用比例方法解决问题PPT课件
合集下载
《解决问题》比和比例PPT课件
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。 (2)现在要用这种涂料粉刷一面长300米、高2米的临街墙壁。
粉刷完这面墙需要白色涂料和蓝色涂料各多少千克?
[选自教材P24 练一练 第2题]
粉刷1平方米墙壁 需要0.25千克涂料。
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。
提示:点击任意一种 选法跳转详细方案
配 选法① 奶糖、酥糖、巧克力糖
制
方案一
2份奶糖
3份酥糖 5份巧克力糖
方
案
方案二
2份奶糖 3份巧克力糖 5份酥糖
方案三
2份酥糖
3份奶糖 5份巧克力糖
方案四
2份酥糖 3份巧克力糖 5份奶糖
方案五 2份巧克力糖 3份酥糖
5份奶糖
方案六 2份巧克力糖 3份奶糖
5份酥糖
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。 (3)粉刷完这面墙,买涂料要花多少钱?[选自教材P24 练一练 第2题]
需要白色涂料112.5千克,需要蓝色涂料37.5千克。
(3)粉刷完这面墙,买涂料要花多少钱? [选自教材P24 练一练 第2题]
白色涂料:112.5÷18=6(桶)……4.5(千克) 160×6+105=1065(元)
价格最低:按巧克力糖:水果糖:酥糖=2:3:5配制。
价钱贵的糖占的比例大, 什锦糖的价格就高。
价钱便宜的糖占的比例大, 什锦糖的价格就低。
配成什锦糖50千克
配成什锦糖50千克
巩固练习
1.从上面任选三种糖,按2∶3∶5配成100千克什锦糖。 做出什锦糖单价最低和最高的配制方案。[选自教材P23 练一练 第1题]
每种糖各需要多少千克? 每千克什锦糖多少钱?
六年级数学下册课件-用比例解决问题
用比例解决问题
六年级 数学
小明家2020年1月份水费单
水表起数:513 水表止数:527 本期用水量:14立方米
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
我从小明家的水费单
小明家 小军家
中了解到……
用水量/m³ 14
18
水费/元 70 玲玲
我还从小军的话语中
丽丽
知道了……
小明家2020年1月份水费单
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
小军家这个月的水费是多少元?
小明家 小军家
用水量/m³ 14
18
水费/元 70
?
水的单价
水的单价不变
提示: 1.题目中哪两种量是相关联的量?哪种量是不变的量? 2.它们成什么比例关系? 3.根据比例关系,列出方程。 4.试着解方程。
② 解:设小军家这个月的水费是x元。 ①
(2)小林读一本文学名著,如果每天读 30页,8天可以读完。小林想6天读完, 那么平均每天要读多少页?
每天用电量 ×用电天数=用电总量 (一定)
每天的用电量与用电天数的乘积相等
每天读的页数 ×阅读天数=总页数 (一定)
每天读的页数与天数的乘积相等
乘积一定,用反比例关系解决问题。
需要写解、设。 小红
② 小明家水费 小军家水费
小明家用水量 = 小军家用水量
小林
小红
水费 用水量
=单价(一定)
小明家用水量 小军家用水量
=
小明家水费 小军家水费
(单价一定)
小红
小明家 小军家
写反了
小明家用水量 小军家用水量
=
六年级 数学
小明家2020年1月份水费单
水表起数:513 水表止数:527 本期用水量:14立方米
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
我从小明家的水费单
小明家 小军家
中了解到……
用水量/m³ 14
18
水费/元 70 玲玲
我还从小军的话语中
丽丽
知道了……
小明家2020年1月份水费单
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
小军家这个月的水费是多少元?
小明家 小军家
用水量/m³ 14
18
水费/元 70
?
水的单价
水的单价不变
提示: 1.题目中哪两种量是相关联的量?哪种量是不变的量? 2.它们成什么比例关系? 3.根据比例关系,列出方程。 4.试着解方程。
② 解:设小军家这个月的水费是x元。 ①
(2)小林读一本文学名著,如果每天读 30页,8天可以读完。小林想6天读完, 那么平均每天要读多少页?
每天用电量 ×用电天数=用电总量 (一定)
每天的用电量与用电天数的乘积相等
每天读的页数 ×阅读天数=总页数 (一定)
每天读的页数与天数的乘积相等
乘积一定,用反比例关系解决问题。
需要写解、设。 小红
② 小明家水费 小军家水费
小明家用水量 = 小军家用水量
小林
小红
水费 用水量
=单价(一定)
小明家用水量 小军家用水量
=
小明家水费 小军家水费
(单价一定)
小红
小明家 小军家
写反了
小明家用水量 小军家用水量
=
4人教版六年级数学上册第四单元 第13课时 用比例解决问题(1) 教学PPT课件
同一地点测得一棵树的影子长4m,这棵树有多高?(教材P63第3题)
解:设这棵树高xm。
2.4 = 4
1.5
x
2.4x=4×1.5
x=2.5
答:这棵树高2.5m。
四、课堂小结
回顾本节课, 你学会了什 么?
学习了用正比例来解决问题,知道了解决问题的步骤, 以及解决问题的关键。
五、课后作业
完成课本“练习十一”第4题、第6。
WAN XIANG SI WEI
课时3 用比例解决问题
一、下列各题中的两种量成不成比例?如果成比例,那么成什么
比例?
1. 圆的面积和半径。
(
)
2. 订《世博早报》的份数与总价。
(
)
3. 长方形的周长一定,长与宽。
不成比例 成正比例 不成比例 成反比例
(
)
4. 在没有余数的除法中,被除数一定,除数和商。
4 比例
第13课时 用比例解决问题 (1)
人教版·六年级下册
一、新课引入 今天,我们继续学习运用正比例知识解决生活中的 实际问题。谁能说一说生活中有哪些成正比例的量? 怎样判断两种相关联的量是否成正比例呢?
速度一定,时间和路程成 正比例关系。
工作效率一定,工作时间和工作 总量成正比例关系。
二、例题讲解
五、有浓度是15%的农药水800克,要配制成浓度为20%的农 药水,应加药多少克?
50克
六、甲、乙两地相距480千米,一辆汽车从甲地出发,开往乙地,
3小时行了180千米。照这样的速度,行完全程还需要多少小时?
解:设行完全程还需要x小时。 180÷3=(480-180)÷x
x=5 答:行完全程还需要5小时。
二、用比例解决下列问题。
冀教版六年级上册数学《解决问题》比和比例精品PPT教学课件
2020/11/26
4
方案二:选奶糖、酥糖和水果糖。
2+3+5=10 奶糖:50× 2 =10(千克) 24×10=240(元)
10
酥糖:50× 3 =15(千克) 10×15=150(元)
10
水果糖:50× 5 =25(千克)14×25=350(元)
10
每千克什锦糖:(240+150+350)÷50=14.8(元)
2020/11/26
6
怎样配制什锦糖价格最高?怎 样配制价格最低?
2020/11/26
7
练一练
1. 从下面任选三种糖,按2:3:5配成100千克什锦糖。 做出什锦糖单价最低和最高的配制方案。
2020/11/26
8
2. 一种淡蓝色涂料用白色涂料和蓝色涂料按3: 1配制的。
(1)现在有12千克白色涂料,需要 几千克蓝 色涂料才能配成这种淡蓝色涂料?
冀教版数学六年级上册第二单元
2020/11/26
1
教学目标
1、经历综合运用比和比例等知识解决生活中 实际问题的过程。 2、能运用所学知识做出不同的什锦糖配制方 案,提高解决实际问题的能力。 3、经历与他人交流配制方案的过程,对配制 什锦糖问题有自己的想法和建议。
2020/11/26
2
从下面四种糖重任选 三种,按2:3:5配 成什锦糖50千克。
2020/11/26
11
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
2020/11/26
12
2Байду номын сангаас20/11/26
《按比例分配的方法解决实际问题》PPT课件 西师大版六年级数学
4∶3∶2,长方体的表面积是多少?
解题思路: 由:长方体的棱长和为72厘米
可得:长+宽+高=72÷4=18(厘米)
根据:长:宽:高=4∶3∶2
求出:长方体的长、宽、高
再求出:长方体的表面积
返回
按比例分配的方法解决实际问题
解答: 长方体长、宽、高的和:72÷4=18(厘米)
长方体的长:18×
=8(厘米)
小组的人数是16,两个小组一共有多少人?
解:设两个小组一共有x人。
5∶8= x ∶16
8 x =80
x =10
答:两个小组一共有10人。
不正确!
错因:列比例时,没有找准对应的数量关系。
返回
按比例分配的方法解决实际问题
分析: 美术小组与文艺小组的人数比是5∶8,文艺小
组有16人,问题是求两个小组的人数,也就是说
=
沙子: × =
石子: × =
水泥: ×
40(吨)
60(吨)
120(吨)
答:需要水泥40吨,沙子60吨,石子120吨。
返回
按比例分配的方法解决实际问题
议一议
怎样解决按比例分配的问题?
把一个数量按照已知的比分成几个部分,应先求
出三几个部分量各占总量的几分之几,再用乘法分
++
长方体的宽:18×
=6(厘米)
++Fra bibliotek长方体的高:18×
=4(厘米)
++
长方体的表面积:
(8×6+8×4+6×4)×2=104×2
=208(平方厘米)
答:长方体的表面积是208立方厘米。
解题思路: 由:长方体的棱长和为72厘米
可得:长+宽+高=72÷4=18(厘米)
根据:长:宽:高=4∶3∶2
求出:长方体的长、宽、高
再求出:长方体的表面积
返回
按比例分配的方法解决实际问题
解答: 长方体长、宽、高的和:72÷4=18(厘米)
长方体的长:18×
=8(厘米)
小组的人数是16,两个小组一共有多少人?
解:设两个小组一共有x人。
5∶8= x ∶16
8 x =80
x =10
答:两个小组一共有10人。
不正确!
错因:列比例时,没有找准对应的数量关系。
返回
按比例分配的方法解决实际问题
分析: 美术小组与文艺小组的人数比是5∶8,文艺小
组有16人,问题是求两个小组的人数,也就是说
=
沙子: × =
石子: × =
水泥: ×
40(吨)
60(吨)
120(吨)
答:需要水泥40吨,沙子60吨,石子120吨。
返回
按比例分配的方法解决实际问题
议一议
怎样解决按比例分配的问题?
把一个数量按照已知的比分成几个部分,应先求
出三几个部分量各占总量的几分之几,再用乘法分
++
长方体的宽:18×
=6(厘米)
++Fra bibliotek长方体的高:18×
=4(厘米)
++
长方体的表面积:
(8×6+8×4+6×4)×2=104×2
=208(平方厘米)
答:长方体的表面积是208立方厘米。
六年级数学 用比例解行程问题 PPT带答案
练习6
一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到 达.如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前 1小时到达,那么按原速行驶了全部路程的几分之几?
例题7
甲、乙两人同时从 A地出发到 B 地,经过 3 小时,甲先到 B 地,乙 还需要 1 小时到达 B 地,此时甲、乙共行了 35 千米.求 A, B 两 地间的距离.
练习1
欢欢和贝贝是同班同学,并且住在同一栋楼里.早晨 7 : 40 ,欢欢 从家出发骑车去学校, 7 : 46 追上了一直匀速步行的贝贝;看到身 穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原 来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝 贝也恰好到学校.如果欢欢在家换校服用去 6分钟且调头时间不计, 那么贝贝从家里出发时是几点几分.
例题8 如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发 反向而行,两人在 C 点第一次相遇,在 D 点第二次相遇.已知 C 离 A 有 80 米,D 离 B 有 60 米,求这个圆的周长.
根据总结可知,第二次相遇时,乙一共走了 80×3=240 米,两人的总路程和为一周 半,又甲所走路程比一周少 60 米,说明乙的路程比半周多 60 米,那么圆形场地的 半周长为 240-60=180 米,周长为 180×2=360 米.
例题6
王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高 了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北 京、上海两市间的路程是多少千米?
从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时 间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计 划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米 后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的 1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度 行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为: 5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的 路程为:84 ×15= 1260(千米).
用比例解决问题pptPPT课件
02
比例的基本性质
交叉相乘
01
交叉相乘是指比例中两个内项的乘 积等于另外两个外项的乘积的性质。 例如,如果 a:b = c:d,那么 a/b = d/c 或 a/c = b/d。
02
这一性质在解决比例问题时非常 有用,因为它可以帮助我们建立 等式,从而找到未知数的值。
比例的传递性
比例的传递性是指如果三个量 a、b、 c 满足 a:b = b:c,那么 a:b:c = a/b × c/b = a/c。
比例的概念是数学和生活中常见的基本概念,广泛应用于各种领域,如工程、经济、 医学等。
比例的应用场景
01
02
03
工程设计
在工程设计中,比例常用 于确定各个部分的大小和 位置,例如建筑设计、机 械设计等。
经济分析
在经济分析中,比例常用 于比较不同经济指标之间 的关系,例如GDP、CPI 等。
医学研究
在医学研究中,比例常用 于比较不同药物或治疗方 法的效果,例如药物疗效、 手术成功率等。
比例用于确定物体间的位置关系,例 如通过比例尺在地图上表示实际距离。
比例在代数中的应用
比例用于解决方程式问题,例如 通过交叉相乘法解线性方程组。
比例用于研究函数的性质,例如 通过比例关系分析函数的增减性。
比例用于解决实际生活中的问题, 例如通过比例关系计算投资回报
率或利率。
04
比例在实际生活中的应用
03
比例在数学中的应用
分数与比例的关系
分数是比例的一种表 现形式,用于表示部 分与整体的关系。
分数和比例在数学中 经常一起使用,用于 解决各种问题。
比例可以转化为分数 形式进行计算或比较 大小。
比例在几何学中的应用
《用比例解决问题》课件
总结
通过本次课程,我们学习了用比例解决问题的基本方法和注意事项。比例在实际生活中有着广泛的应用, 希望您能在各种情境下灵活运用比例来解决问题。
《用比例解决问题》PPT 课件
欢迎来到本次课程,我们将探讨如何用比例解决各种实际问题。比例可以帮 助我们求解量的关系、未知数的值以及比较不同的数据量大小。
概述
比例是解决实际问题的有力工具。我们将介绍如何用比例解决一些常见问题, 比如求解关系、未知数和比较数据量。
问题1:已知一个比例,求解另一个未知 数的值
实例分析
食物中营养成分的比例 计算
以几个实例演示如何计算食物 中不同营养成分的比例,帮助 您做出更健康的饮食选择。
测量物体密度的比例计算
通过实际示例,我们将展示如 何使用比例计算物体的密度, 有助于您更好地了解物体的性 质。
比较不同年份的经济增 长率
通过比例计Байду номын сангаас,我们可以比较 不同年份的经济增长率,揭示 经济发展的变化趋势。
通过已知比例来计算未知量的值是常见问题。我们将详细介绍如何在正比例和反比例的情况下求解未知 数的值。
问题2:已知两个量的比值,求解两个量 的实际值
通过已知比值来计算两个量的实际值也是常见问题。我们将解释如何根据比重、浓度等物理量的比值计 算出实际值。
问题3:比较不同数据量的大小
比例可用于比较不同的数据量大小。我们将演示如何通过比率、百分比等来 比较数据量,帮助您更好地理解数据的关系。
《用比例解决问题》课件PPT
将比例与方程结合,让学生通过解方程来找到未 知的比例关系,进一步加深对比例的理解。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。
《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
500千克的海水中含盐25千克,120吨的海水含盐几吨?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
用比例尺解决问题-课件
实际距离
=
比例尺
根据:
根据比例的基本性质
算术解:
根据图上距离 :实际距离=比例尺, 得出:实际距离=图上距离 :比例尺
10 ÷
=10×500000
=5000000(cm)
5000000 cm = 50 km
答:地铁1号线的实际长度是50km。
智慧城堡 加油啊!
先把图中的线段比例尺改写成数值比例尺,再用直尺量出呼中河西村与汽车站的距离是多少厘米,并计算出两地的实际距离大约是多少。
(2)比例尺 80 :1。
比例尺80 :1 表示图上距离80厘米相当 于实际距离1厘米。
(3)比例尺
0 20 40 km
比例尺
0 20 40 km
表示图上距离1厘米相 当于实际距离20千米。
填一填:
例2 下面是北京市地铁规划图.地铁1号线在图中的长度大约是10cm,它的实际长度大约是多少?
方程解:
解:设地铁1号线的实际是x厘米。
10
X
1
500000
=
答:地铁1号线的实际长度是50km。
x=5000000
5000000cm=50km
x=10×500000
根据什么?
根据什么?
图上距离
0 80 160 240 320 千米
在一幅标有 的地图上,量得甲乙两地之间的距离是2.5厘米。甲乙两地实际距离是多少千米?
练习八
练习八
练习八
练习八
把下面的线段比例尺改成数值比例尺。 0 40 80 120千米 如果在画有这样的比例尺 的地图上量得两地的距离 是4.6厘米,这两地间的 实际距离是多少千米?
杭州
上海
在比例尺是1︰5000000的中国地图上,量得上海到杭州的距离是3.4厘米。计算一下,上海到杭州的实际距离大约是多少千米?
=
比例尺
根据:
根据比例的基本性质
算术解:
根据图上距离 :实际距离=比例尺, 得出:实际距离=图上距离 :比例尺
10 ÷
=10×500000
=5000000(cm)
5000000 cm = 50 km
答:地铁1号线的实际长度是50km。
智慧城堡 加油啊!
先把图中的线段比例尺改写成数值比例尺,再用直尺量出呼中河西村与汽车站的距离是多少厘米,并计算出两地的实际距离大约是多少。
(2)比例尺 80 :1。
比例尺80 :1 表示图上距离80厘米相当 于实际距离1厘米。
(3)比例尺
0 20 40 km
比例尺
0 20 40 km
表示图上距离1厘米相 当于实际距离20千米。
填一填:
例2 下面是北京市地铁规划图.地铁1号线在图中的长度大约是10cm,它的实际长度大约是多少?
方程解:
解:设地铁1号线的实际是x厘米。
10
X
1
500000
=
答:地铁1号线的实际长度是50km。
x=5000000
5000000cm=50km
x=10×500000
根据什么?
根据什么?
图上距离
0 80 160 240 320 千米
在一幅标有 的地图上,量得甲乙两地之间的距离是2.5厘米。甲乙两地实际距离是多少千米?
练习八
练习八
练习八
练习八
把下面的线段比例尺改成数值比例尺。 0 40 80 120千米 如果在画有这样的比例尺 的地图上量得两地的距离 是4.6厘米,这两地间的 实际距离是多少千米?
杭州
上海
在比例尺是1︰5000000的中国地图上,量得上海到杭州的距离是3.4厘米。计算一下,上海到杭州的实际距离大约是多少千米?
《用比例解决问题》课件(共23张PPT)
2、设未知数x ,注上单位名称。 3、根据正、反比例的意义列出比例式。
4、解比例。
5、检验、作答。
只列式不计算
① 一个小组3天加工零件189个,照这样计 算,9天可加工零件x个。
189= x 39
② 六年级同学们做广播操,每行站20人, 正好站12行,如果每行站24人,可以站x行。
24 x = 20×12
原2、来根5天据用这的样电的量比现例在关能 系用,多你少能天列?出等式吗?
水李的奶单 奶价家虽上然个不月知的道水,费但是它多是少一钱定?的。 判x 断下列每题中的两个量是不是成比例,成什么比例? 我3、能解解比决例(,用检比验例,解作答答)。
x=3
答:可以买3支。
解比例应用题的一般方法和步骤:
1、判断题中哪两种量是相关联的量?成 不成比例?成什么比例?
分析与解答
因为每吨水的价钱一定,所以水费和用水的 吨数成正比例关系。也就是说,两家的水费 和用水吨数的比值相等
我先算出每吨水的捡 钱,再算10 t水多少 钱
也可以用比例的方法解 决
解:设李奶奶家上个月用水费是x元。
8 = x 28 10
8 x = 2 8 × 1 0
回顾与思考
x= 28× 10 8
2、一家制糖厂用500千克甘蔗可榨糖60千克。照
这样计算,榨糖1.5吨需要甘蔗多少吨?
3、小丽要测量一大捆铁丝的长度,从中截取了5
米长的一段,测得其质量为400克。现测得这捆铁 丝的质量为6千克。这捆铁丝长多少米?
《用比例解决问题》
判断下列每题中的两个量是不是成比例,成什么比例?
1、单价一定,总价和数量。 正比例 2、路程一定,速度和时间。 反比例
3、速度一定,路程和时间。 正比例 4、每吨水的价钱一定,水费和用水的吨数。 正比例 5、全校学生做操,每行站的人数和站的行数
4、解比例。
5、检验、作答。
只列式不计算
① 一个小组3天加工零件189个,照这样计 算,9天可加工零件x个。
189= x 39
② 六年级同学们做广播操,每行站20人, 正好站12行,如果每行站24人,可以站x行。
24 x = 20×12
原2、来根5天据用这的样电的量比现例在关能 系用,多你少能天列?出等式吗?
水李的奶单 奶价家虽上然个不月知的道水,费但是它多是少一钱定?的。 判x 断下列每题中的两个量是不是成比例,成什么比例? 我3、能解解比决例(,用检比验例,解作答答)。
x=3
答:可以买3支。
解比例应用题的一般方法和步骤:
1、判断题中哪两种量是相关联的量?成 不成比例?成什么比例?
分析与解答
因为每吨水的价钱一定,所以水费和用水的 吨数成正比例关系。也就是说,两家的水费 和用水吨数的比值相等
我先算出每吨水的捡 钱,再算10 t水多少 钱
也可以用比例的方法解 决
解:设李奶奶家上个月用水费是x元。
8 = x 28 10
8 x = 2 8 × 1 0
回顾与思考
x= 28× 10 8
2、一家制糖厂用500千克甘蔗可榨糖60千克。照
这样计算,榨糖1.5吨需要甘蔗多少吨?
3、小丽要测量一大捆铁丝的长度,从中截取了5
米长的一段,测得其质量为400克。现测得这捆铁 丝的质量为6千克。这捆铁丝长多少米?
《用比例解决问题》
判断下列每题中的两个量是不是成比例,成什么比例?
1、单价一定,总价和数量。 正比例 2、路程一定,速度和时间。 反比例
3、速度一定,路程和时间。 正比例 4、每吨水的价钱一定,水费和用水的吨数。 正比例 5、全校学生做操,每行站的人数和站的行数
《比例的应用》比例5PPT课件 图文
28 = 42 8x
28x=8×42
x
=
8×42 28
x = 12
答:王大爷上个月用了12吨水。
三、知识应用
小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔, 要用多少钱?
解:设要用x元。 6=x 43 4x=18 x=4.5
答:要用4.5元。 你知道哪种量不变吗?你能试 着用比例解决吗?
三、知识应用
水的单价虽然不知道, 但它是一定的。
二、探究新知
我们家上个月用了8t 水,水费是28元。
李奶奶家上个月的水费是多少钱? 我们家用了10t水。
分析与解答
张大妈
李奶奶
我先算出每吨水的价钱, 再算10t水多少钱。
也可以用比例的方法解决!
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例关系。也就是说,两家的水费和用水吨数的比值相等。
回顾与反思
张大妈
李奶奶
解这个问题的关键是 找到不变的量。
只要两个量的比值一 定,就可以用正比例 关系解答。
答:李奶奶家上个月的水费是35元。
二、探究新知
王大爷上个月的水费是42元, 上个月用了多少吨水?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
张大妈
李奶奶
解:设王大爷上个月用了x吨水。
小兰的身高1.5m,她的影长是2.4m, 如果同一时间、同一地点测得一棵树的影 子长4m,这棵树有多高?
解:设这棵树高xm。 2.4 = 4 1.5 x 2.4x=4×1.5
x=2.5
答:这棵树高2.5m。 你知道吗?影长与身高的比是一 个定值!试着用比例解决吧!
四、布置作业
作业: 第63页练习十一,第4题; 第64页练习十一,第6题、第7题。
西师大版六年级数学上册《用比例解决问题》教学PPT课件(4篇)
甲
乙
100 km
两地相距 100 km,甲乙两辆汽车从两地相
对开出,4小时相遇。甲乙两车速度比是 3∶2,
甲乙两车速度各是多少?
甲乙两车的总速度为:100÷4=25(km/h)
总份数:3 + 2 = 5
甲
乙
100 km
状元成才路
两地相距 100 km,甲乙两辆汽车从两地相
对开出,4小时相遇。甲乙两车速度比是 3∶2,
智力闯关:第三关
三角形最长边的边长是35厘米,三条边 的长度比是3:4:5。三角形的另两条边长多 少厘米?
用比例解决问题
第3课时
引入
1∶9
有20g糖水,糖与水的比是1∶9,其 中糖有( 2 )g,水有(18)g。
引入
1∶1∶2
一个三角形三个内角度数比是1∶1∶2, 这个三角形一定是(等腰直角三角形)。
(1)题目中要分配什么? (2)平均分合理吗?为什么? (3)你认为怎样分合理? (4)陈红、赵青拿出钱数的比是( ):( )。 (5)怎样理解3:2?
理解
3:2就是陈红分得本数占( 3 )份,赵青 分得本数占( 2 )份,一共是( 5 )份。
陈红分得本数占总数的( 3 )。 5 2
赵青分得本数占总数的( 5 )。
星级挑战
分配水费问题 分配运费问题 分配租金问题
星级挑战
小李、小郭、小高、小张四家人7月份共付水 费180元,请结合下表所出示的信息,将水费 分摊到每家。
住户 人口数 应付水费
小李 5
小郭 3
小高 2
小张 2
星级挑战
甲、乙、丙三人合租一辆车运同样多的货 物处,卸从 货A,地乙到在B全地程需的付运43 费处5卸00货元,。只甲有在丙全到程B的地。31 他们如何分摊运费?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.根据题意用等式表示
(1)汽车2小时行驶140千米,照这样的速 度,3小时行驶210千米.
140
2
=
210 3
(2)汽车从甲地到乙地,每小时行70千米,4小时
到达.如果每小时行56千米,要5小时到达.
70 × 4=56 × 5
看பைடு நூலகம்收集信息的能力最强!
①李奶奶家上个月的水费是多少钱? ②王大爷家上个月用了多少吨水?
15
χ = 20
答:20天可以读完。
我能解决(用比例解答)
每天跳绳600下,2分钟跳了240下,照 这样计算,还要跳多少分钟能完成计划?
我能解决
下面题目中存在什么比例关系?补 充条件,提出问题并解答。
100千克的蜂蜜里含有35千克葡萄糖, 照这样计算, _________?
写在最后
成功的基础在于好的学习习惯
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
12、购 总买路课程本一的定单,价速一度定和,时总间价。和数量。
因为 速数总度量价×=单时价间(=一路定程)(一定)
不
所以 单 总价路一程定 一时定,总速价度和数时量间成正反比例。
反比
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
3、零件总数一定,生产的天数和每天
生产的件数。
不
因为 每天生产的件数×天数=总数(一定)
所以
总数一定时,生产的天数和每天 生产的件数成反比例。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么? 4、总钱数一定,用去的钱数和剩下的钱数。
因为 用去的钱数+剩下的钱数=总钱数(一定) 所以 不成比例
40χ = 30×4 40χ = 120
30X=160 χ = 120÷40
16 χ = 3
X= 3 答:3天可以修完。
我能解决(用比例解答)
这本书,每天读10页,30天可以读完。 如果每天多读5页,多少天可以读完?
每天看的页数×天数=总页数(一定)
解:设χ天可以读完。
(10+5)χ= 10×30 χ = 10×30
解: 设要捆X包.
30X=20×18
X=
20×18 30
X=12 答:略
★用比例解决问题的关键是什么?
找两个相关联的量,看它们什么一定, 成什么比例?(正商反积)
★用比例解决问题时需要哪几个步骤?
1、找 2、设 3、列 4、解 5、验(可用计算的方法验证) 6、答
只列式不计算:
① 一个小组3天加工零件189个,照这样
The foundation of success lies in good habits
17
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
计算,9天可加工零件x个。
189 = χ
3
9
②六年级同学们做广播操,每行站20人,
③正好站12行,如果每行站24人,可以
④站x行。 24χ = 20×12
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
工作效率×时间=工作总量(一定)反比例
×解:设χ天可以完成。
30 40 4x
28 = 42
8
X
28X=42×8
×= 42×8
28
X=12
答:略
这批书如果每包 20本,要捆18包.
如果每包30本, 要捆多少包?
例6 有一批书,如果每包20本,要捆18包;如果每 包30本,要捆多少包?
想: 因为书的总数一定所以包数和每包的本数成 反比例,也就是说,每包的本数和包数的乘积相等
我们家上个月 用了8吨水, 水费是28元。
我们家用 了10吨水。
我上个月 的水费是
42元.
张大妈
李奶奶
王大爷
解:设李奶奶家上个月的水费是X元
28 = X
8
10
8x=28×10
X= 28×10
8
X=35
答:李奶奶家上个月的水费是35元.
王大爷家上个月的水费是42元,他们家上个
月用了多少吨水?
解:设王大爷家上个月用了X吨水.