概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第7~8章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第7~8章【圣才出品】

7 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

sup p(x1,K , xn; )
2.假设检验的基本步骤
(1)建立假设;
(2)选择检验统计量,给出拒绝域形式;
注意:一个拒绝域 W 唯一确定一个检验法则,一个检验法则也唯一确定一个拒绝域.
(3)选择显著性水平
第一类错误:命题本为真,却由于随机性落入了拒绝域,而否定了命题.(弃真)
第二类错误:命题本为假,由于随机性落入了接受域,而接受了命题.(取伪)
3 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

注:
xy
u1

xy
sx2
s
2 y
mn
4 / 136
圣才电子书

十万种考研考证电子书、题库视频学习平台
t1
sw
x
1 m
y
1 n
t2
xy
sx2
s
2 y
为零,即考察如下检验问题:
H0:μ=0 vs H1:μ≠0
即把双样本的检验问题转化为单样本 t 检验问题,这时检验的 t 统计量为
t2 d (sd n)
其中
1 n
d n i1 di
sd
n
1 1
n i 1
(di
1/ 2
d
)2
在给定显著性水平 α 下,该检验问题的拒绝域是:W1={|t2|≥t1-α/2(n-1)},这就是
1 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

在拒绝域 W 内的概率称为该检验的势函数,记为 g(θ )=pθ (X∈W),θ ∈Θ=Θ0∪Θ1 ②显著性检验:对检验问题 H0:θ∈Θ0 vs H1:θ∈Θ1,如果一个检验满足对任意的 θ

概率论与数理统计第八章习题答案

概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。

当时,因而时,拒绝当时,因而时,接受。

0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。

已知将以上数据代入得观察值()作出判断。

当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。

26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

σ
r
(2) E( S A ) = (r − 1)σ 2 + m ∑ ai2 ,且当 H0:a 1 = a 2 = … = a r = 0 成立时,
i =1
σ2
SA
~ χ 2 (r − 1) ;
(3)Se 与 SA 相互独立. 证:根据第五章的定理结论知: 设 X1 , X 2 , …, Xn 相互独立且都服从正态分布 N (µ , σ 2 ),记 X =
i =1 j =1 r m
1
σ2

(Y ∑∑ = =
i 1 j 1
r
m
ij
− Yi⋅ ) 2 ~ χ 2 (rm − r ) ,
σ
Se
2
=
1
σ
2
(Y ∑∑ = =
i 1 j 1
r
m
ij
− Yi⋅ ) 2 ~ χ 2 (n − r ) ,即得 E(S e) = (n − r)σ 2;
4
(2) S A = m∑ (Yi⋅ − Y ) 2 = m∑ (ai + ε i⋅ − ε ) 2 = m∑ ai2 + m∑ (ε i⋅ − ε ) 2 + 2m∑ ai (ε i⋅ − ε ) ,
j =1
m
Ti 1 m = ∑ Yij , i = 1, 2, …, r, m m j =1
r r m 1 1 r m 1 r T = ∑ Ti = ∑∑ Yij , Y = T = Y = Yi⋅ , ∑∑ ij r ∑ n rm i =1 j =1 i =1 i =1 j =1 i =1
用 Yi⋅ 作为µ i 的点估计,Y 作为µ 的点估计.又记 ε i⋅ 表示第 i 个总体下随机误差平均值,ε 表示总的随机误 差平均值,即

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。

设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。

3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。

解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。

《概率论与数理统计》第八章1假设检验的基本概念

《概率论与数理统计》第八章1假设检验的基本概念
单侧检验 H0 : 0 1000, H1 : 1000
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .

以,原假
设H
不正确
0

对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量

概率论与数理统计课后习题答案 第八章

概率论与数理统计课后习题答案 第八章

3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床
的加工精度有无差别,现从各自加工的零件中分别抽取 7 件产品和 8 件产品,测得其直径为
X(机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8
Y(机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0
(kg),样
本标准差
(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用 B 原料生产的
产品平均质量较使用原料 A 显著大?(取显著性水平
).
解:检验假设
选取检验统计量
查表知
由于
故接受
即使用 B 原料生产的产品平均质量于使用原料 A 生产的产品平均质量无显著大.
自测题 8
一、,选择题
已知元件电阻服从正态分布,设

(1) 两批电子元件电阻的方差是否相等;
(2) 两批元件的平均电阻是否有差异.
解: (1)检验假设
经计算

查表得
无法查
对应值,故无法做.
习题 8.4
某厂使用两种不同的原料生产同一类产品,随机选取使用原料 A 生产的产品 22 件,测得平均质量为
(kg),样本标准差
(kg).取使用原料 B 生产的样品 24 件,测得平均质量为
在假设检验问题中,显著性水平 的意义是 A .
A. 在 成立的条件下,经检验 被拒绝的概率
B. 在 成立的条件下,经检验 被接受的概率
C. 在 不成立的条件下,经检验 被拒绝的概率
D. 在 不成立的条件下,经检验 被接受的概率
二、,填空题
1. 设总体 X 服从正态分布

概率论与数理统计第八章假设检验习题解答

概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。

设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。

这种尺寸的矩形使人们看上去有良好的感觉。

现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。

下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。

设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。

概率论与数理统计茆诗松第二版课后习题参考答案

概率论与数理统计茆诗松第二版课后习题参考答案

第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。

概率论与数理统计(茆诗松)第二版课后习题参考答案.pdf

概率论与数理统计(茆诗松)第二版课后习题参考答案.pdf

第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ; (5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b bx b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(, 其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q .6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P .10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N ,事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P .15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k , 故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k , 故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x + y< 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576,事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα ∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为d cb a m E m E P π)()()(++=Ω=.方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P .29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球,则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =, 故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。

概率论与数理统计练习题第八章答案

概率论与数理统计练习题第八章答案

第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。

概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α>查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:、54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i ix x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ()9(025.0t t >可知,t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

概率论与数理统计习题及答案第八章

概率论与数理统计习题及答案第八章

习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。

概率论与数理统计 茆诗松 第二版课后 习题参考答案

概率论与数理统计 茆诗松 第二版课后 习题参考答案

第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。

概率论与数理统计课后习题答案第八章习题详解

概率论与数理统计课后习题答案第八章习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为问若标准差不改变,总体平均值有无显著性变化(α=)【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35) 2.0301.H H n t n t n x s x t t t αμμμμα==≠===-=========<=所以接受H 0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地服从正态分布(取α=).【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5) 1.267,2.91.65.H H n z x x z z z μμμασ≥<======-===->-=- 所以接受H 0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x =(%),s =(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=下检验.(1) H 0:μ=(%);H 1:μ<(%).(2)0:H σ' =(%);1:H σ'<(%). 【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5) 4.10241,0.037(9) 1.8331.n t n t x s x t t t αμα===-====-===-<-=-所以拒绝H 0,接受H 1.(2)2222010.95222220220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).n x s n s ασαχχχσχχ-=======-⨯===>所以接受H 0,拒绝H 1.6.某种导线的电阻服从正态分布N (μ,).今从新生产的一批导线中抽取9根,测其电阻,得s =欧.对于α=,能否认为这批导线电阻的标准差仍为【解】00102222/20.0251/20.975222220.025220:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H H n s n s αασσσσαχχχχχχχσ-===≠=======-⨯===> 故应拒绝H 0,不能认为这批导线的电阻标准差仍为.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ;第二批棉纱样本:n 2=200,y =0.57kg, s 2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异(α=【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为(%2)与(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠ 【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F <<所以接受H 0,拒绝H 1.9~12. 略。

概率论与数理统计 茆诗松 第二版课后 习题参考答案

概率论与数理统计 茆诗松 第二版课后 习题参考答案

x2 2

x3 3
⎟⎟⎠⎞
0
=
k 6
=1,
0y
1
∫ ∫ ∫ ∫ (2) P{X
> 0.5} =
1
dx
0.5
x
6dy =
x2
1 0.5
dx

6y
x
du
y
4uvdv =
x du ⋅ 2uv 2 y =
x 2uy 2 du = u 2 y 2 x = x 2 y 2 ;
0
0
0
00
0
当 0 ≤ x < 1 且 y ≥ 1 时,
∫ ∫ ∫ ∫ F(x, y) = P{X ≤ x, Y ≤ y} =
x
1
du 4uvdv =
x du ⋅ 2uv 2 1 =
X2)
=
(0, 1)}
=
8 13
⋅5 12
=
10 39

P{(
X1,
X
2
)
=
(1,
0)}
=
5 13

8 12
=
10 39

P{( X1,
X
2
)
=
(1,
1)}
=
5 13
⋅4 12
=
5 39

X2
0
1
X1
0 14 / 39 10 / 39
1 10 / 39 5 / 39
4. 设随机变量 Xi , i =1, 2 的分布列如下,且满足 P{X1X2 = 0} = 1,试求 P{X1 = X2}.
x
2udu
= u2
x

概率论与数理统计教程(茆诗松)第8章

概率论与数理统计教程(茆诗松)第8章

华东师范大学
第八章 方差分析与回归分析
第8页
我们要比较各水平下的均值是否相同, 即要对如下的一个假设进行检验:
H0 :1 =2 =…=r
备择假设为
H1 :1, 2, …, r 不全相等
(8.1.1)
在不会引起误解的情况下, H1 通常可省略不写。 如果H0成立,因子A的r个水平均值相同,称因子A的r 个水平间没有显著差异,简称因子A不显著;反之, 当H0不成立时,因子A的r个水平均值不全相同,这时 称因子A的不同水平间有显著差异,简称因子A显著。
有一个恒等式
k
( yi y ) 0
,这说明在Q中独立
i 1
的偏差只有k1个。
➢ 在统计学中把平方和中独立偏差个数称为该平 方和的自由度,常记为f,如Q的自由度为 fQ=k1。自由度是偏差平方和的一个重要参数。
13 July 2020
华东师范大学
第八章 方差分析与回归分析
第19页
四、总平方和分解公式
第22页
8.1.4 检验方法
偏差平方和Q的大小与自由度有关,为了便于在 偏差平方和间进行比较,统计上引入了均方的 概念,它定义为MS=Q/fQ ,其意为平均每个自 由度上有多少平方和,它比较好地度量了一组 数据的离散程度。
如今要对因子平方和 SA 与误差平方和 Se 之间进
行比较,用其均方和 MSA= SA /fA , MSe= Se /fe 进
1
r
r i 1
i
为总均值.
称第 i 水平下的均值 i 与总均值 的差:
ai=i - 为 Ai 的效应。
13 July 2020
华东师范大学
第八章 方差分析与回归分析
第12页

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 方差分析与回归分析本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.§8.1 方差分析8.1.1问题的提出上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为多因子方差分析.本章只进行单因子方差分析.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡60天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等. 8.1.2单因子方差分析的统计模型设因子A 有r 个水平A 1 , A 2 , …, A r ,在每个水平下需要考察的指标都构成一个总体,即有r 个总体,分别记为Y 1 , Y 2 , …, Y r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是m ,总体Y i 的样本Y i 1 , Y i 2 , …, Y im ,i = 1, 2, …, r .作出以下假定:(1)每一个总体都服从正态分布,即r i N Y i i i ,,2,1),,(~2L =σµ;(2)各个总体的方差都相等,即22221r σσσ===L ,都记为σ 2;(3)各个总体及抽取的样本相互独立,即Y ij 相互独立,i = 1, 2, …, r ,j = 1, 2, …, m . 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为H 0:µ 1 = µ 2 = … = µ r vs H 1:µ 1 , µ 2 , …, µ r 不全相等,如果H 0成立,就可以认为这r 个水平下的总体均值相同,称为因子A 不显著;反之,如果H 0不成立,就称为因子A 显著.在水平A i 下的样品Y ij 与该水平下的总体均值µ i 之差ε ij = Y ij − µ i 为随机误差.由于Y ij ~ N (µ i , σ 2 ),因此随机误差ε ij ~ N (0 , σ 2 ).对所有r 个水平下的总体均值求平均,即∑==+++=ri i r r r 1211)(1µµµµµL称为总均值.每个水平A i 下的总体均值µ i 与总均值µ 之差a i = µ i − µ 称为该水平A i 下主效应.显然所有主效应a i 之和等于0,即01=∑=ri ia,检验所有水平下的总体均值是否相等,也就是检验所有主效应a i 是否全等于0.这样单因子方差分析在重复数相等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m j r i a Y ij r i i ij i ij 相互独立,且都服从L L 检验的原假设与备择假设为H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0. 8.1.3平方和分解一.试验数据对于r 个总体下的试验数据Y ij , i = 1, 2, …, r ,j = 1, 2, …, m ,记T i 表示第i 个总体下试验数据总和,⋅i Y 表示第i 个总体下样本均值,n = rm 表示总的样本容量,T 表示总的试验数据总和,Y 表示总的样本均值,即∑==mj ij i Y T 1,∑=⋅==mj ij i i Y m m T Y 11, i = 1, 2, …, r ,∑∑∑=====r i mj ij r i i Y T T 111,∑∑∑=⋅=====ri i r i m j ij Y r Y rm T n Y 111111, 用⋅i Y 作为µ i 的点估计,Y 作为µ 的点估计.又记⋅i ε表示第i 个总体下随机误差平均值,ε表示总的随机误差平均值,即∑=⋅=mj ij i m 11εε, i = 1, 2, …, r ,∑∑∑=⋅====ri i r i m j ij r n 11111εεε.显然有⋅⋅+=i i i Y εµ,εµ+=Y .在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平试验数据和 和的平方平方和A 1 Y 11 Y 12 … Y 1m T 1 21T∑21jY A 2 Y 21 Y 22 … Y 2m T 2 22T∑22jY┆ ┆ ┆ ┆ ┆ ┆ ┆┆A rY r 1Y r 2…Y rmT r2r T ∑2rjYΣ T∑=ri i T 12∑∑==ri mj ijY112二.组内偏差与组间偏差数据Y ij 与样本总均值Y 之差Y Y ij −称为样本总偏差,可以分成两部分之和:)()(Y Y Y Y Y Y i i ij ij −+−=−⋅⋅,其中⋅⋅⋅−=+−+=−i ij i i ij i i ij Y Y εεεµεµ)()(是第i 个总体内数据与该总体内样本均值的偏差,称为组内偏差,反映第i 个总体内的随机误差;εεεµεµ−+=+−+=−⋅⋅⋅i i i i i a Y Y )()(是第i 个总体内样本均值与总样本均值的偏差,称为组间偏差,反映第i 个总体的主效应. 三.偏差平方和及其自由度在统计学中,对于k 个独立数据Y 1 , Y 2 , …, Y k ,平均值∑==ki i Y k Y 11,称Y i 与Y 之差为偏差,所有偏差的平方和∑=−=ki i Y Y Q 12)(称为这k 个数据的偏差平方和,反映这k 个数据的分散程度.由于所有偏差之和0)(11=−=−∑∑==Y k Y Y Y ki i k i i , 即这k 个偏差由k 个独立数据受到一个约束条件形成,可以证明它们与k − 1个独立(随机)变量可以相互线性表示,称之为等价于k − 1个独立(随机)变量.一般地,若k 个独立数据受到r 个不相关的约束条件,则它们等价于k − r 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为f .如上述偏差平方和Q 的自由度为k − 1,即f Q = k − 1.由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自由度之商,称为均方和,记为MS ,反映一组数据的平均分散程度,如样本方差∑=−−=ni i X X n S 122)(11就是样本数据偏差的均方和. 四.总平方和分解公式总偏差平方和记为S T 或SST ,其自由度记为f T ,有∑∑==−=r i mj ij T Y Y S 112)(,f T = rm − 1 = n − 1;组内偏差平方和记为S e 或SSE ,其自由度记为f e ,有∑∑==⋅−=r i mj i ij e Y Y S 112)(,f e = r (m − 1) = n − r ;组间偏差平方和记为S A 或SSA ,其自由度记为f A ,有∑∑∑=⋅==⋅−=−=ri i r i m j i A Y Y m Y Y S 12112()(,f A = r − 1.组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.定理 总偏差平方和S T 可以分解为组内偏差平方和S e 与组间偏差平方和S A 之和,其自由度也可作相应的分解,即S T = S e + S A ,f T = f e + f A ,称之为平方和分解公式. 证:∑∑∑∑==⋅⋅==−+−=−=ri mj i i ij ri mj ij T Y Y Y Y Y Y S 112112()[()(∑∑∑∑∑∑==⋅⋅==⋅==⋅−−+−+−=ri mj i i ij ri mj i ri mj i ij Y Y Y Y Y Y Y Y 11112112))((2)()(A e A e ri i A e ri mj i ij i A e S S S S Y Y S S Y Y Y Y S S +=++=×−++=−−++=∑∑∑=⋅==⋅⋅0]0[(2])()[(2111,且显然有f T = n − 1 = (n − r ) + (r − 1) = f e + f A . 8.1.4检验方法由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F 分布.定理 在单因子方差分析模型中,组内偏差平方和S e 与组间偏差平方和S A 满足(1)E(S e ) = (n − r )σ 2,且)(~22r n Se −χσ; (2)∑=+−=ri i A a m r S 122)1()E(σ,且当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S Aχσ;(3)S e 与S A 相互独立. 证:根据第五章的定理结论知:设X 1 , X 2 , …, X n 相互独立且都服从正态分布N (µ , σ 2),记∑==ni i X n X 11,∑=−=ni i X X S 120)(,则X 与S 0相互独立,且)1(~22−n S χσ.(1)∑∑==⋅−=ri mj i ij e Y Y S 112)(,Y i 1 , Y i 2 , …, Y im 相互独立且都服从正态分布N(µ i , σ 2),∑=⋅=mi ij i Y m Y 11,则∑=⋅−mj i ij Y Y 12)(与⋅i Y 相互独立,且)1(~)(12122−−∑=⋅m Y Y mj i ijχσ,因在不同水平下的样本都相互独立,则∑∑==⋅−ri mj i ij Y Y 112)(与⋅⋅⋅r Y Y Y ,,,21L 也相互独立,且根据独立χ 2变量的可加性知)(~)(121122r rm Y Y r i mj i ij−−∑∑==⋅χσ,故)(~)(1211222r n Y Y S r i mj i ije−−=∑∑==⋅χσσ,即得E(S e ) = (n − r )σ 2;(2)∑∑∑∑∑=⋅=⋅==⋅=⋅−+−+=−+=−=ri i i r i i r i ir i i i r i i A a m m a m a m Y Y m S 112121212(2)()()(εεεεεε,因ε ij (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (0, σ 2 ),有∑=⋅=m j ij i m 11εε (i = 1, 2, …, r ) 相互独立且都服从正态分布,0(2m N σ,∑=⋅=ri i r 11εε,则0)E()E()E(=−=−⋅⋅εεεεi i 且)1(~)(2212−−∑=⋅r mri i χσεε,即m r r i i 212)1()(E σεε−=⎥⎦⎤⎢⎣⎡−∑=⋅, 故21211212)1()E(2)(E )E(σεεεε−+=−+⎥⎦⎤⎢⎣⎡−+=∑∑∑∑==⋅=⋅=r a m a m m a m S ri i r i i i r i i ri iA ,当H 0:a 1 = a 2 = … = a r = 0成立时,∑∑=⋅=⋅−=−=ri i r i i A m Y Y m S 1212)()(εε,故)1(~)(22122−−=∑=⋅r mS ri i Aχσεεσ;(3)因∑∑==⋅−=ri mj i ij e Y Y S 112)(与⋅⋅⋅r Y Y Y ,,,21L 相互独立,有S e 与∑=⋅=ri i Y r Y 11相互独立,且∑=⋅−=ri i A Y Y m S 12(,故S e 与S A 相互独立.由于)(~22r n S e −χσ,当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S A χσ,且S e 与S A 相互独立,则根据F 分布的定义可知:当H 0成立时,有),1(~)()1(22r n r F MS MS f S f S r n S r S F eAe e A A eA−−==−−=σσ.由于∑=+−=ri i A a m r S 122)1()E(σ,则F 越大,即S A 越大时,越有可能发生a i ≠ 0,则检验的拒绝域为右侧.步骤:假设H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==, 显著水平α ,右侧拒绝域W = {f ≥ f 1 − α (r − 1, n − r )},计算f ,并作出判断. 这是F 检验法.通常列成方差分析表: 来源 平方和 自由度 均方和 F 比 因子 S A f A = r − 1 MS A = S A / f A F = MS A / MS e误差 S e f e = n − r MS e = S e / f A总和S Tf T = n − 1为了计算方便,可给出三个偏差平方和的计算公式.对于一组数据X 1 , X 2 , …, X n ,记∑==ni i X n X 11,则有2112212121)(⎟⎟⎠⎞⎜⎜⎝⎛−=−=−∑∑∑∑====n i i ni i n i i n i i X n X X n X X X , 记∑==m j ij i Y T 1,∑∑∑=====r i mj ij r i i Y T T 111,可得2112211112211211211)(T n Y Y n Y Y n Y Y Y S r i mj ij r i m j ij ri mj ij ri mj ij ri mj ij T −=⎟⎟⎠⎞⎜⎜⎝⎛−=−=−=∑∑∑∑∑∑∑∑∑∑==========, 212211121212121111)(T n T m Y n mr Y m m Y r Y m Y Y m S r i i r i m j ij r i m j ij r i i ri i A −=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡−=−=∑∑∑∑∑∑∑======⋅=⋅, ∑∑∑===−=−=r i i r i mj ijA T e T m Y S S S 121121.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在显著水平α = 0.05下检验这三种饲料对雏鸡增重是否有显著差别. 解:假设H 0:a 1 = a 2 = a 3 = 0 vs H 1:a 1 , a 2 , a 3不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,平方和显著水平α = 0.05,n = 24,r = 3,m = 8,右侧拒绝域W = { f ≥ f 0.95 (2, 21)} = { f ≥ 3.47},试验数据计算表 因子水平试验数据Y ijT i2i T∑=mj ijY 12A 1 1073 1009 1060 1001 10021012100910288194 67141636 8398024 A 2 1107 1092 990 1109 10901074112210018585 73702225 9230355 A 31093 1029 1080 1021 10221032102910488354 69789316 8728984总和 25133 210633177 26357363计算可得0833.96602513324121063317781112212=×−×=−=∑=T n T m S r i i A ,875.282152106331778126357363112112=×−=−=∑∑∑===r i i r i mj ije T m Y S ,方差分析表来源平方和自由度均方和F 比因子 9660.0833 2 4830.0417 3.5948 误差 28215.875 21 1343.6131 总和 37875.958323有F 比f = 3.5948 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这三种饲料对雏鸡增重有显著差别, 并且检验的p 值p = P {F ≥ 3.5948} = 1 − 0.9546 = 0.0454 < α = 0.05. 8.1.5参数估计在方差分析问题中,可对总均值µ ,误差的方差σ 2作参数估计.当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体Y ~ N (µ , σ 2 ) 的一个容量为n = rm 的样本,因此样本均值nT Y n Y r i m j ij ==∑∑==111,样本方差1)(111122−=−−=∑∑==n S Y Y n S T r i m j ij.这样总均值µ 和误差的方差σ 2的点估计分别为Y =µˆ,22S =∧σ,置信度为1 − α 的置信区间分别是 ])1([2/1nSn t Y −±∈−αµ,])1()1(,)1()1([22/222/122−−−−∈−n S n n S n ααχχσ.当检验结果为因子显著时,还可进一步对主效应a i 作参数估计. 一.点估计由于试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ + a i , σ 2 ),根据最大似然估计法,得到总均值µ ,误差的方差σ 2及主效应a i 的点估计.似然函数∏∏∏∏====⎪⎭⎪⎫⎪⎩⎪⎨⎧−−−==r i mj i ij r i m j ij r a y y p a a a L 11222112212)(exp π21)(),,,,,(σµσσµL ⎭⎬⎫⎩⎨⎧−−−=∑∑==ri mj iij na y 112222)(21exp )π2(1µσσ, 取对数,得∑∑==−−−−−=r i mj i ija yn n L 11222)(21)ln(2π)2ln(2ln µσσ.令关于µ 的偏导数等于0,有⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑∑∑∑=====r i i r i mj ijri mj i ij a m n y a y L 11121121)1()(221ln µσµσµ0101112112=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∑∑∑∑====µσµσn y n y r i m j ij r i mj ij , 得y y n r i mj ij ==∑∑==111µ,故总均值µ 的最大似然估计为Y =µˆ. 令关于a k 的偏导数等于0,有01)1()(221ln 1212=⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑==k mj kj mj k kj k ma m y a y a L µσµσ, k = 1, 2, …, r , 得µµ−=−=⋅=∑k mj kj k y y m a 11,故主效应a i 的最大似然估计为Y Y Y a i i i −=−=⋅⋅µˆˆ, i = 1, 2, …, r ,相应,第i 个水平下的总体均值µ i 的最大似然估计为⋅=+=i i i Y a ˆˆˆµµ. 令关于σ 2的偏导数等于0,有0)(2112)(ln 112422=−−+⋅−=∂∂∑∑==r i mj i ija yn L µσσσ,得∑∑==−−=r i m j i ij a y n 1122)(1µσ,故误差的方差σ 2的最大似然估计为nS Y Y n e r i m j i ij M =−=∑∑==⋅∧1122)(1σ.由于E(S e ) = (n − r )σ 2,可知∧2Mσ不是σ 2的无偏估计,修偏得σ 2的无偏估计e eMS rn S =−=∧2σ. 二.置信区间对总均值µ ,误差的方差σ 2及第i 个水平下的总体均值µ i 给出置信区间.第i 个水平下总体均值µ i 的点估计为∑=⋅==mj ij i i Y m Y 11ˆµ,因试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m )相互独立且都服从正态分布N(µ i , σ 2),则有),(~2mN Y i i σµ⋅,即)1,0(~N mY ii σµ−⋅,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据χ 2分布的定义可得 )(~ˆ)(2r n t mY r n S m Y i i eii −−=−−⋅⋅σµσσµ,故第i 个水平下总体均值µ i 的置信度为1 − α 的置信区间是]ˆ)([2/1mr n t Y i i σµα−±∈−⋅.总均值µ 的点估计为∑∑====r i mj ij Y n Y 111ˆµ,因数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2 ),有Y 服从正态分布,且µµµ====∑∑∑∑∑=====r i i r i mj i r i m j ij n m n Y n Y 111111)E(1)E(,n n n n Y nY ri mj r i mj ij 222112211211)Var(1)Var(σσσ=⋅===∑∑∑∑====, 得,(~2nN Y σµ,即)1,0(~N nY σµ−,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与Y 相互独立,则根据t 分布的定义可得 )(~ˆ)(2r n t nY r n S n Y e−−=−−σµσσµ, 故总均值µ 的置信度为1 − α 的置信区间是ˆ)([2/1nr n t Y σµα−±∈−.误差的方差σ 2的点估计为r n S e −=∧2σ,且)(~22r n Se −χσ,故误差的方差σ 2的置信度为1 − α 的置信区间是⎥⎦⎤⎢⎢⎢⎣⎡−−−−=⎥⎦⎤⎢⎣⎡−−∈∧−∧−)()(,)()()(,)(22/222/1222/22/12r n r n r n r n r n S r n S e e ααααχσχσχχσ. 例 由前面的鸡饲料对鸡增重问题的数据给出总均值µ ,误差的方差σ 2及三个水平下总体均值µ1 , µ 2 , µ 3的点估计和置信区间(α = 0.05).解:前面已检验知因子显著,则三个水平下总体均值µ1 , µ 2 , µ 3的点估计为25.102488194ˆ111====⋅m T Y µ, 125.107388585ˆ222====⋅m T Y µ,25.104488354ˆ333====⋅m T Y µ,总均值µ 的点估计为2083.10472425133ˆ====n T Y µ,误差的方差σ 2的点估计为6131.13432==−=∧e eMS rn S σ, 置信度为0.95的置信区间是]2008.1051,2992.997[86131.13430796.225.1024[]ˆ)21([975.011=×±=±∈⋅m t Y σµ,]0758.1100,1742.1046[86131.13430796.2125.1073[]ˆ)21([975.022=×±=±∈⋅m t Y σµ,]2008.1071,2992.1017[]86131.13430796.225.1044[]ˆ)21([975.033=×±=±∈⋅mt Y σµ,]7684.1062,6482.1031[]246131.13430796.22083.1047[]ˆ)21([975.0=×±=±∈nt Y σµ,[]9608.2743,2861.7952829.10875.28215,4789.35875.28215)21(,)21(2025.02975.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσe e S S . 8.1.6重复数不等的情形如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别. 一.数据设第i 个水平A i 下的重复数为m i ,所取得的样本为i im i i Y Y Y ,,,21L ,i = 1, 2, …, r .显然重复数总数为n ,即m 1 + m 2 + … + m r = n . 二.总均值总均值µ 是各水平下总体均值µ i 的以频率nm i为权数的加权平均,即 ∑==+++=r i i i r r m n n m n m n m 122111µµµµµL .三.主效应约束条件第i 个水平下主效应a i = µ i − µ ,则满足011=−=∑∑==µµn m a m ri iir i ii .四.模型单因子方差分析在重复数不等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m m j r i a Y ij r i i i i ij i ij 相互独立,且都服从L L 检验H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0.五.平方和的计算记∑==im j ij i Y T 1,∑=⋅==im j ij i i i i Y m m T Y 11,∑∑∑=====ri i ri m j ij T Y T i111,∑∑∑=⋅=====ri i i r i m j ij Y m n Y n n T Y i 11111, 则各平方和的计算公式为n T Y Y n Y Y Y S ri m j ijri m j ijri m j ij T iii21122112112)(−=−=−=∑∑∑∑∑∑======, n T m T Y n Y m Y Y m Y Y S ri ii ri i i ri i i ri m j i A i21221212112)()(−=−=−=−=∑∑∑∑∑==⋅=⋅==⋅, ∑∑∑===−=−=ri ii ri m j ijA T e m T Y S S S i12112. 例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表包装类型销售量数据A 1 12 18 A 2 14 12 13 A 3 19 17 21 A 4 24 30在显著水平α = 0.01下检验这四种包装对销售量是否有显著影响. 解:假设H 0:a 1 = a 2 = a 3 = a 4 = 0 vs H 1:a 1 , a 2 , a 3 , a 4不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,显著水平α = 0.01,n = 10,r = 4,右侧拒绝域W = { f ≥ f 0.99 (3, 6)} = { f ≥ 9.78},销售量数据计算表计算可得258180101349812212=×−=−=∑=T n m T S ri ii A ,463498354412112=−=−=∑∑∑===ri i i ri mj ije m T Y S ,方差分析表来源平方和自由度均方和F 比因子 258 3 86 11.2174 误差 46 6 7.6667 总和 3049有F 比f = 11.2174 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这四种包装对销售量有显著影响, 并且检验的p 值p = P {F ≥ 11.2174} = 1 − 0.9929 = 0.0071 < α = 0.01. 由于因子显著,则四个水平下总体均值µ1 , µ 2 , µ 3 , µ 4的点估计为15230ˆ1111====⋅m T Y µ, 13339ˆ2222====⋅m T Y µ, 19357ˆ3333====⋅m T Y µ, 27254ˆ4444====⋅m T Y µ, 总均值µ 的点估计为1810180ˆ====n T Y µ, 误差的方差σ 2的点估计为6667.72==−=∧e eMS rn S σ, 置信度为0.99的置信区间是]2587.22,7413.7[]26667.77074.315[]ˆ)6([1995.011=×±=±∈⋅m t Y σµ,]9267.18,0733.7[]36667.77074.313[]ˆ)6([2995.022=×±=±∈⋅m t Y σµ,]9267.24,0733.13[]36667.77074.319[]ˆ)6([3995.033=×±=±∈⋅m t Y σµ,]2587.34,7413.19[]26667.77074.327[]ˆ)6([4995.044=×±=±∈⋅m t Y σµ,]2462.21,7538.14[106667.77074.318[]ˆ)6([995.0=×±=±∈nt Y σµ,[]0775.68,4801.26757.046,5476.1846)6(,)6(2005.02995.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσeeS S .§8.2 多重比较上一节是将多个总体作为一个整体进行检验.如果检验结果是因子A 显著,则可以认为各水平下的均值µ i 不全相等,但却不能直接说明µ i 中哪些可以认为相等,哪些可以认为不等.这一节是对各个µ i 两两之间进行比较,对µ i − µ j ,也就是效应差a i − a j 作出估计、检验. 8.2.1效应差的置信区间效应差a i − a j = µ i − µ j 的点估计为⋅⋅−j i Y Y .因Y ik ~ N (µ i , σ 2 ), (i = 1, 2, …, r , k = 1, 2, …, m i ),则),(~121i i m k ik i i m N Y m Y iσµ∑=⋅=,,(~121jj m k jkj j m N Ym Y jσµ∑=⋅=,且当i ≠ j 时,⋅i Y 与⋅j Y 相互独立,可得))11(,(~2σµµji j i j i m m N Y Y +−−⋅⋅, 即)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )(~11ˆ)()()(11)()(2r n t m m Y Y r n S m m Y Y ji j i j i ej i j i j i −+−−−=−+−−−⋅⋅⋅⋅σµµσσµµ,故效应差a i − a j = µ i − µ j 的置信度为1 − α 的置信区间是]11ˆ)([2/1ji j i j i m m r n t Y Y +⋅−±−∈−−⋅⋅σµµα. 例 由前面的鸡饲料对鸡增重问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.05). 解:因m 1 = m 2 = m 3 = 8,n = 24,r = 3,有25.102488194111===⋅m T Y ,125.107388585222===⋅m T Y ,25.104488354333===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为875.48125.107325.10242121−=−=−=−⋅⋅∧Y Y µµ, 2025.104425.10243131−=−=−=−⋅⋅∧Y Y µµ, 875.2825.1044125.10733232=−=−=−⋅⋅∧Y Y µµ;因6553.3621875.28215ˆ==−=r n S e σ,有1142.385.06553.360796.211ˆ)21(975.0=××=+⋅j i m m t σ,则各效应差µ i − µ j 的置信度为0.95的置信区间分别是]7608.10,9892.86[]1142.38875.48[]8181ˆ)21([975.02121−−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]1142.18,1142.58[]1142.3820[]8181ˆ)21([975.03131−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]9892.66,2392.9[]1142.38875.28[]8181ˆ)21([975.03232−=±=+⋅±−∈−⋅⋅σµµt Y Y . 例 由前面的食品包装对销售量影响问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.01). 解:因m 1 = 2,m 2 = 3,m 3 = 3,m 4 = 2,n = 10,r = 4,有15230111===⋅m T Y ,13339222===⋅m T Y ,19357333===⋅m T Y ,27254444===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为213152121=−=−=−⋅⋅∧Y Y µµ,419153131−=−=−=−⋅⋅∧Y Y µµ, 1227154141−=−=−=−⋅⋅∧Y Y µµ,619133232−=−=−=−⋅⋅∧Y Y µµ, 1427134242−=−=−=−⋅⋅∧Y Y µµ,827194343−=−=−=−⋅⋅∧Y Y µµ;因7689.2646ˆ==−=r n S e σ,有2653.107689.27074.3ˆ)6(995.0=×=⋅σt ,则各效应差µ i − µ j 的置信度为0.99的置信区间分别是]3709.11,3709.7[]9129.02653.102[]3121ˆ)6([995.02121−=×±=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.5,3709.13[]9129.02653.104[]3121ˆ)6([995.03131−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]7347.1,2653.22[]12653.1012[]2121ˆ)6([995.04141−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3816.2,3816.14[]8165.02653.106[]3131ˆ)6([995.03232−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]6291.4,3709.23[]9129.02653.1014[]2131ˆ)6([995.04242−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.1,3709.17[]9129.02653.108[]2131ˆ)6([995.04343−=×±−=+⋅±−∈−⋅⋅σµµt Y Y .8.2.2 多重比较问题对各个µ i 两两之间进行比较,也就是检验任意两个水平A i 与A j 下的总体均值是否相等,即检验假设j i ij H µµ=:0 vs j i ij H µµ≠:1, i , j = 1, 2, …, r .对于每一个假设ijH 0可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验2)1(2−=r r C r 个这种假设. 设需要同时检验k 个假设k i H i ,,2,1,0L =,每一个假设的显著水平是α ,即在iH 0成立的条件下,接受i H 0的概率为1 − α ,但在所有k 个假设i H 0都成立的条件下,要同时接受所有假设iH 0的概率就可能远小于1 − α .事实上,此时对每一个假设i H 0,拒绝i H 0的概率为α ,而对所有k 个假设k i H i ,,2,1,0L =,至少拒绝其中一个i H 0的概率最大时可能达到k α ,即同时接受所有假设i H 0的概率就可能只有1 − k α .可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设.多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.这里,需要检验假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 在ij H 0成立的条件下,⋅i Y 与⋅j Y 不应相差太大.对每一个假设ijH 0,拒绝域可以取为}|{|ij j i ij c Y Y W ≥−=⋅⋅,其中c ij 是常数.对所有的假设ijH 0,统一的拒绝域取为U U rj i ij j i rj i ijc Y YWW ≤<≤⋅⋅≤<≤≥−==11}|{|.分成重复数相等与不等两种场合进行讨论. 8.2.3重复数相等场合的T 法重复数相等时,各水平是平等的,由对称性,可以要求所有的c ij 相等,记为c ,即统一的拒绝域为}min max {}||max {}|{|1111c Y Y c Y Y c Y YW i ri i ri j i rj i rj i j i ≥−=≥−=≥−=⋅≤≤⋅≤≤⋅⋅≤<≤≤<≤⋅⋅U .因Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2),有,(~2mN Y i i σµ⋅.当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有,(~2mN Y i σµ⋅,则)1,0(~N mY i σµ−⋅.但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据t 分布的定义可得 )()(~ˆ)(2e i ei f t r n t mY r n S m Y =−−=−−⋅⋅σµσσµ.统一的拒绝域W 的形式可改写为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥−−−=≥−=⋅≤≤⋅≤≤⋅≤≤⋅≤≤m c m Y m Y c Y Y W i r i i r i i r i i r i σσµσµˆˆmin ˆmax }min max {1111, 其中mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=是从分布为t ( f e )的总体中抽取容量为r 的样本所得的最大与最小顺序统计量之差(极差),称之为t 化极差统计量,其分布记为q (r , f e ).显然,t 化极差统计量Q 的分布q (r , f e ) 只与水平个数r 以及t 分布的自由度f e 有关,而与参数µ , σ 2及重复数m 无关.分布q (r , f e )的准确形式比较复杂,通常采用随机模拟方法得到其分位数q 1 − α (r , f e ).对于给定的容量r 及自由度f e ,随机模拟方法是(1)随机生成r 个标准正态分布N (0, 1) 随机数x 1 , x 2 , …, x r ,将这r 个随机数按由小到大的顺序排列,得到其最小随机数x (1) 和最大随机数x (r ) ;(2)随机生成1个自由度为f e 的χ 2分布χ 2 ( f e ) 随机数y ; (3)计算er f y x x q )1()(−=;(4)重复(1)至(3)步N 次,得到t 化极差统计量Q 的N 个观测值,只要N 非常大(如10 4或10 5次),就可得q (r , f e )的各种分位数q 1 − α (r , f e )的近似值.当显著水平为α 时,拒绝域{}),(ˆ1ef r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,有m c f r q e σαˆ),(1=−,可得 mf r q c e σαˆ),(1⋅=−,再逐个将||⋅⋅−j i Y Y 与c 比较,得出每一对µ i 与µ j 是否有显著差异的结论.步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α ,右侧拒绝域{}),(ˆ1e f r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,计算mf r q c e σαˆ),(1⋅=−,逐个将||⋅⋅−j i Y Y 与c 比较,得出结论.例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较(α = 0.05).解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 3, 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α = 0.05,r = 3,f e = n − r = 21,右侧拒绝域W = {Q ≥ q 0.95 (3, 21)} = {Q ≥ 3.57},因m = 8,6553.3621875.28215ˆ==−=r n S e σ,有2658.4686553.3657.3=×=c , 由于c Y Y >=−=−⋅⋅875.48|125.107325.1024|||21,故µ 1与µ 2有显著差异;c Y Y <=−=−⋅⋅20|25.104425.1024|||31,故µ 1与µ 3没有显著差异; c Y Y <=−=−⋅⋅875.28|25.1044125.1073|||32,故µ 2与µ 3没有显著差异;8.2.4重复数不等场合的S 法重复数不等时,因)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )()(~11ˆ)()(e ji j i j i f t r n t m m Y Y =−+−−−⋅⋅σµµ,当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有)(~11ˆe ji j i ij f t m m Y Y T +−=⋅⋅σ,得),1(~11ˆ)(222e j i j i ijij f F m m Y Y T F ⎟⎟⎠⎞⎜⎜⎝⎛+−==⋅⋅σ,从而统一的拒绝域可以取为U U r j i ji j i r j i ji j i c m m Y Y m m c Y Y W ≤<≤⋅⋅≤<≤⋅⋅≥+−=+≥−=11}11||{}11|{| }ˆmax {}ˆ11ˆ)(max {}ˆ11ˆ||max {221222211σσσσσc F c m m Y Y cm m Y Y ij r j i j i j i r j i ji j i r j i ≥=≥⎟⎟⎠⎞⎜⎜⎝⎛+−=≥+−=≤<≤⋅⋅≤<≤⋅⋅≤<≤,可以证明,),1(~1max 1e ij rj i f r F r F −−≤<≤&.当显著水平为α 时,拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ,有221ˆ)1(),1(σα−=−−r c f r f e ,可得),1()1(ˆ1e f r f r c −−=−ασ,因此⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m c c 11),1()1(ˆ111ασ, 再逐个将||⋅⋅−j i Y Y 与ji ij m m cc 11+=比较,得出每一对µ i 与µ j 是否有显著差异的结论. 步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量),1(~11ˆ)1()(max1max 2211e j i j i rj i ijrj i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α ,右侧拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ, 计算⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m cc 11),1()1(ˆ111ασ, 逐个将||⋅⋅−j i Y Y 与c ij 比较,得出结论.例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较(α = 0.01). 解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 4, 统计量),1(~11ˆ)1()(max)1(max 224141e j i j i j i ij j i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α = 0.01,r = 4,f e = n − r = 6,右侧拒绝域W = {F ≥ f 0.99 (3, 6)} = {F ≥ 9.78},因m 1 = m 4 = 2,m 2 = m 3 = 3,7689.2646ˆ==−=r n S e σ,有9981.1478.937689.2=××=c , 则6914.13312134241312=+====cc c c c ,9981.14212114=+=c c ,2459.12313123=+=c c , 由于12212|1315|||c Y Y <=−=−⋅⋅,故µ 1与µ 2没有显著差异;13314|1915|||c Y Y <=−=−⋅⋅,故µ 1与µ 3没有显著差异; 144112|2715|||c Y Y <=−=−⋅⋅,故µ 1与µ 4没有显著差异; 23326|1913|||c Y Y <=−=−⋅⋅,故µ 2与µ 3没有显著差异; 244214|2713|||c Y Y >=−=−⋅⋅,故µ 2与µ 4有显著差异; 34438|2719|||c Y Y <=−=−⋅⋅,故µ 3与µ 4没有显著差异.§8.3 方差齐性检验在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即222221σσσσ====r L ,称之为方差齐性.但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,称为方差齐性检验.各水平下的总体方差2i σ分别是以该水平下的样本方差2i S 作为点估计,以由22221,,,r S S S L 构成的函数作为检验的统计量.分成重复数相等与不等两种场合进行讨论. 8.3.1重复数相等场合的Hartley 检验法重复数相等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅m T Y m Y m Y m Y Y m S i m j ij i m j ij m j i ij i2122121221111)(11,i = 1, 2, …, r , 各水平是平等的,以r 个水平下样本方差),,2,1(,2r i S i L =的最大值与最小值之比作为检验的统计量H ,即},,,min{},,,max{2222122221r r S S S S S S H L L =.在方差齐性成立的条件下,统计量H 的分布只与水平个数r 及样本方差2i S 的自由度f = m − 1有关,记为H (r , f ).分布H (r , f )的准确形式比较复杂,通常采用随机模拟方法得到其分位数H 1 − α (r , f ).显然有H ≥ 1,且H 的观测值越接近1,方差齐性越应该成立,因此拒绝域取为W = {H ≥ H 1 − α (r , f )}.步骤:假设H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,统计量},,,min{},,,max{2222122221rr S S S S S S H L L =,显著水平α ,右侧拒绝域W = {H ≥ H 1 − α (r , f )}, 计算H ,并作出判断. 这称之为Hartley 检验法.例 由前面的鸡饲料对鸡增重影响问题的数据采用Hartley 检验法进行方差齐性检验(α = 0.05).解:假设H 0:232221σσσ== vs H 1:232221,,σσσ不全相等,统计量},,min{},,max{232221232221S S S S S S H =, 显著水平α = 0.05,且r = 3,f = m − 1,右侧拒绝域W = {H ≥ H 0.95 (3, 7)} = {H ≥ 6.94},根据试验数据计算表,可得T 1 = 8194,T 2 = 8585,T 3 = 8354,8398024121=∑=mj j Y ,9230355122=∑=mj jY,8728984123=∑=mj j Y ,则9286.759)881948398024(71221=−=S ,9821.2510885859230355(71222=−=S ,9286.759)883548728984(71223=−=S ,可得W H ∉==3042.39286.7599821.2510,故拒绝H 0 ,接受H 1 ,可以认为三个水平下的总体方差满足方差齐性.8.3.2 重复数不等场合大样本情形的Bartlett 检验法重复数不等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅i i m j ij i i i m j ij i m j i ij i im T Y m Y m Y m Y Y m S i i i 2122121221111)(11,i = 1, 2, …, r , 记i i m j ijm j i ij i m T Y Y Y Q ii21212)(−=−=∑∑==⋅为第i 个水平下的偏差平方和,f i = m i − 1为其自由度,有i i i f Q S =2,且e r i m j i ijr i i S Y YQ i=−=∑∑∑==⋅=1121)(,e ri ir i i f r n r mf =−=−=∑∑==11,则组内偏差均方和∑∑∑=======ri i ei ri ii e ri ie e e e Sf f S f f Q f f S MS 1212111, 即MS e 等于样本方差22221,,,r S S S L 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为GMS e ,即∏==ri f f i e eiS GMS 12)(.以MS e 与GMS e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,)1(~])ln()ln([1ln 212−−==∑=r S f MS f C GMS MS C f B ri i i e e e e e χ&,其中常数⎟⎟⎠⎞⎜⎜⎝⎛−−+=∑=e r i i f f r C 11)1(3111. 由于算术平均必大于等于几何平均,即MS e ≥ GMS e ,当且仅当所有2i S 都相等时等号成立,即B 的观测值越小,方差齐性越应该成立,因此拒绝域取为)}1({21−≥=−r B W αχ.。

相关文档
最新文档