、82、64、62五种取值。
若乘数为86,积为86×2=172,7已出现,不行;若乘数为83,积为83×2=166,6重复出现,不行;例题精讲若乘数为82,积为82×2=164,剩下的5-3=2,可以,此时有164825397÷=-=-若乘数为64,积为64×2=128,剩下的5-3=2,可以,此时有128645397÷=-=-若乘数为62,积为62×2=124,2重复出现,不行.【答案】164825397÷=-=-或128645397÷=-=-。
【例 3】 1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空【解析】 由于三个算式都是两位数除以一位数,所以考虑起来比较困难.(1)如果1出现在被除数的十位,则每个算式的商最小为2,最大为9.为了叙述方便,将方格内先填上字母:A B C D E F G H I ÷=÷=÷①若2A B C D E F G H I ÷=÷=÷=,则三个算式中A =D =G =1,出现重复数字,所以三个算式的商不可能都为2. ②3A B C D E F G H I ÷=÷=÷=,则三个算式中的A 、D 、G 必为1和2,也出现重复数字,所以三个算式的商不可能都为3. ③4A B C D E F G H I ÷=÷=÷=,则三个算式中的A 、D 、G 为1、2和3,12÷3=4 24÷6=4 32÷8=416÷4=4 28÷7=4 36÷9=4 若第一个算式为123÷,则D 与G 都不能为2,只能为3,出现重复数字,因此第一个算式为164÷,由于4与6都已用过,所以第二个算式不可能为246÷,便为287÷,这时剩下3、5、9三个数字没有用过,而这三个数字无法组成商为4的除法算式,因此三个算式的商不可能都为4.④ 三个算式的商不可能都为5,否则会出现B =E =H =5,或B 、E 、H 中有为0的,而我们所使用的数字中不包括0.⑤若6A B C D E F G H I ÷=÷=÷=,18÷3=6 42÷7=6 54÷9=6由于在这三个算式的被除数与除数部分,4重复出现,因此三个算式的商不可能都为6.⑥若7A B C D E F G H I ÷=÷=÷=,14÷2=7 21÷3=7 28÷4=7 42÷6=7,49÷7=7 56÷8=7 63÷9=7由于找不到三个左边数字不重复出现的式子,因此三个算式的商不可能都为7.⑦若8A B C D E F G H I ÷=÷=÷=16÷2=8 24÷3=8 32÷4=856÷7=8 64÷8=8 72÷9=8由于找不到三个左边数字不重复出现的式子,因此三个算式的商不可能都为8.⑧若9A B C D E F G H I ÷=÷=÷=18÷2=9 27÷3=9 36÷4=9 54÷6=963÷7=9 72÷8=9 81÷9=9由于找不到三个左边数字不重复出现的式子,因此三个算式的商不可能都为9.(2)如果1出现在被除数的个位,则商为3、7、9、13、17、27.①若3A B C D E F G H I ÷=÷=÷=,21÷7=3剩下3、4、5、6、8、9这六个数字,不可能组成被除数是两位数,除数是一位数且商为3的除法算式,因此这三个算式的商不可能都为3.②若7A B C D E F G H I ÷=÷=÷=,21÷3=7 56÷8=7 49÷7=7 便有2135684977÷=÷=÷=③若9A B C D E F G H I ÷=÷=÷=,81÷9=9 54÷6=9 27÷3=9 便有2735468199÷=÷=÷=④若13A B C D E F G H I ÷=÷=÷=91÷7=13 52÷4=13,还剩3、6、8三个数字,不可能组成商为13的除法算式.因此三个算式的商不可能都为13.⑤若17A B C D E F G H I ÷=÷=÷=,51÷3=17 68÷4=17,还剩2、7、9三个数字,不可能组成商为17的除法算式.因此三个算式的商不可能都为17.⑥若27A B C D E F G H I ÷=÷=÷=,81÷3=27 54÷2=27,还剩6、7、9三个数字,不可能组成商为27的除法算式.因此三个算式的商不可能全为27.(3)如果1出现在除数部分,则商为23~29和32,经试验无一成立. 解213568497÷=÷=÷,273546819÷=÷=÷ 【答案】213568497÷=÷=÷,273546819÷=÷=÷模块二、填横式数字谜综合【例 4】 将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.【考点】填横式数字谜之整除性质 【难度】4星 【题型】填空【解析】 ①审题.本题由两个算式构成,题目中给了三个数字.由题目可见,第一个算式的要求比较高.②选择解题的突破口.填出第一式是解决这道题的关键.③确定各□中的数字,观察题目发现,满足第一个算式的只有7×8=56和 6×9=54.如果第一式填 7×8=56,则剩下的数是3,4,9.无论怎样把它们填入第二式,都不能满足.所以这种填法不行.如果第一式填 6×9=54,则剩下的数是3,7,8.可以这样填入第二式,即:12378+=+本题的答案是:695412378⎧⨯=⎪⎨+=+⎪⎩【答案】695412378⎧⨯=⎪⎨+=+⎪⎩【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空【解析】 由于第一个算式中已经知道了一个数字,所以选择第一个算式作为解题的突破口. 由于69=54⨯,78=56⨯,所以第一个算式只有这两种情况。