绝对值--北师大版
新北师大版初中数学七年级上册 (初一)2.3 绝对值课件
判断题 (打“√”或“×”) (1)-2和3互为相反数.( ×) (2)符号不同的两个数绝对值不同.( ×) (3)一个有理数的绝对值总是正数.( × ) (4)-3的绝对值大于-4.( √) (5)如果|x|=5,则x=5.( ×)
若|a|+|b-1|=0, 则a=__0___, b=__1___.
| a | a
(3)当a=0时,|a|=_0__。
负数的绝对值 是它的相反数
0
(a 0) (a 0) (a 0)
0的绝对值是0
|a|≧0
判断:
1、绝对值最小的数是0。(√ )
2、一个数的绝对值一定是正数。( ×)
老 师
3、一个数的绝对值不可能是负数。(√ )
, 我
来
4、互为相反数的两个数,它们的绝对值一定 !
老
1 、|2|=__2____,|-2|=__2____
师
,
2、若|x|=4,则x=_±__4___
我 来
!
3、若|a|=0,则a=__0____
4、|- 1 |的倒数是__2____,|-6|的相反数是__-_6___ 2
5、+7.2的相反数的绝对值是_7__.2___
(1)在数轴上表示下列各数,并比较它们的大小:
【小组讨论2】求下列各数的绝对值:-1.5,1.5,-6, +6,-3,3, 0. 【反思小结】归纳:正数的绝对值是______;负数的绝 对值是__________;零的绝对值是______.
北师大版-数学-七年级上册-《绝对值》教学设计
第二章有理数及其运算3.绝对值一、学生起点分析学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。
并初步体会到了数形结合的思想方法。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。
本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。
应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。
2.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
教学难点:利用绝对值比较两个负数的大小。
3. 教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。
(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。
(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。
第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动目的:提供几组数让学生进行比较,从而得出相反数的概念。
《绝对值》课件北师大版七年级数学上册
新课导入
新知探究
探究活动1:请视察这两对数,它们有什么异同点?你还能列举两个这样的数吗?
符号不同
符号不同
数字相同
数字相同
定义:如果两个数只有符号不同,那么称其中一个数为另一个数的 相反数,也称这两个数互为相反数.
新知探究
- -5 - -3 -2 -1 0 1 2 3 4 5 6 64 视察:-3与 3; -5与 5在数轴上的位置,你能用自己的语言描述一 下它们位置关系吗?你还能举出几对具有这种位置关系的数吗?
分类讨论思想
任何一个有理数的绝对值都是非负数
新知探究 做一做
(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5
(2)求出(1)中各数的绝对值,并比较它们的大小; (3)你发现了什么?
解:(1)
-5<-3<-1.5<-1
新知探究
(2)求出(1)中各数的绝对值,并比较他们的大小;
(非负性)
比较两个负 数的大小
第3课
绝对值
学习目标
1.借助数轴,理解绝对值和相反数的概念;知道|a|的含义以及互为相反数的两个数在数轴上的位 置关系. 2.能求一个数的相反数和绝对值,会利用绝对值比较有理数的大小. 3.通过运用绝对值解决实际问题,体会绝对值的意义和作用.
重难点
重点:正确理解绝对值的概念,会求一个数的绝对值. 难点:利用绝对值比较两个负数的大小.
问题:
路线不同,
1.它们所跑的路线相同吗? 正负性
2.它们所跑的路程(线段OA、OB的长度)一样吗?
东
路程一样,到 原点的距离相 等(不管方向)
归纳总结
距离 原点的距离
典例剖析
解: |-21|=21
七年级数学寒假专题-绝对值北师大版
七年级寒假专题:绝对值北师大版【本讲教育信息】一. 教学内容:寒假专题一:绝对值二. 重点、难点:绝对值是中学数学的重要概念,有理数加减法是整式和其它运算的基础,它们是教学的重点,也是难点,如何突破这个难点,降低有理数的教学难度,提高有理数教学的效率,是我们面对的不得不深入思考的问题。
在教学有理数概念时,通过分析有理数的结构,明确有理数是由符号和绝对值组成的,从而引出绝对值概念,这样把有理数的绝对值与小学学习的数统一起来,以利于知识的迁移,也为突出符号教学开了头。
数轴通过分析把一个数用数轴上的点表示,明确一个数的符号决定表示该数的点在原点的哪一边,绝对值决定表示该数的点到原点的距离。
因此,我们说,一个数的绝对值就是数轴上表示这个数的点到原点的距离,有了绝对值概念,就可以用绝对值概念定义相反数即符号相反,绝对值相等的两个数(规定0的相反数为0),这比“只有符号不同的两个数互为相反数”更明确,清楚。
有理数的减法是转化为加法来计算的,实际上有理数的加法和减法本质上没有区别,都是代数和,因此,我们可以把加减法放在一起学习。
首先在学习相反数时,符号化简,“同号得正,异号得负”化简符号后,归纳出有理数加减法法则:两个有理数相加减,化简符号后,同号相加,取相同的符号,并把绝对值相加;异号相减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数的和为零。
一个数与零相加仍得这个数。
注意,无论加减,化简符号后看成是省略了加号只剩下符号和绝对值的式子。
如-3+(+2)化简为-3+2看成是-3与+2的和,省略了加号,读作-3加+2或-3与+2的和。
再如,-3-(+2)化简为-3-2,看成是-3与-2的和,省略了加号,读作-3加-2或-3与-2的和。
这样,计算-3-2就是同号相加,取相同的符号“-”,并把绝对值(这里的绝对值直接认同小学学习过的数)相加即3+2=5,结果是-5。
计算-3+2是异号相减,取绝对值(这里的绝对值直接认同小学学习过的数)大的符号“-”并用较大的绝对值减较小的绝对值即3-2=1,结果是-1。
北师大版七年级数学上册相反数与绝对值--练习题
北师大版七年级数学上册相反数与绝对值--练习题北师大版七年级数学上册相反数与绝对值--练题一、选择题1、绝对值等于它本身的数有()。
A、个;B、1个;C、2个;D、无数个。
2、下列说法正确的是()。
A、—|a|一定是负数;B、只有两个数相等时它们的绝对值才相等;C、若|a|=|b|,则a与b互为相反数;D、若一个数小于它的绝对值,则这个数为负数。
3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()。
A、a>|b|;B、a|b|;D、|a|<|b|。
4、如果a>0,则的取值范围是()。
A.>0;B.≥0;C.≤0;D.<0.5、下列各数中,互为相反数的是()。
A、│和-B、│-│和-;C、│-│和;D、│-│和。
6、下列说法错误的是()。
A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值都不是负数;D、任何数的绝对值一定是正数。
7、│a│=-a,a一定是()。
A、正数;B、负数;C、非正数;D、非负数。
8、下列说法正确的是()。
A、两个有理数不相等,则这两个数的绝对值也一定不相等;B、任何一个数的相反数与这个数一定不相等;C、两个有理数的绝对值相等,则这两个有理数不相等;D、两个数的绝对值相等,且符号相反,则这两个数是互为相反数。
9、-│a│=-3.2,则a是()。
A、3.2;B、-3.2;C、 3.2;D、以上都不对。
10、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.11、若│a│=8,│b│=5,且a+b>0,则a-b的值是(。
)。
A.3或13;B.13或-13;C.3或-3;D.-3或-13.12、a<0时,化简结果为(。
)。
3a2A.0;B.-1;C.-2a;D.-3.13、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.二、判断题1、-|a|=|a|;(错误)。
北师大版七年级数学上册《绝对值》
A.1 个
B.2 个
C.3 个D.4个 Nhomakorabea究新知知识点 2 绝对值
观察下列每对数,并把它们在数轴上标出:
6和- 6,2和 -2,1和-1
-6
-2 -1 1 2
6
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
表示每对数的两个点在数轴上有什么特点? 表示每对数的两点分别位于原点的两边且到原点的距离相等.
,
21 . 解:|-21|=21;
|
+
4 9
|=
|0|= 0;
|-7.8|=7.8; 49|21|;=21.
方法点拨:求一个数的绝对值的方法:先判断这个数是 正数、0、还是负数,再根据正数和0的绝对值是它本身, 负数的绝对值是它的相反数,求出这个数的绝对值.
巩固练习
变式训练
2018的绝对值是( C
答:|-1.5|=1.5,|-3|=3,|-1|=1,|-5|=5. |-1|﹤|-1.5|﹤|-3|﹤|-5|
(3)你发现了什么? 答:两个负数比较大小,绝对值大的反而小.
探究新知
素养考点 利用绝对值比较两个负数的大小
例 比较下列每组数的大小(1)-1和-5; (2)-56和-2.7
解法一 (利用数轴比较两个负数的大小) 还可以怎么比较?
A.
1 2018
C. 2018
)
B. -2018
D.
1 2018
探究新知
知识点 3 利用绝对值比较两个负数的大小 做一做
(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5
-5
-4
-3
-2 −1.5 -1
0
1
北师大七年级数学上册《绝对值》课件(共25张PPT)
A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的
3绝对值-初中七年级上册数学(教案)(北师大版)
-难点1:绝对值的抽象理解。对于绝对值的抽象概念,学生可能难以理解其背ቤተ መጻሕፍቲ ባይዱ的数学意义。教师需要通过数轴、实际例子等直观手段帮助学生理解。
-举例:通过数轴上点的移动,解释绝对值表示距离的概念。
-难点2:绝对值的性质理解。性质的理解需要学生具备一定的逻辑思维能力,尤其是对称性的理解,学生可能会感到困惑。
-举例:用数轴上的点来解释|-a| = |a|,展示无论点在数轴的正方向还是负方向,到原点的距离是相同的。
-难点3:绝对值方程的求解。学生在求解含绝对值的一元一次方程时,可能会不知道如何处理绝对值符号。
-举例:讲解如何将含绝对值的方程分为两种情况讨论,如求解方程|x - 2| = 3,需要分别讨论x - 2 ≥ 0和x - 2 < 0的情况。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过绝对值的学习,使学生理解数的非负性和距离概念,提高数学抽象思维。
2.培养学生的逻辑推理能力:在学习绝对值的性质和计算过程中,引导学生运用逻辑推理,分析解决问题。
3.培养学生的数学建模能力:让学生在实际问题中运用绝对值,建立数学模型,解决具体问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值表示一个数与0之间的距离,它是非负的,无论这个数是正数、负数还是0。绝对值在数学中非常重要,它帮助我们理解数的大小关系和距离概念。
含有绝对值的不等式教案北师大版
6.教学课件:制作精美的教学课件,包括教学目标、导入案例、知识点讲解、例题解析、练习题等,以便在课堂上进行演示和讲解,提高教学效果和学生的学习兴趣。
解决办法:1.通过实际例子和生活中的情境,引导学生理解绝对值的概念和性质;2.通过讲解、练习和讨论,让学生掌握含有绝对值的不等式的解法;3.提供丰富的练习题,让学生在实践中应用含有绝对值的不等式解决实际问题,加深理解和掌握。
教学资源准备
1.教材:确保每位学生都有北师大版初中数学八年级上册第11章《不等式与不等式组》的教材,以便学生能够跟随教学进度进行学习和复习。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调含有绝对值的不等式的重要性和意义。
过程:
简要回顾本节课的学习内容,包括绝对值的概念、性质、含有绝对值的不等式的解法等。
强调含有绝对值的不等式在实际问题解决中的价值和作用,鼓励学生进一步探索和应用含有绝对值的不等式。
2.绝对值的性质:
(1)非负性:绝对值总是非负的,即|a| ≥ 0。
(2)对称性:对于任意实数a,有|a| = |-a|。
(3)单调性:对于任意实数a和b,如果a < b,则|a| < |b|。
(4)分配律:对于任意实数a、b和c,有|a + b| = |a| + |b|(当a ≥ 0时)和|a + b| = |b| - |a|(当a < 0时)。
北师大版绝对值说课
2.3 绝对值一.教材分析1.教材的地位和作用:《绝对值》是学生在学习了有理数和数轴等基本概念之后学习的又一重要内容,在教材的编排中起到承上启下的作用,是学习有理数加减法、乘除法的基础,是今后学习二次根式化简时必不可少的工具.绝对值是学生所认识的第一个非负数.本节课要求从代数与几何两个角度初步理解相反数、绝对值的概念,会求一个数的相反数,会求一个数的绝对值.通过应用绝对值解决实际问题,使学生体会绝对值的意义,感受数学在生活中的价值.这对于初学者来说,接受起来有点难和慢,但七年级学生思维活跃,富有激情,我在教学时充分把握和利用了这一特点.2.教学目标根据新课程标准、教学大纲的要求及学生的认知规律,确定本节课的教学目标如下:A.知识目标借助数轴,掌握相反数、绝对值的概念,会求一个数的相反数、绝对值.B.能力目标通过应用绝对值解决实际问题,初步认识绝对值的意义和作用及数学在生活中的作用.进一步培养学生借助几何直观解决数学问题的能力,渗透数形结合思想、分类讨论思想.C.情感态度和价值观在知识的探究与学习中,激发学生学习数学的兴趣和积极性,使全体学生积极参与,体验成功的喜悦;对学生进行“实践-认识-实践”的辩证唯物主义教育.3.教学重点(1)正确理解相反数、绝对值的概念;(2)会求一个数的相反数和绝对值;(3)会比较两个负数的大小.4.教学难点求一个数的绝对值是本节课的难点.由于学生的年龄特点,解决实际问题的能力相对较弱,对分类讨论思想的理解有一定难度.5.教学关键借助数轴理解绝对值的概念.二.教法、学法为了讲清本课的重、难点,使学生能够达到预定的教学目标,特从教法和学法两方面谈谈我的几点看法:教法:数学是一门培养人的思维、发展人的思维的重要学科,因此,在教学中,对学生不仅要“授之以鱼”,更要“授之于渔”;不仅要“知其然”,更要“知其所以然”.基于本节课的特点,我主要采用情景教学与问题教学相结合的教学方法,充分发挥七年级学生思维活跃、富有激情的特点,组织学生独立探究、合作交流,让学生在活动中增长知识、锻炼思维.学法:基于“把学生的主动权还给学生”的思想,教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用.结合七年级学生的特点,让学生自己通过观察、类比、猜想、归纳,共同探讨交流,利用课件和图片自主探索等方式,激发学习兴趣,培养应用意识和发散思维,采用“思考—发现—探究—练习”的学习方法.三.学情分析通过前一阶段的教学,学生对数轴和有理数的认识有了一定的认知:学生已初步掌握了数轴,能够用数轴的点表示有理数;学生已初步具备了数形结合思想.学生对数学新知识的学习有较高的兴趣和积极性,但探究问题的能力和合作交流等方面发展不够均衡.四.教学流程教学流程安排活动流程图 活动内容目的 时间安排1.情境引入, 趣味感知 激发兴趣,初步感知 5分钟2.合作交流,探索新知 掌握相反数和绝对值的概念 20分钟会求一个数的相反数和绝对值会比较两个负数的大小3.学以致用 拓展延伸 探索简化符号的规律,会求较复杂数的相反数和绝对值 10分钟4.大家都来说一说 课堂小结 3分钟5.当堂检测,巩固新知 考查、纠错、提高 7分钟教学过程设计一. 情境引入 趣味感知每年的3月15日为“国际消费者权益日”,旨在推动保护消费者的活动,保护消费者的合法权益,即有权获得安全保障;有权获得正确资料;有权自由决定选择;有权提出消费意见.2013年3月,国家质检部门对某铸造厂生产的一批零件进行了抽查.根据该零件的质量要求:零件的长度可以有cm 2.0的误差.现抽查5个零件,检查数据如下(超过规定长度的厘米数记作正数,不足规定长度的厘米数记作负数):据抽查结果,你能说出哪件零件的质量最好吗?此次抽查的合格率是多少?我们不难发现:与标准质量的距离越小,零件的质量越好.本节课我们学习的新内容就与“距离”有关,一起走进今天的数学课堂,相信你一定会有意想不到的收获!(导入新课)【设置意图】 1.情景采自于大家身边比较关注的事件,可充分调动学生学习的积极性,激发学生观察、思考,从而提高学生对本节课学习的兴趣;2.在本环节中,由关键词“距离” 引出本节课的两个重要概念“相反数”和“绝对值”,突出了本节课的关键点,为新知识的学习做下铺垫.二.合作交流 探究新知问题1 与“距离”相关的——相反数想一想:(1)数轴上,与原点距离是2的点表示的数分别是_____和_____.(2)数轴上,与原点距离是21的点表示的数分别是_____和_____. (3)数轴上,与原点距离是3.5的点表示的数分别是_____和_____.议一议:(1)从数字本身来看,各个数对分别具备哪些特征?(2)从数轴的位置来看,各个数对又具备哪些共同特征呢?教师讲解:像这样,只有符号不同的两个数,互为相反数,其中一个数是另一个数的相反数;特别地,0的相反数是_______.谁来说一说:1.下列说法中正确的是﹙ ﹚A.-3是相反数B.-7和7是相反数C.-5的相反数是5D.0没有相反数教师强调:只有符号不同的“两个”数,我们说它们“互为”相反数,或者说其中“一个”是“另一个”的相反数.2.﹙1﹚7的相反数是_______,23的相反数是_______,0.2与_____互为相反数. ﹙2﹚-9与_____互为相反数,-6.9的相反数是_____,-100.01的相反数是_____.﹙3﹚一个正数的相反数是一个____数,一个负数的相反数是一个____数,____的相反数是它本身.【设置意图】本环节通过学生独立思考、合作交流、教师点拨,让学生经历了发现问题—分析问题—解决问题的过程.在引导学生学习了相反数的概念、会求一个数的相反数的同时,注重培养了学生发现问题、分析问题、解决问题的能力.问题2 与“距离”相关的绝对值 教师讲解:在数轴上,一个数所对应的点与原点的距离..叫做该数的绝对值....例如:数轴上表示+3的点到原点的距离..为3,因此我们称+3的绝对值...为3,记作33=+; 数轴上表示-8的点到原点的距离..为8,因此我们称-8的绝对值...为8,记作88=-; 填一填:(1)___4=+,___5.6=+,___10=+,___12=+; (2)___4=-,___5.6=-,___10=-,___12=-,___0=;议一议:观察上面的结果,你能发现一个数的绝对值与这个数有什么关系呢? (1)当a 是正数(a>0)时,|a |=____;(2)当a 是负数(a<0)时,|a |=__; (3)当a=0时,(a=0)时 |a |=__.想一想:(1)绝对值是4的数有几个?各是什么?绝对值是6.5,10,12的数呢?你还能举出两个数的绝对值相等的例子来吗?(2)绝对值是0的数有几个?是什么?(3)绝对值是-2的数是否存在?若不存在,请说出理由.算一算:⑴)32(+-=_____; ⑵5.6--=_____;⑶2.63⨯=___3⨯=____;⑷ 49.25-+-=___+___=_____;⑸172313+--+-=____+____-____=____;⑹____81224=-⨯-. 强调运算顺序:计算时,我们一般先算绝对值,再算乘除与加减.【设置意图】本环节是本节课的重、难点之一.通过“填一填”这一环节,练习并考查了学生对绝对值概念的理解;通过观察所填结果,引导学生发现一个数的绝对值与这个数的关系,以及“互为相反数的两个数的绝对值相等”这一重要结论;在此基础上能进行有关绝对值的简单计算.整个环节的过程的设计旨在引导学生学习新知识的同时,培养学生自主探究的能力.问题3 有理数大小的比较忆一忆:⑴数轴上,___边的数总比____边的数大;(填“左”或“右”)⑵原点的右边是___数,原点的左边是___数,因此正数___0,负数____0,正数____负数; 比一比:观察并比较数轴上的各个负数及其绝对值的大小.(填“>”“<”) 我发现:几个负数相比较,绝对值大的反而..____;要比较负数的大小,可以先比较它们的_____.试一试:比较下列各对数的大小.(1)73218--和 解:两个负数相比较,先算他们的绝对值得,218218=- ,2197373==-, 因为219218<,所以___________; (2) 25.25.2---和 解:先化简,25.2--=________,接着比较5.2-和____的大小. _________________________________________________. (3)31-)3.0(和-- 解:先化简,)3.0(--=_____,31-=____,因为____<____,所以____< ____; 师强调:比较两个数的大小时,能化简的先化简,然后再将结果进行比较.【设置意图】本环节通过引导学生观察数轴,借助几何直观找到比较两个负数大小的有一方法:比较它们的绝对值.另外,针对学生容易将各种比较方法相混淆的情况,相对设计了需要先化简再比较的例题.三.学以致用 拓展延伸问题1想一想:(1)只有_____不同的两个数互为相反数.(2)一般地,数a 的相反数是_____,0的相反数是____.师强调:在一个非零的数前面填上一个“-”号,就表示这个数的相反数;在一个非零的数前面填上一个“+”号,还等于这个数本身.思一思:(1)∵()4+-是 的相反数,∴()4+- =_________;(2)∵⎪⎭⎫ ⎝⎛+-51是 的相反数,∴⎪⎭⎫ ⎝⎛+-51 =_________; (3)∵()1.7--是 的相反数,∴()1.7--=_________;(4)∵()100--是 的相反数,∴()100--=________.填一填:﹙1﹚()5+- =_____ ;)20(+- =_____ ;)21(-+=_____;)5.2(-+=_____; ﹙2﹚()7--=_____ ;)32(--=_____ ;)8.2(++=_____ ;)30(++=_____; 你发现了吗?简化符号时,如果数字前有两个不同的符号,结果为_____数;如果数字前有两个相同的符号,结果为_____数;即同号得____,异号得_____.试一试:分别写出下列各数的相反数和绝对值.﹙1﹚2.8 ﹙2﹚52- ﹙3﹚ )34(-- ﹙4﹚)25(+-师点拨:求一个数的相反数时,要注意用语言正确地进行表述,如“某数与某数互为相反数”或“某数的相反数是某数”,不能简单地用等号连接,如“2=-2”;像﹙3﹚、﹙4﹚最好先简化符号,以免在符号上犯错误.【设置意图】在该环节中,根据相反数的表示方法,引导学生发现简化符号的规律.利用这个规律可求较复杂数的相反数和绝对值,该规律也是今后计算的重要基础.问题2问题回解:怎样用绝对值的知识解决引例中的问题?适时引领:本题各个检查结果的绝对值代表了各个零件与标准质量的差距,因此,绝对值越小的球其质量越接近标准质量,质量相对来说较好一些.【设置意图】问题回解的设计,使整堂课“首尾呼应”,在结构上相对完整,并且让学生进一步体会到绝对值的实际意义,感受到数学来源于生活,服务于生活.六.大家都来说一说通过本节课的学习,你有哪些收获?〔学生自由发言,师生互相补充,共同归纳〕【设计意图】在归纳总结的环节中,引导学生从知识点、数学思想方法,学法等各方面进行总结,训练学生概括、归纳知识的能力,使知识系统化、条理化,培养学生的归纳、反思意识,同时又发展了有条理的思考及语言表达能力.七.当堂检测巩固新知+15 -10 +30 -20 -40问题:(1)指出哪个排球的质量好一些(即重量最接近规定质量)?(2)如果对两个排球作上述检查,检查的结果分别为p和q,请利用学过的绝对的知识指出这两个排球中哪个质量好一些?【设计意图】必做题考查了学生对本节课重点内容的掌握情况,选做题既可以拓宽学生的知识视野,又让学生进一步体会分类讨论的思想在解题中的应用和绝对值知识在实际生活中的应用;练习的分层设计,考虑到不同层次学生的发展需要.五.教学反思本节课的教学设计在结构上做到了首尾呼应,从生活中来回到生活中去,符合学生的认知发展,让学生进一步体会到“数学来源于生活,服务于生活”,激发了学生学习数学的兴趣.在深入浅出的教学过程中引导学生发现问题—分析问题—解决问题,培养学生发现问题、分析问题、解决问题的能力.在教学的过程中注重引导学生借助几何直观来解题,使学生体会数形结合思想在解题中的重要作用.由于本节课授课内容相对较多,“当堂检测巩固新知”这一环节可根据时间情况进行调整,如果课堂检测时间不够,可留课后进行.山东省文登市豹山路67—3号6单元412室于华虎电话(小灵通) 0631—8099165邮编264400邮箱。
北师大版2.3《绝对值》教学设计
2.3绝对值(教学设计)姓名:____________【学习目标】1、掌握有理数的绝对值概念及表示方法;2、熟练掌握有理数绝对值的求法和有关的简单计算;掌握利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,培养概括能力和论证能力。
【学习重点】正确理解绝对值的概念。
【学习难点】绝对值的几何意义,负数大小比较。
【知识回顾】1.具有 、 、 的 叫做数轴。
2.3到原点的距离是 ,—5到原点的距离是 ,到原点的距离是6的数有 ,到原点距离是1的数有 。
3.2的相反数是 ,—3的相反数是 , 的相反数是 。
4.用“<”或“>”填空5.在数轴上标出下列各数,并用“<”连接起来。
-3,4,0,32 ,-1,5,-4,-43,2.5【探究新知】问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了6公里到达A 处,乙车向西行驶了6公里到达B 处。
若规定向东为正,则A 处记做__________,B 处记做__________。
(1) 画出数轴,并在数轴上标出A 、B 的位置;(2) 在数轴上的A、B两点又有什么特征?(3) 在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示- 34 和34的点呢?归纳:一般地,在数轴上一个数a 所对应的点与原点的距离叫做数a 的绝对值,记作: 例如:4的绝对值记作 ,它表示在 上 与 的距离,所以| 4|= 。
—6的绝对值记作 ,它表示在 上 与 的距离,所以|-6|= 。
思考:互为相反数的两个数的绝对值有什么关系?练习:| 7|= |+4.2|= |0∣= |-5.7|= 35-= ∣—2.25∣= ∣25-∣= 问题2、你能从下面发现什么规律?一个数的绝对值与这个数本身有什么关系? (1)|+2|= ,51= , |+8.2|= ; (2)|0|= ; (3)|-3|= , |-0.2|= , |-8.2|= .小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是 。
绝对值--北师大版
巩固训练
1.绝对值等于8的正数是 绝对值等于8的负数是 绝对值等于4的数是
。 。 。
2.计算: (1) |-2|+3 (3) |-10.8|-|5.1|
(2) |-3|×|-5| (4) |-81|÷|-9|
应用探讨
如图,有A、B、C三处的海 拔高度分别是-100米、-210米、 -300米。
海平面 A
3 绝对值
情景引入
4千米
3千米
在一条东西方向的公路上有一辆小汽车与一辆 大客车,因限速60千米/时,哪辆车先到路口的红绿 灯?
4
3
-4 -3 -2 -1 0 1 2 3
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值就是数轴上表示这个数的点 与原点之间的距离。一个数的绝对值应该怎么样 去记呢?
1、三处的地势从高到低排列,结果是 B
什么?
2、-100,-210,-300的绝对值分别是多少?
CHale Waihona Puke 3、你发现了什么?两个负数比较大小,绝对值大的反而小。
例题学习
比较下列各组数的大小: (1) -2与-7 (2) -2.7与-2.6
巩固练习:随堂练习2
回顾与挑战
1、你今天又学会了什么?
2、试一试: (1)绝对值等于它的本身的数是 (2)绝对值大于它的本身的数是 (3)绝对值小于4.5的整数是 (4)绝对值小于8而大于2的整数
练习:
1 . 口答
|+5.8|=
. |-3.6|=
. |0|=
.
|100|= . |-2005|= .
2 .求下列各数的绝对值: -21,+4/9,0,-7.8
绝对值教案1-北师大版(优秀教案)
情景:在一棵大树下,有两只狗〔一灰一黄〕在玩耍,过了一会儿,有人在大树西米处以及东米处各放了一根骨头,两狗发现后,灰狗跑向西米处,黄狗跑向东米处分别衔起了骨头。
问题:在数轴上表示出这一情景。
它们所跑的路线相同吗?它们所跑的路程〔线段、的长度〕一样吗?下面我们先一起来把刚刚看到的这一情景在数轴上表示出来。
在这里,我们以大树为原点,以向东方向为正方向,用一个单位长度表示米,建立数轴,在数轴上标出这两只狗的位置。
我们先来答复第一问,灰狗是向西跑,而黄狗是向东跑,所以它们所跑的路线不相同,在数轴上来看的话,灰狗向西跑了米到达处,记做;黄狗向东跑了米到达处,记做;再来看第二问,不管往哪个方向跑,灰狗和黄狗都是跑了米,也就是说,它们所跑的路程是一样的,在数轴上,它们到原点的距离是相等的。
那么,这个距离在数学中叫做什么呢?这就是我今天要和大家一起探讨的内容。
[ 绝对值]一、 合作交流,解读探究在实际生活中,有时存在这样的情况,有些问题我们只考虑数的大小而不考虑方向,在我们的数学中,就是不需要考虑数的正负性,比方:在计算小狗所跑的路程中,与狗跑的方向无关,这时所走的路程只需用正数来表示,这样就必须引进一个新的概念——绝对值。
那么什么叫绝对值呢?“〞表示。
例如:到原点的距离是,所以的绝对值是,记做;到原点的距离是,所以的绝对值是,记做。
[板演] 例 求以下各数的绝对值:,,,.解:; ; ; .[口答]说出以下各数的绝对值:,,,,.想一想:互为相反数的两个数的绝对值有什么关系?西 东3米 3米给出几对相反数,让学生求出它们的绝对值后,引导学生思考:互为相反数的两个数的绝对值有什么关系?(给学生充分的时间思考、探究,老师个别指导)议一议:一个数的绝对值与这个数有什么关系?每两个同学相互给对方任意写出三个正数、三个负数和零,然后要求对方求出它们的绝对值。
(给学生充分时间,让学生相互出题、答题)通过上面例子,引导学生归纳总结出一个数的绝对值与这个数的关系。
北师大版初中数学七年级上册-绝对值课件
复 习: 数轴的三 1、什么是数轴? 要素
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、什么是相反数?
只有符号不同的两个数叫做互为相反数。 规定:0的相反数是0。
2024年9月12日9时8分
新课 视察下图,回答问题:
大象距原点几 个单位长度?
两只小狗分别距原点 几个单位长度?
两只小狗呢? 记作│+ 3│=3 │-3│=3
如果一个数为-5,则它的绝对值呢?
2024年9月12日9时8分
例1. 求下列各组相反数的绝对值。
(1)9,-9;(2)0.6,-0.6;(3)
No Image
解: (1)|9|=9
| -9 |= 9
(2)|0.6|=0.6 |-0.6|=0.8
| (3) |1= |1- |=1 1
2. 绝对值小于3的整数有__5_个,分别是 _2_,_1_,_0_,_-_1_,_-_2___.
3. 如果一个数的绝对值等于 7,那么这 个数等于_7__或___-__7__.
4. 用>、<、=号填空
│-5│ > 0 , │+3│ > 0, │+8│ = │-8│, │-5│ < │-8│.
2024年9月12日9时8分
2024年9月12日9时8分
202X年6月21日
教学目标:
(1)、借助数轴,初步理解绝对值的概 念,能求一个数的绝对值,会利用绝对值比 较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体 会绝对值的意义和作用。
教学重点:正确理解绝对值的含义。 教学难点:正确掌握并利用绝对值比较两个负
数的大小。
北师大版数学七年级上册说课稿第二章有理数及其运算2.3绝对值
北师大版数学七年级上册说课稿第二章有理数及其运算2.3绝对值一. 教材分析北师大版数学七年级上册第二章有理数及其运算2.3绝对值,本节课主要介绍了绝对值的概念、性质及其应用。
绝对值是数学中的一个重要概念,它表示一个数在数轴上的投影到原点的距离。
学生通过本节课的学习,掌握绝对值的概念和性质,能够解决一些与绝对值相关的问题。
二. 学情分析七年级的学生已经学习了有理数的概念和运算法则,对数轴有一定的了解。
但学生在理解和应用绝对值方面可能会存在一些困难,因此,在教学过程中需要注重引导学生理解和掌握绝对值的概念和性质,并通过例题和练习题让学生逐步掌握绝对值的应用。
三. 说教学目标1.知识与技能:理解绝对值的概念,掌握绝对值的性质,能够运用绝对值解决一些简单的问题。
2.过程与方法:通过观察、思考、交流等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 说教学重难点1.重点:绝对值的概念和性质。
2.难点:绝对值的应用。
五. 说教学方法与手段本节课采用讲授法、讨论法、案例分析法等教学方法,结合数轴、图片等教学手段,引导学生理解绝对值的概念和性质,并通过例题和练习题让学生巩固所学知识。
六. 说教学过程1.导入:通过数轴引导学生回顾数轴的概念,为学生学习绝对值打下基础。
2.新课导入:介绍绝对值的概念,引导学生理解绝对值的含义。
3.性质探究:引导学生通过观察、思考、交流等活动,发现绝对值的性质。
4.例题讲解:通过例题讲解,让学生掌握绝对值的应用。
5.练习题:让学生通过练习题巩固所学知识。
6.课堂小结:总结本节课的主要内容和知识点。
7.课后作业:布置一些与绝对值相关的练习题,让学生进一步巩固所学知识。
七. 说板书设计板书设计如下:1.绝对值的概念2.绝对值的性质3.绝对值的应用八. 说教学评价通过课堂提问、练习题、课后作业等方式对学生的学习情况进行评价,重点关注学生对绝对值概念和性质的理解,以及运用绝对值解决问题的能力。
北师大版七年级数学课件-绝对值
本節課裏你學到了什麼???
(1)絕對值的概念。 (2)如何求一個數的絕對值。 (3) 一個數的絕對值總是大於或等於0的。
:1、教材P50 知識技能2、數學理解1
2、已知|x-2|+|y- |1=0,求2x+3y的值.
3
B、+m
C、-m與+m
D、2m
填空:
老
1 、|2|=___2___,|-2|=___2___
師
,
2、若|x|=4,則x=__±__4__
我 來
!
3、若|a|=0,則a=___0___
4、|- 1 |的倒數是___2___,|-6|的相反數是___-6___ 2
5、+7.2的相反數的絕對值是__7_._2__
a
(2)當a是負數時,|a|=_-a_;
| a | a
(3)當a=0時,|a|=_0__。
負數的絕對值 是它的相反數
0
(a 0) (a 0) (a 0)
0的絕對值是0
|a|≧0
判斷:
1、絕對值最小的數是0。( )
老 師
2、一個數的絕對值一定是正數。( )
, 我
3、一個數的絕對值不可能是負數。( )
規定了原點、正方向、單位長度的直線。
只有符號不同的兩個數互為相反數。反數
-a
西 3米
東 3米
在數軸上表示出這一情景.
A
3
O
3
B
-3
-2
-1
它們所跑的路線相同嗎?
0
1
2
路線不同, 正負性
3 路程一樣,到原點 的距離相等(不管 方向)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情景引入
4千米
3千米
在一条东西方向的公路上有一辆小汽车与一辆
大客车,因限速60千米/时,哪辆车先到路口的红绿 灯?
4
3
-4 -3 -2 -1 0 1 2 3
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值就是数轴上表示这个数的点 与原点之间的距离。一个数的绝对值应该怎么样 去记呢?
互为相反数的两个数的绝对值相等
问题2:一个数的绝对值与这个数有什么关系?
正数的绝对值是它本身;负数的 绝对值是它的相反数;0的绝对值是 0
巩固训练
1.绝对值等于8的正数是 绝对值等于8的负数是 绝对值等于4的数是
。 。 。
2.计算: (1) |-2|+3 (3) |-10.8|-|5.1|
(2) |-3|×|-5| (4) |-81|÷|-9|
应用探讨
如图,有A、B、C三处的海 拔高度分别是-100米、-210米、 -300米。
海平面 A
1、三处的地势从高到低排列,结果是 B 什么?
C 2、-100,-210,-300的绝对值分别是多少?
3、你发现了什么?
两个负数比较大小,绝对值大的反而小。
ቤተ መጻሕፍቲ ባይዱ
像-5、4的绝对值应该如何记呢?
│-5│=5
│4│=4
你能表示下列各数的绝对值吗?
+2,-6,0
练习:
1 . 口答
|+5.8|=
. |-3.6|=
. |0|=
.
|100|= . |-2005|= .
2 .求下列各数的绝对值: -21,+4/9,0,-7.8
问题讨论:
问题1:互为相反数的两个数的绝对值有什么关系?