2.振动和波考试重点和习题答案

合集下载

大学物理振动与波练习题与答案

大学物理振动与波练习题与答案
(3) 波速 c ? (4) t 3 秒时 x 3.5 厘米处的质点的振动速度 v ?
【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2

机械振动和波 试题及答案

机械振动和波 试题及答案

一、填空题1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。

2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。

3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。

4、一横波的波动方程是y = 0.02cos2π(100t – 0.4x)( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。

5、两个谐振动合成为一个简谐振动的条件是 。

6、产生共振的条件是振动系统固有频率与驱动力频率 (填相同或不相同)。

7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

8、弹簧振子系统周期为T 。

现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 。

9、作谐振动的小球,速度的最大值为 ,振幅为 ,则振动的周期为 ;加速度的最大值为 。

10、广播电台的发射频率为 。

则这种电磁波的波长为 。

11、已知平面简谐波的波动方程式为 ,则 时,在X=0处相位为 ,在 处相位为 。

12、若弹簧振子作简谐振动的曲线如下图所示,则振幅 ;圆频率初相 。

13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。

14、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+,其合成运动的方程x = .15、A 、B 是在同一介质中的两相干波源,它们的位相差为π,振动频率都为100Hz ,产生的波以10.0m/s 的速度传播。

波源A 的振动初位相为3π,介质中的P 点与A 、B 等距离,如图所示。

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

振动和波动要点习题

振动和波动要点习题

振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。

高考物理总复习专题练习:振动和波

高考物理总复习专题练习:振动和波

高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。

关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。

则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。

则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。

振动、波动练习题及答案

振动、波动练习题及答案

振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。

周期T=2s。

其平衡位置取作坐标原点。

若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。

A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。

A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。

A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。

A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。

A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。

振动与波专题(2024高考真题及解析)

振动与波专题(2024高考真题及解析)

振动与波专题1.[2024·安徽卷] 某仪器发射甲、乙两列横波,在同一均匀介质中相向传播,波速v大小相等.某时刻的波形图如图所示,则这两列横波()A.在x=9.0 m处开始相遇B.在x=10.0 m处开始相遇C.波峰在x=10.5 m处相遇D.波峰在x=11.5 m处相遇1.C[解析] 由题意可知两列波的波速相同,所以相同时间内传播的距离相同,故两列横波在x=11.0 m处开始相遇,故A、B错误;甲波峰的坐标为x1=5 m,乙波峰的坐标为x2=16 m,m=10.5 m处相遇,故C正确,D错误.由于两列波的波速相同,所以波峰在x'=5 m+16-522.[2024·北京卷] 图甲为用手机和轻弹簧制作的一个振动装置.手机加速度传感器记录了手机在竖直方向的振动情况,以向上为正方向,得到手机振动过程中加速度a随时间t变化的曲线为正弦曲线,如图乙所示.下列说法正确的是()A.t=0时,弹簧弹力为0B.t=0.2 s时,手机位于平衡位置上方C.从t=0至t=0.2 s,手机的动能增大D.a随t变化的关系式为a=4sin (2.5πt) m/s22.D[解析] 由题图乙知,t=0时,手机加速度为0,由牛顿第二定律得弹簧弹力大小为F=mg,A错误;由题图乙知,t=0.2 s时,手机的加速度为正,则手机位于平衡位置下方,B错误;由题图乙知,从t=0至t=0.2 s,手机的加速度增大,手机从平衡位置向最大位移处运动,速度=2.5π rad/s,则a随t变化的关系减小,动能减小,C错误;由题图乙知T=0.8 s,则圆频率ω=2πT式为a=4sin (2.5πt) m/s2,D正确.3.[2024·福建卷] 某简谐运动的y -t 图像如图所示,则以下说法正确的是( )A .振幅为2 cmB .频率为2.5 HzC .0.1 s 时速度为0D .0.2 s 时加速度方向竖直向下3.B [解析] 根据图像可知,振幅为1 cm,周期为T =0.4 s,则频率为f =1T =10.4 Hz=2.5 Hz,故A 错误,B 正确;根据图像可知,0.1 s 时质点处于平衡位置,此时速度最大,故C 错误;根据图像可知,0.2 s 时质点处于负向最大位置处,此时加速度方向竖直向上,故D 错误.4.[2024·甘肃卷] 如图为某单摆的振动图像,重力加速度g 取10 m/s 2,下列说法正确的是 ( ) A .摆长为1.6 m,起始时刻速度最大 B .摆长为2.5 m,起始时刻速度为零 C .摆长为1.6 m,A 、C 点的速度相同 D .摆长为2.5 m,A 、B 点的速度相同4.C [解析] 由单摆的振动图像可知振动周期为T =0.8π s,由单摆的周期公式T =2π√lg 得摆长为l =gT 24π2=1.6 m,A 、C 点的速度相同,A 、B 点的速度大小相同,方向不同;综上所述,可知C 正确.5.[2024·广东卷] 一列简谐横波沿x 轴正方向传播,波速为1 m/s,t =0时的波形如图所示.t =1 s 时,x =1.5 m 处的质点相对平衡位置的位移为 ( )A .0B .0.1 mC .-0.1 mD .0.2 m5.B [解析] 由图像可知,波长λ=2 m,周期T =λv =2 s,由于1 s-0=T2,故t =1 s 时,x =1.5 m 处的质点运动到波峰,相对平衡位置的位移为0.1 m,B 正确.6.[2024·河北卷] 如图所示,一电动机带动轻杆在竖直框架平面内匀速转动,轻杆一端固定在电动机的转轴上,另一端悬挂一紫外光笔,转动时紫外光始终竖直投射至水平铺开的感光纸上,沿垂直于框架的方向匀速拖动感光纸,感光纸上就画出了描述光点振动的x -t 图像.已知轻杆在竖直面内长0.1 m,电动机转速为12 r/min .该振动的圆频率和光点在12.5 s 内通过的路程分别为 ( )A .0.2 rad/s,1.0 mB .0.2 rad/s,1.25 mC .1.26 rad/s,1.0 mD .1.26 rad/s,1.25 m6.C [解析] 根据题意可知,紫外光笔的光点在纸面上沿x 轴方向做简谐运动,光点的振动为受迫振动,其振动周期等于电动机转动周期,故该振动的圆频率ω=2πT =2πn =0.4π rad/s≈1.26 rad/s,A 、B 错误;该振动的周期T =1n =5 s,由于轻杆长0.1 m,故振幅A =0.1 m,因12.5 s=(2+12)T ,故12.5 s 内光点通过的路程s =(2+12)×4A =1.0 m,C 正确,D 错误.7.[2024·湖南卷] 如图所示,健身者在公园以每分钟60次的频率上下抖动长绳的一端,长绳自右向左呈现波浪状起伏,可近似为单向传播的简谐横波.长绳上A 、B 两点平衡位置相距6 m,t 0时刻A 点位于波谷,B 点位于波峰,两者之间还有一个波谷.下列说法正确的是 ( )A .波长为3 mB .波速为12 m/sC .t 0+0.25 s 时刻,B 点速度为0D .t 0+0.50 s 时刻,A 点速度为07.D [解析] 由题意知A 、B 的平衡位置之间的距离x =32λ=6 m,解得λ=4 m,A 错误;波源的振动频率为f =6060 Hz=1 Hz,则波速v =λf =4 m/s,B 错误;质点的振动周期T =1f =1 s,由于0.25 s=T 4,故B 点在t 0+0.25 s 时刻即14周期后由波峰运动至平衡位置,速度最大,C 错误;由于0.50 s=T2,故A 点在t 0+0.50 s 时刻即12周期后由波谷运动至波峰,速度为0,D 正确.8.[2024·江西卷] 如图甲所示,利用超声波可以检测飞机机翼内部缺陷.在某次检测实验中,入射波为连续的正弦信号,探头先后探测到机翼表面和缺陷表面的反射信号,分别如图乙、丙所示.已知超声波在机翼材料中的波速为6300 m/s.关于这两个反射信号在探头处的叠加效果和缺陷深度d,下列选项正确的是 ()A.振动减弱;d=4.725 mmB.振动加强;d=4.725 mmC.振动减弱;d=9.45 mmD.振动加强;d=9.45 mm8.A[解析] 根据题图乙可知,超声波的传播周期T=2×10-7 s,又波速v=6300 m/s,则超声波在机翼材料中的波长λ=vT=1.26×10-3 m,结合题图乙和题图丙可知,两个反射信号传播到λ,解探头处的时间差为Δt=1.5×10-6 s,故两个反射信号的路程差为2d=vΔt=9.45×10-3 m=152得d=4.725×10-3 m;由题图乙和题图丙可知,这两个反射信号的起振方向相同,振动周期相同,传播到探头处的路程差为半波长的奇数倍,则这两个反射信号发生干涉且在探头处振动方向相反,故这两个反射信号在探头处振动减弱,A正确.9.(多选)[2024·山东卷] 甲、乙两列简谐横波在同一均匀介质中沿x轴相向传播,波速均为2 m/s.t=0时刻二者在x=2 m处相遇,波形图如图所示.关于平衡位置在x=2 m处的质点P,下列说法正确的是()A.t=0.5 s时,P偏离平衡位置的位移为0B.t=0.5 s时,P偏离平衡位置的位移为-2 cmC.t=1.0 s时,P向y轴正方向运动D.t=1.0 s时,P向y轴负方向运动9.BC [解析] 由于两波的波速均为2 m/s,故t =0.5 s 时,两波均传播了Δx =v Δt =2×0.5 m=1 m,题图所示平衡位置在x =1 m 处和x =3 m 处两质点的振动形式传到P 点处,由波的叠加原理可知,t =0.5 s 时,P 偏离平衡位置的位移为-2 cm,A 错误,B 正确;同理,t =1 s 时,题图所示平衡位置在x =0处和x =4 m 处两质点的振动形式(均向y 轴正方向运动)传到P 点处,根据波的叠加原理可知,t =1 s 时,P 向y 轴正方向运动,C 正确,D 错误.10.(多选)[2024·新课标卷] 位于坐标原点O 的波源在t =0时开始振动,振动图像如图所示,所形成的简谐横波沿x 轴正方向传播.平衡位置在x =3.5 m 处的质点P 开始振动时,波源恰好第2次处于波谷位置,则 ( )A .波的周期是0.1 sB .波的振幅是0.2 mC .波的传播速度是10 m/sD .平衡位置在x =4.5 m 处的质点Q 开始振动时,质点P 处于波峰位置10.BC [解析] 波的周期和振幅与波源振动的周期和振幅一致,可知波的周期为T =0.2 s,振幅为A =0.2 m,故A 错误,B 正确;质点P 开始振动时,波源第2次到达波谷,可知波从波源传到质点P 所用的时间为t =34T +T =0.35 s,则波速为v =x OP t=3.5-00.35 m/s=10 m/s,故C 正确;质点Q 的平衡位置在x =4.5 m 处,波从质点P 传到质点Q 需要的时间为t'=x PQ v=4.5-3.510 s=0.1 s=12T ,所以质点Q 开始振动时,质点P 处于平衡位置,故D 错误.11.[2024·浙江6月选考] 如图所示,不可伸长的光滑细线穿过质量为0.1 kg 的小铁球,两端A 、B 悬挂在倾角为30°的固定斜杆上,间距为 1.5 m .小球平衡时,A 端细线与杆垂直;当小球受到垂直纸面方向的扰动做微小摆动时,等效于悬挂点位于小球重垂线与AB 交点的单摆,重力加速度g 取10 m/s 2,则 ( )A .摆角变小时,周期变大B .小球摆动周期约为2 sC .小球平衡时,A 端拉力为√32 ND.小球平衡时,A端拉力小于B端拉力11.B[解析] 单摆的周期T=2π√Lg,与摆角无关,故A错误.光滑细线穿过小铁球,则小铁球两侧细线上拉力大小相等,所以A端拉力与B端拉力大小相等,平衡时对小球受力分析如图所示,根据数学关系可知F A=F B=mg2cos30°=√33N,故C、D错误.根据几何关系可知,细线与竖直方向夹角为30°,两侧细线夹角为60°,等效摆长为L=d AB cot60°cos30°=1 m,则小球摆动周期T=2π√Lg≈2 s,故B正确.12.[2024·浙江6月选考] 频率相同的简谐波源S1、S2和接收点M位于同一平面内,S1、S2到M的距离之差为6 m.t=0时,S1、S2同时垂直平面开始振动,M点的振动图像如图所示,则()A.两列波的波长为2 mB.两列波的起振方向均沿x正方向C.S1和S2在平面内不能产生干涉现象D.两列波的振幅分别为3 cm和1 cm12.B[解析] 由图像知,t=4 s时一列波传到M点且使M点沿x正方向振动,振幅A1=3 cm,t=7 s时这列波使M点沿x负方向振动且振幅变小为A=1 cm,说明此时另一列波也传到M点且其使M点沿x正方向振动,这列波的振幅A2=A1-A=2 cm,所以两列波刚传到M 时均使M点沿x正方向振动,即两列波的起振方向均沿x正方向,B正确,D错误;S1、S2到M的距离之差为Δx=6 m,由图像可知两列波传到M的时间之差为Δt=7 s-4 s=3 s,则波速v=ΔxΔt=2 m/s,由图像可知振动周期T=2 s,则波长λ=vT=4 m,A错误;S1、S2频率相等,所以在平面内能产生干涉现象,C错误.。

II2_振动和波+详细解答

II2_振动和波+详细解答

振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。

为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。

下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。

f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。

(B )曲线2、1、3分别表示x 、v 、a 曲线。

(C )曲线1、3、2分别表示x 、v 、a 曲线。

(D )曲线2、3、1分别表示x 、v 、a 曲线。

(E )曲线1、2、3分别表示x 、v 、a 曲线。

(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。

3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。

关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。

振动、波动学基础选择题及参考答案

振动、波动学基础选择题及参考答案

)振动学基础一、选择题:1、一质量为m 的物体挂在倔强系数为k 的轻弹簧下面,振动园频率为ω,若把此弹簧分割 为二等份,将物体m 挂在分割后的一根弹簧上,则振动园频率为: (A )ω2。

(C )ω2。

(C )2ω。

(D )22ω。

2、一质点沿x 轴作简谐振动,振动方程为))(32cos(1042SI t x ππ+⨯=-,从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为: (A )s )8/1(。

(B )s )4/1(。

(C )s )2/1(。

(D )s )3/1(。

(E )s )6/1(。

3 (A )s 62.2。

(B )s 40.2。

(C )s 20.2。

(D )s 00.2。

4、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,则此简谐振动方程为:(A )cm t x )3232cos(2ππ+=。

(B )cm t x )3232cos(2ππ-=。

(C )cm t x 3234cos(2ππ+=。

(D )cm t x 3234cos(2ππ-=。

(E )cm t x )434cos(2ππ-=。

5、一弹簧振子作简谐振动,总能量为1E ,如果简谐振动动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量1E 变为:(A )4/1E 。

(B )2/1E 。

(C )12E 。

(D )14E 。

6、一物体作简谐振动,振动方程为)2/cos(πω+=t A x 。

则该物体在0=t 时刻的动能与8/T t =(T 为周期)时刻的动能之比为:(A )4:1。

(B )2:1。

(C )1:1。

(D )1:2。

(E )1:4。

7、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取作坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为: (A )s 1。

高考真题分类汇总专题05振动和波附答案

高考真题分类汇总专题05振动和波附答案

专题5 振动和波❖ 机械波1、【2016海南】下列说法正确的是________.A .在同一地点,单摆做简谐振动的周期的平方与其摆长成正比B .弹簧振子做简谐振动时,振动系统的势能与动能之和保持不变C .在同一地点,当摆长不变时,摆球质量越大,单摆做简谐振动的周期越小D .系统做稳定的受迫振动时,系统振动的频率等于周期性驱动力的频率E .已知弹簧振子初始时刻的位置及其振动周期,就可知振子在任意时刻运动速度的方向2、【2016全国1】某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15s .下列说法正确的是_____. A .水面波是一种机械波 B .该水面波的频率为6Hz C .该水面波的波长为3mD .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移3、【2015天津】图甲为一列简谐横波在某一时刻的波形图,a 、b m x a 2=m x b 6=两质点的横坐标分别为和,图乙为质点b 从该时刻开始计时的振动图象,下列说法正确的是( )A .该波沿+x 方向传播,波速为1m/sB .质点a 经过4s 振动的路程为4mC .此时刻质点a 的速度沿+y 方向D .质点a 在t=2s 时速度为零4、【2014福建】在均匀介质中,一列沿x 轴正向传播的横波,其波源O 在第一个周期内振动图象如图所示,则该波在第一个周期末的波形图是( )A .B .C .D .5、【2016四川】简谐横波在均匀介质中沿直线传播,P 、Q 是传播方向上相距10m 的两质点.波先传到P ,当波传到Q 开始计时,P 、Q 两质点的振动图像如图所示,则( )A .质点Q 开始振动的方向沿y 轴正方向B .该波从P 传到Q 的时间可能为7sC .该波的传播速度可能为2m/sD .该波的波长可能为6m6、【2014全国1】左图为一列简谐横波在t=2s 时的波形图,右图为媒质中平衡位置在x=1.5m 处的质点的振动图象,P 是平衡位置为x=2m 的质点,下列说法正确的是( )A .波速为0.5m/sB .波的传播方向向右C .0~2s 时间内,P 运动的路程为8cmD .0~2s 时间内,P 向y 轴正方向运动E .当t=7s 时,P 恰好回到平衡位置7、【2014全国2】图(a)为一列简谐横波在t =0.10 s 时刻的波形图,P 是平衡位置在x =1.0 m 处的质点,Q 是平衡位置在x =4.0 m 处的质点;图(b)为质点Q 的振动图像,下列说法正确的是________A .在t =0.10s 时,质点Q 向y 轴正方向运动B .在t =0.25s 时,质点P 的加速度方向与y 轴正方向相同C .从t =0.10s 到t =0.25s ,该波沿x 轴负方向传播了6mD .从t =0.10s 到t =0.25s ,质点P 通过的路程为30cmE .质点Q t y π10sin 1.0=简谐运动的表达式为(国际单位制)图(a )图(b )8、【2014四川】如图所示,图1为t=1s 时某横波的波形图象,图2为该波传播方向上某一质点的振动图象,距该质点△x=0.5m 处质点的振动图象可能是( )图1 图2A .B .C .D .9、如图甲为一列简谐横波在某一时刻的波形图,图乙为介质中x =2 m 处的质点P 以此时刻为计时起点的振动图象.下列说法正确的是________.A .这列波沿x 轴正方向传播B .这列波的传播速度是20 m/sC .经过0.1 s 时,质点Q 的运动方向沿y 轴正方向D .经过0.35 s 时,质点Q 距平衡位置的距离大于质点P 距平衡位置的距离10、【2016全国2】一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x=0和x=5cm 处的两个质点.t =0时开始观测,此时质点O 的位移为y=4cm ,质点A s t 31=处于波峰位置:时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求:(i )简谐波的周期、波速和波长;(ii )质点O 的位移随时间变化的关系式.11、【2016全国3】由波源S形成的简谐横波在均匀介质中向左、右传播.波源振动的频率为20 Hz,波速为16 m/s.已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S 的平衡位置之间的距离分别为15.8 m、14.6 m,P、Q开始震动后,下列判断正确的是_____.A.P、Q两质点运动的方向始终相同B.P、Q两质点运动的方向始终相反C.当S恰好通过平衡位置时,P、Q两点也正好通过平衡位置D.当S恰好通过平衡位置向上运动时,P在波峰E.当S恰好通过平衡位置向下运动时,Q在波峰12、【2015全国2】平衡位置位于原点O的波源发出简谐横波在均匀介质中沿水平x轴传播,P、Q为x轴上的两个点(均位于x轴正向),P与O的距离为35cm,此距离介于一倍波长与二倍波长之间,已知波源自t=0时由平衡位置开始向上振动,周期T=1s,振幅A=5cm.当波传到P 点时,波源恰好处于波峰位置;此后再经过5s,平衡位置在Q处的质点第一次处于波峰位置,求:(i)P、Q之间的距离;(ii)从t=0开始到平衡位置在Q处的质点第一次处于波峰位置时,波源在振动过程中通过路程.13、【2015全国1】甲乙两列简谐横波在同一介质中分别沿x轴正向和负向传播,波速均为25m/s,两列波在t=0时的波形曲线如图所示,求:(i)t=0时,介质中偏离平衡位置位移为16cm的所有质点的x坐标;(ii)从t=0开始,介质中最早出现偏离平衡位置位移为-16cm的质点的时间.14、【2017全国1】如图(a),在xy平面内有两个沿z 方向做简谐振动的点波源S1(0,4)和S2(0,–2)。

振动和波题目及答案

振动和波题目及答案

1一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ] D 2一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A)π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3. [ ]C 3在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计)[ ]C4一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16.(C) 11/16. (D) 15/16 [ ]D5一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1 (C) T 12/(D) T 1 /2 (E) T 1 /4 [ ] D 6已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .v 21(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x . [ ]C 7如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接,在水平光滑导轨上作微小振动,则系统的振动频率为(A)m k k 212+π=ν . (B) mk k 2121+π=ν . (C) 212121k mk k k +π=ν . (D) )(212121k k m k k +π=ν . [ ]B8如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C)π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.[ ]D 9两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) π. (D) π23. [ ] C10机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ] B11如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y . [ ]A12一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ ] C 1在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________. )212cos(π-=T t A x π 2分 )212cos(π+=T t A x π 2分)2cos(π+=TtA x π 1分2一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.])(2cos[212φλν++-π=L L t A y 3分λk L x +-=1 ( k = ± 1,± 2,…) 2分3(c)O P 1P 2两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.2A 3分4图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为 =+=21x x x ________________(SI) )21cos(04.0π-πt (其中振幅1分,角频率1分,初相1分) 3分5有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.k m /22π 2分k m 2/2π 2分 6一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________. 10 cm 1分(π/6) rad/s 1分 π/3 1分 7两个简谐振动曲线如图所示,则两个简谐振动-的频率之比ν1∶ν2=__________________,加速度最大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.2∶1 1分 4∶1 1分 2∶1 1分 8一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A _____________;B _____________ ;C ______________ . 向下 ; 向上 ;向上9两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________.π3分 10一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________.1×10-2 m 2分 π/6 2分一如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分二如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分 (2) 以B 点为坐标原点,则坐标为x 点的振动相位为]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y (SI) 2分三如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差 ]2[]2[1112λφλφx x d π---π-π+=)12(K即 π+=-π--)12(22)(112K x d λφφ ① 2分在x 2点两波引起的振动相位差 ]2[]2[2122λφλφx x d π---π-π+=)32(K 即 π+=-π--)32(22)(212K x d λφφ ② 3分②-①得 π=-π2/)(412λx x6)(212=-=x x λ m 2分由①π+=-π+π+=-)52(22)12(112K x d K λφφ 2分当K = -2、-3时相位差最小π±=-12φφ 1分四ABxu沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121cos(5.0π+π=t y (SI) 3分x (m)y (m)0u 0.512t = 0-1。

高中物理练习振动与波(习题含答案)

高中物理练习振动与波(习题含答案)

1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。

对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。

以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。

若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。

第四章第五章振动和波(及其答案)

第四章第五章振动和波(及其答案)

它运动至正方向的端点时其位移 x、速度 v、加速度 a 分 别为 A、 x=0,v=0,a=0 B、 x=0,v=0,a=Aω
2
C、x=A,v=0,a= —Aω D、x= —A,v=Aω ,a=0 二、填空题
2
1、人能听到的声振动的振动频率范围为______
Hz。
2、一台机器产生的噪音,声强级为 50dB,再增加一台同样的 机器,噪音的声强级增大到 不保留小数) dB。(算出数值,
பைடு நூலகம்
-0.12m 处所需的最短时间是 不要换算成小数)
秒。 (用分数表示,
答案: 一、单项选择题 1.C 2.A 3.C 4.C
二、填空题 1. 3. 20-20000 2200 2. 53 4. 4/3
第四章第五章振动和波
一、单项选择题 1、 一 质 点 作 上 下 方 向 的 谐 振 动 , 设 向 上 为 正 方 向 。 时 质 点在平衡位置开始向上运动,则该振动的初相位为 A、0 B、π /2 C、—π /2 D、π /3 2、低语时声强为 10 8 W/m2,飞机发动机的噪声声强为10 1 W/m2, 则它们的声强级之差为 A、70dB B、60dB C、90dB D、100dB 3、传播速度为 100m/s、频率为 50Hz 的平面简谐波,在波 线上相距为 0.5m 的两点之间的相位差是 A、π /3 B、π /6 C、π /2 D、π /4 4、物体作简谐振动,设振动方程为 x=Acos(ω t+φ ),当
3、当一列火车以 30m/s 的速度向你开来,用 2000Hz 的频率鸣 笛 时 , 设 空 气 中 的 声 速 330m/s , 求 你 听 到 的 声 波 频 率 是 Hz。
4、一质量为 0.10kg 的物体作简谐运动,其振幅为 0.24m,周 期为 4s;当 t=0 时,位移为 0.24m。试求:物体从初位移到 x=

大学物理振动与波题库及答案

大学物理振动与波题库及答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。

振动与波动(习题与答案)

 振动与波动(习题与答案)

第10章振动与波动一.基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。

8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。

掌握波的相干条件。

能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即由它可导出物体的振动速度)=tAv-ω+ωsin(ϕ物体的振动加速度)=tAa2cos(ϕ-+ωω3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。

周期与频率互为倒数,即ν=1T 或 T1=ν5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。

t=0时的相位称为初相,它由谐振动的初始条件决定,即应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t时刻它与x 轴的夹角为谐振动的相位ϕω+t 。

波动与振动-答案和解析

波动与振动-答案和解析

1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,已知0=t 时的初位移为, 初速度为s -1,则振幅A = ,初相位 = 解:已知初始条件,则振幅为:(m )05.0)309.0(04.0)(222020=-+=-+=ωv x A 初相: οο1.1439.36)04.0309.0(tg )(tg 1001或-=⨯-=-=--x v ωϕ因为x 0 > 0, 所以ο9.36-=ϕ2. 两个弹簧振子的的周期都是, 设开始时第一个振子从平衡位置向负方向运动,经过后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 。

解:从旋转矢量图可见,t = s 时,1A ρ与2A ρ反相,即相位差为。

3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 (设平衡位置处势能为零)。

当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为解:谐振动总能量221kA E E E p k =+=,当A x 21=时4)2(212122EA k kx E p ===,所以动能E E E E p k 43=-=。

物块在平衡位置时, 弹簧伸长l ∆,则l k mg ∆=,lmgk ∆=, 振动周期gl km T ∆==ππ224. 上面放有物体的平台,以每秒5周的频率沿竖直方向作简谐振动,若平台振幅超过 ,物体将会脱离平台(设2s m 8.9-⋅=g )。

解:在平台最高点时,若加速度大于g ,则物体会脱离平台,由最大加速度g A v A a m ===22)2(πω 得最大振幅为(m)100.11093.9548.94232222--⨯≈⨯=⨯==ππv g A 5. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。

振子处在位移的绝对值为A 、速度为零、加速度为-2A 和弹性力-kA 的状态,对应于曲线的 点。

第七章 振动和波 题库含答案-大学复习资料

第七章 振动和波 题库含答案-大学复习资料

第七章 振动和波 题库及答案一、单选题1、作简谐振动的物体运动至平衡位置向正方向运动时,其位移x 、速度υ、加速度a 为 [设振动方程为x =A cos(ωt+φ)] ()。

A) x =0, υ=0, a =0 B) x =0, υ=ωA , a =0 C) x =A , υ=ωA , a =ω2A D) x = –A , υ= –ωA , a =0 答案: B知识点: 7.1、简谐振动、简谐振动方程 难度: 1 提示:无题解:作简谐振动的物体运动至平衡位置时,其位移x =0、向正方向运动的速度υ=ωA 、加速度a =0,所以B 答案是正确的。

2、一质点作简谐振动,振动方程为x =A cos(ωt +ϕ),当时间t =T / 2(T 为周期)时,质点的速度为 ()。

A) -A ωcos ϕ B) -A ωsin ϕ C) A ωcos ϕ D) A ωsin ϕ 答案: D知识点:7.1、简谐振动、简谐振动方程 难度: 2 提示:无题解:质点作简谐振动的速度方程为)sin(ϕωω+=t A -υ,将t =T / 2代入得ϕωϕωϕωωsin )πsin()2sin(A A -TA -υ=+=+=所以D 答案是正确的。

3、一质点作水平方向的简谐振动,设其向右运动为正方向。

当质点在平衡位置开始向右运动,则初位相为()。

A) 0 B) 2πC) 2π-D) 3π答案: C知识点: 7.1、描述简谐振动的物理量 难度: 2 提示:无题解:设简谐动方程为)cos(ϕω+=t A x , t =0时ϕcos 0A = 0cos =ϕ 2π±=ϕ因为 0sin 0sin 0<>-=ϕϕωA υ 所以 2π-=ϕ 所以C 答案是正确的。

4、一质量为m 的物体,以速度υ(t ) = υ0sin ωt 的规律振动,则振动系统的总机械能为()。

A)221ωm B) ω 20m υ C)2021m υ D)t m υω sin 21220 答案: C知识点: 7.1、简谐振动的能量 难度: 2提示:因物体的速度按υ(t ) = υ0sin ωt 的规律振动,所以物体的振动为简谐振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 振动和波下面重点要考试内容:1.掌握简谐振动的基本概念、简谐振动的余弦表达式2.掌握旋转矢量表示法、振幅、相位概念、掌握振动能量的公式3.掌握同方向同频率谐振动的合成4.掌握平面简谐波的表达式及其意义、掌握波的能流密度和波的干涉5.理解机械波的产生和传播、惠更斯原理、波的衰减;;理解拍、相互垂直谐振动的合成8-1 试解释下列名词:简谐振动、振幅、频谱分析、基频、频谱图、波动、横波、纵波、波阵面、波的强度。

答: ①简谐振动:质点在弹性力(或准弹性力)作用下所作的振动叫简谐振动,其加速度与离开平衡位置的位移成正比,且方向相反。

②振幅:振动物体离开平衡位置的最大距离称为振幅。

③频谱分析:将任一周期性振动分解为多个简谐振动之和的过程,称为频谱分析。

④基频:一个复杂的振动可以分解为若干个频率不同的简谐振动之和,这些分振动频率中最低的频率称为基频,它与原振动的频率相同。

⑤频谱图:将组成一个复杂振动的各分振动的频率和振幅找出来,按振幅与频率关系列出谱线,这种图称为频谱图。

⑥波动:振动在介质中的传播现象叫波动,它也是一种重要的能量传播过程。

其中简谐振动在介质中传播所形成的波叫简谐波。

⑦横波:波在介质中传播时,如果介质中各质点振动的方向与波的传播方向垂直,则该波叫做横波。

⑧纵波:如果介质中各质点振动的方向与波的传播方向相互平行,则这种波称为纵波。

⑨波阵面:在波传播的介质中,质点振动相位相同的各点连成的面称为波阵面。

⑩波的强度:单位时间内通过垂直于波的传播方向单位面积上的平均能量,称为波的强度。

8-2 有一质点作简谐振动,试分析它在下列位置时的位移、速度、加速度的大小和方向:①平衡位置,向正方向运动;②平衡位置,向负方向运动;③正方向的端点;④负方向的端点。

解: 设该质点的振动方程为:)cos(ϕω+=t A x将它对时间t 分别求一阶导数、二阶导数,可得到速度v 和加速度a 的表达式:)2cos()sin(πϕωωϕωω++=+-==t A t A dt dx v)cos()cos(2222πϕωωϕωω++=+-==t A t A dtxd a 由此可以看出,速度的相位超前位移2π,加速度与位移的相位相反。

下面根据上面三式来回答本题中的四个问题。

①质点在平衡位置,向正方向运动时: x=0, v=A ω, a =0②质点在平衡位置,向负方向运动时: x=0, v=-A ω, a =0③质点在正方向的端点时: x=A , v =0, a=-A ω2 ④质点在负方向的端点时: x=-A , v =0, a=A ω28-3 一个作简谐振动的质点,在t=0时,离开平衡位置6cm 处,速度为零,振动周期为2s ,求该简谐振动的位移、速度、加速度的表达式。

解:根据题意,t=0时,质点速度为零,离开平衡位置6cm ,这说明该振动的振幅为A=6cm ,这时质点可能位于平衡点右侧6cm 处,或位于平衡点左侧6cm 处。

下面分这两种情况进行讨论,设该振动方程为:)cos(ϕω+=t A x (a )①第一种情况:位于平衡点右侧6cm 处,这时位移x=6cm ,将t =0,A =6cm ,x=6cm 代入(a )式得ϕcos 66= 6解之得,ϕ =0。

已知T =2秒,则ππω==22,将A 、ω、ϕ值代入(a )式可得第一种情况的位移表达式为t x πcos 6=(cm ) (b )再将(b )式对时间求一阶导数、二阶导数,可分别得第一种情况的速度、加速度表达式t dtdxv ππsin 6-==(cm ·s -1 ) t dtx d a ππcos 6222-==(cm ·s -2 ) ②第二种情况:位于平衡点左侧6cm 处,这时位移x=-6cm ,将t =0,A =6cm ,x=-6cm 代入(a )式得-6=6cos φ解之得,ϕ =π。

已知ϕ=π,ω=π,A=6cm ,代入(a )式可得第二种情况的位移表达式t t x πππcos 6)cos(6-=+= (c )再将(c )式对时间求一阶导数、二阶导数,可分别得第二种情况的速度、加速度表达式t dtdxv ππsin 6==(cm ·s -1 ) t dt x d a ππcos 6222==(cm ·s -2 )8-4 两个物体作简谐振动,它们的振幅相同、周期相同,分别是0.1m 和2s ,当t=0时,一物体的位移为0.1m ,另一物体的位移为-0.1m ,问两者的相位差是多少?当t=1s 时,它们的位移各是多少?解: ①已知A =0.1m ,T =2s ,则ω=2πT =πrad ·s -1 ,设它们的振动方程分别为)cos(11ϕω+=t A x (a ))cos(22ϕω+=t A x (b )已知t=0时,x 1 =0.1m ,x 2 =-0.1m ,则由(a )式和(b )式可得x 1 =0.1cos φ 1 =0.1 x 2 =0.1cos φ 2 =-0.1分别解上面两式得φ 1 =0,φ 2 =π,因此两者的相位差φ 2 -φ 1 =π。

两振动的方程分别为x 1 =0.1cos (πt ) (c ) x 2 =0.1cos (πt +π) (d )②当t=1s ,由上面的(c )式和(d )式可得到它们的位移分别为x 1 =0.1cos (π+0)m=-0.1m x 2 =0.1cos (π+π)m=0.1m8-5 两个同频率、同方向的简谐振动,周期为20ms ,振幅分别为1.0cm 和3.0cm ,求:①两者合振动的圆频率;②当两者的相位差分别为0、π3、π2、π时,合振动的振幅各是多少? 解: ①由于是两个同频率、同方向的振动合成,所以合振动的频率不变,即其圆频率为02.014.32221⨯====T πωωωrad·s -1 =100πrad ·s -1 ≈314rad ·s -1②已知分振动的振幅A 1 =1.0cm ,A 2 =3.0cm ,合振动的振幅A 与两个分振动的振幅A 1 、A 2 及相位差φ 1 -φ 2 有以下关系:)cos(221212221ϕϕ-++=A A A A A当相位差φ 2 -φ 1 =0时,两个分振动同相位,合振动的振幅为 A =A 1 +A 2 =(1.0+3.0)cm=4.0cm 当相位差312πϕϕ=-时,合振动的振幅为)3cos(3123122π⨯⨯⨯++=A cm=13cm ≈3.6cm当相位差φ 2 -φ 1 =2π时,合振动的振幅为 )2cos(3123122π⨯⨯⨯++=A cm=10cm ≈3.2cm当相位差φ 2 -φ 1 =π时,两个分振动相位相反,合振动的振幅为A =|A 1 -A 2 |=|1.0-3.0|cm=2.0cm8-6 有三个同方向的简谐振动,它们的频率分别为100Hz 、200Hz 、300Hz ,问:①三者合成后是否仍为简谐振动?②合振动的周期是多少? 解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。

②合振动的频率为100Hz ,周期T=1001s=0.01s 。

8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能量怎样改变?答: 弹簧振子作简谐振动时,其能量为2221A m E ω=,若其振幅A 增为原来的两倍,而频率降为原来的一半,结果能量没有改变。

8-8 什么叫阻尼振动、受迫振动、共振?在受迫振动中振子受到哪三个力的作用?受迫振动达到稳定时有什么特点?答: ①在振动中,由于各种因素的影响,能量会减少,振幅也随之减小,这种振幅随时间而减小的振动,称为阻尼振动。

②振动系统在周期性外力的持续作用下发生的振动,叫做受迫振动。

在受迫振动中,振子同时受到三个力的作用:弹性力、阻尼力、周期性外力。

受迫振动达到稳定状态时,振幅保持一定,如果外力是按简谐运动规律变化,则稳定后的受迫振动也是简谐振动,且振动频率等于外力变化的频率。

③在受迫振动中,当周期性外力的频率接近系统的固有频率时,振动的振幅急剧增大,这种现象叫做共振。

8-9 要产生机械波必须具备哪两个条件?当波动在通过不同介质时,它的波长、频率、速度中哪些会发生变化?哪些不会改变?答: ①要产生机械波必须具备两个条件:第一,要有作机械振动的物体,即波源;第二,要有能够传播这种机械振动的弹性介质。

②当波动通过不同的介质时,波长和波速会发生变化,而频率不会改变。

8-10 已知波动方程式y=M sin (bt -ax ),试求该波的振幅、波速、频率和波长。

解: 先将题目给的波动方程进行变换:]2)(cos[)(sin )sin(π--=-=-=b ax t b M b ax t b M ax bt M y (a )而波动方程的通用形式为)(cos cxt A y -=ω (b )将(a )式和(b )式比较可得振幅: A=M 波速:ab u =频率: π2b f = 波长: aπλ2=。

8-11 有一沿X 轴正方向传播的简谐波,在原点处质点的振动方程为t TA y π2cos=,已知A=0.02m ,T=3s ,波速u=2m ·s -1 。

求:①波动方程;②在X 轴正方向离原点5m 处质点的振动方程;③当t=2.5s 时,原点处质点的位移;④当t=2.5s 时,在X 轴正方向离原点5m 处质点的位移。

解: ①已知A=0.02m ,T=3s ,则ω=2πT=2π3,根据题意,可得原点的振动方程为t t T A y ππ32cos 02.02cos== 已知波速c=2m ·s -1 ,由上式可进一步得到波动方程为)2(32cos 02.0xt y -=π (1)②已知x=5m ,可得在X 轴正方向离原点5m 处质点的振动方程为)3532cos(02.0)25(32cos02.0πππ-=-=t t y )332cos(02.0ππ+=t③已知在(1)式中,t=2.5s ,x=0,则有)32cos(02.035cos 02.0πππ-==y m =0.01m④已知在(1)式中,t=2.5s ,x=5m ,有)255.2(32cos 02.0-=πy m =0.02m8-12 在空气中P 点声波的强度为2.0×10 5 W ·m -2 ,振动幅度为2mm ,空气的密度为1.29kg ·m -3 ,波速为344m ·s -1 。

求:①声波的波长;②P 点的平均能量密度。

解: ①求波长:已知I =2.0×10 5 W ·m -2 ,A =2mm=2×10 -3 m ,ρ=1.29kg ·m -3 ,由声波强度公式2221A u I ωρ=,可得角频率ω 2352)102(34429.1100.222-⨯⨯⨯⨯⨯==uA I ρω rad ·s -1 =1.5×10 4 rad·s -1由ω=2πf ,可得f =ω/2π=1.5×10 4 /6.28=2.39×10 3 Hz 。

相关文档
最新文档