第三章中心对称图形复习教案
中心对称图形复习课教案
中心对称图形复习课教案一、教学目标1. 知识与技能:理解中心对称图形的概念,能够识别和绘制常见的中心对称图形;掌握中心对称图形与轴对称图形的区别;能够运用中心对称性质解决实际问题。
2. 过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力;学会运用对称变换的方法处理图形。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生审美观念,培养学生的创新精神和合作意识。
二、教学内容1. 中心对称图形的定义与性质2. 常见中心对称图形的识别与绘制3. 中心对称图形与轴对称图形的对比4. 中心对称性质在实际问题中的应用5. 对称变换与中心对称图形三、教学重点与难点1. 教学重点:中心对称图形的定义与性质,常见中心对称图形的识别与绘制,中心对称性质在实际问题中的应用。
2. 教学难点:中心对称图形与轴对称图形的区别,对称变换的方法。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,发现中心对称图形的性质和应用。
2. 利用多媒体辅助教学,展示中心对称图形的美丽图案,激发学生学习兴趣。
3. 创设丰富多样的教学情境,让学生在实际问题中体验中心对称图形的应用价值。
4. 采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入新课:通过展示一些美丽的图案,引导学生发现其中的对称性,激发学生学习兴趣。
2. 自主学习:让学生通过阅读教材,了解中心对称图形的定义与性质。
3. 课堂讲解:讲解中心对称图形的定义与性质,通过示例让学生掌握常见中心对称图形的识别与绘制。
4. 课堂练习:设计一些练习题,让学生巩固所学知识,能够运用中心对称性质解决实际问题。
5. 课堂小结:对本节课的主要内容进行总结,强调中心对称图形与轴对称图形的区别,以及中心对称性质在实际问题中的应用。
6. 课后作业:布置一些有关中心对称图形的练习题,让学生进一步巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对中心对称图形的定义、性质和应用的掌握情况。
北师大版数学八年级下册3.3《中心对称》教案
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
(整理)第三章中心对称图形一全章教案
课题3.1 图形的旋转教学目标⒈经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
教学重点⒈旋转图形的性质⒉旋转图形的画法教学难点旋转图形的画法教学过程1.创设情境日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。
提出问题:⑴上述情境中的旋转现象有什么共同的特征?⑵生活还有类似的例子吗?2.探索活动一⒈将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。
你发现了什么?⒉将绕点按顺时针方向旋转到的位置。
问题:度量∠AOA`、∠BOB`、∠COC`的度数,线段AO与A`O、BO与B`O、CO与C`O的长度。
你发现了什么?在学生看了与做了的基础上,得出概念。
旋转,旋转中心,旋转角【注意】对旋转概念的教学,要帮助学生理解如下两点:⑴“将一个图形绕着一个定点旋转一定的角度”意味着图形上的每一点同时都按相同的方式旋转相同的角度;⑵与平移的情况相同,“图形的旋转不改变图形的形状、大小”,这是对旋转概念的一个补充。
⒉通过操作活动,让学生讨论:三角形在旋转过程中哪些发生了改变?哪些没有发生改变?通过学生的讨论得出旋转的性质:旋转前、后的图形全等。
对应点到旋转中心的距离相等。
每一对对应点与旋转中心的连线所成的角彼此相等。
⒊练一练⑴ P75练习1⑵ P76习题3.1 第1题4、探索活动二旋转作图⒈已知线段AB和点O,按下面的方法画出线段AB绕点O按逆时针放向旋转1000后的图形:⒉在图3-4中,画出△ABC按顺时针方向绕点O旋转120后对应的三角形。
⒊练一练:练习25、课堂小结6、作业课 时3.2中心对称与中心对称图形(1)教学目标经历观察.操作.分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质. 教学重点⒈中心对称的涵义⒉中心对称的性质.⒊成中心对称的图形的画法教学难点⒈中心对称的性质.⒉成中心对称的图形的画法教学过程1、情境引入利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转1800,能与另一个重合吗?2、新课讲授⒈ 引出概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。
中心对称图形教案+教案说明
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
教学目标:1. 了解中心对称图形的定义和性质。
2. 学会如何判断一个图形是否为中心对称图形。
3. 能够运用中心对称图形的性质解决实际问题。
教学重点:1. 中心对称图形的定义和性质。
2. 判断一个图形是否为中心对称图形的方法。
教学难点:1. 理解中心对称图形的性质并运用解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 中心对称图形的示例图形。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。
2. 向学生展示一些中心对称图形的示例。
二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。
2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。
3. 引导学生通过推理和交流,总结中心对称图形的性质。
三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。
2. 让学生谈谈自己在练习中遇到的问题和解决方法。
五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。
2. 让学生运用中心对称图形的性质解决实际问题。
教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。
在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。
要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。
通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。
中心对称图形教学设计
中心对称图形教案一、教学内容1.关于中心对称图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称图形旋转后与原图形重合、中心对称与中心对称图形的区别与联系3、体验中心对称图形与现实生活的联系二、教学目标(知识与技能)理解中心对称图形的定义及特征,体会中心对称及中心对称图形之间的区别与联系(过程与方法)经历观察思考探索发现的过程,感受中心对称图形的特征,培养学生的观察能力与思考能力(情感态度)1、通过对中心对称图形的探究和认识,体验图形的变化规律,感受图形变换的美感。
享受学习数学的乐趣和积累一定的审美经验2、通过师生的共同活动,积累一定的审美体验,经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。
重点、难点1.重点:中心对称图形的概念及相关的性质.2.难点:中心对称与中心对称图形的区别与联系.三、教学过程一、复习引入问题1、中心对称的两个图形有什么样的特征?问题2、观察如图所示的图形归纳中心对称的概念与性质。
轴对称与中心对称的区别与联系二、探索新知活动1、出示一些具有旋转对称性的图形,观察哪些图形需要旋转180°才可重合,从而引出中心对称图形。
活动2 P66(思考)、(1)如图将线段AB绕它的中点旋转180°,有什么发现?(2)将平行四边形ABCD绕它的对角线的交点O旋转180°,有什么发现?概念:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.特性:中心对称图形对称点所连线段都经过旋转中心且被对称点平分活动3、合作探究:小组讨论一个图形是中心对称图形的关键是什么?,让学生判断平行四边形是否是中心对称图形及平行四边形有哪些性质?活动4、研学教材:中心对称图形的应用活动5、能力拓展完成练一练(幻灯片15至幻灯片28)活动6、对比归纳:中心对称和中心对称图形的联系与区别四、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及中心对称图形的有关概念;2.能判断简单的几何图形是否是中心对称图形;了解中心对称图形的应用。
苏科版八年级上 第三章中心对称图形(教案)
·O
2.已知线段AB和点O,画出线段AB绕点O按逆时针方向旋转100°后的图形。
B
·O A
3.画出将ΔABC绕点O按顺时针方向旋转120°后的对应三角形。A
B C·O
BC
五、练习
P94.练习1. 2
习题1.
六、反思
叙述一节课的主要内容。
学生操作
学生可以争论结果是图形的位置改变大小,形状不变
量一量
五、举例
如图A’B’∥AB,B’C’∥BC,C’A’∥CA.图中有几个平行四边形?将它们表示出来,并说明理由。
A
C’ B’
B C
A’
解:图中共有3个平行四边形
ABCB’ C’BCA ABA’C
因为A’B’∥AB,B’C’∥BC
所以四边形ABCB’是平行四边形
理由是:2组对边分别平行的四边形是平行四边形。
所以ABCD绕点O旋转180°后,与原来的图形重合。
三、平行四边形的性质:
(1)平行四边形的对边平行
(2)平行四边形的对边相等
(3)平行四边形的对角相等
(4)平行四边形的对角线相互平分
性质的另一种表示法:
A D
B C
(1)因为四边形ABCD是平行四边形
所以AB∥CD AD∥BC
四、练一练
P108 1、2
教学目标
学生应能懂得平行四边形的由来;会应用平行四边形的性质解决有关问题
重点
平行四边形的性质
难点
理解性质的由来
教学方法
讲练结合、探索交流
课型
新授课
教具
尺、规
教师活动
学生活动
一、情景创设
画一画:如图BO是ΔABC的边AC上的中线。画出ΔABC关于点O对称图形。
北师大版八年级下册数学《3.3 中心对称》教案
北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。
本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。
但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。
三. 教学目标1.了解中心对称的概念,理解中心对称的性质。
2.能运用中心对称解决一些简单的问题。
3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。
四. 教学重难点1.中心对称的概念和性质。
2.如何运用中心对称解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。
通过实例,让学生了解如何运用中心对称解决实际问题。
六. 教学准备1.教学PPT。
2.中心对称的图片和实例。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。
通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。
3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。
然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。
4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。
通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。
八上第三章中心对称图形(复习)
中心对称图形(复习) 教案班级 姓名 学号 学习目标在探索了平行四边形的有关性质和四边形是平行四边形的条件后,以例题的讲解进一步掌握,培养学生有条理的表达能力,规范书写格式。
学习难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
教学过程一、知识结构在虚线框内填写合适的条件, 以反映图形的变化二、知识回顾与典型例题(一)图形的旋转:定义、性质、画法(二)中心对称、中心对称图形的概念以及这两个概念的联系与区别【例1】在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 ( )(三)中心对称的性质:对称点连线都经过 ,且被 平分晴 (A )冰雹 (B )雷阵雨 (C )大雪 (D )【例2】如图,两个三角形对中心对称,请确定其对称中心。
【例3】已知四边形ABCD 和O 点,画出四边形 ABCD 关于O 点的对称图形。
(四)设计中心对称图案【例4】图案设计:图例:小明在4×3的网格上,设计了由个数相同的白色方块与黑色方块组成的一幅图案,如左下图。
请你仿照此图案,在下列网格中分别设计出符合要求的图案。
(注:①不得与原图案相同;②黑、白方块的个数要相同)(五)几种特殊的中心对称图形的定义、性质、判定(1)是轴对称图形, 又是中心对称图形(2)是轴对称图形,但不是中心对称图形(3)是中心对称图形, 但不是轴对称图形BDCA【例5】(1)能判断一个四边形是平行四边形的为( )A 、一组对边平行,另一组对边相等B 、一组对边平行,一组对角相等C 、一组对边平行,一组对角互补D 、一组对边平行,两条对角线相等(2)矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是( )A 、6 B 、32 C 、2(1+3) D 、1+3(3)若菱形ABCD 的周长为20,一条对角线AC 长为6,求菱形的面积 。
(4)如图,点E 是正方形ABCD 的边BC 延长线上的一点,且CE=AC ,若AE 交CD 于点F ,则∠E= °;∠AFC= °(5)图1是边长为4的正方形硬纸片ABCD ,点E 、F 分别是AB 、BC 的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积 () (A )2 ( B )4 ( C )8 ( D )10 (6)平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC=6cm ,BD=8cm 则边AB 长度x 的取值范围是 。
第三章中心对称图形复习教案
阜宁县陈集中学八年级数学复习题第1课时 中心对称与中心对称图形一、知识点:1、图形的旋转;图形旋转的性质。
2、中心对称;中心对称的性质。
3、中心对称图形:4、中心对称与中心对称图形之间的关系: 区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .5、对比轴对称图形与中心对称图形:轴对称图形 中心对称图形 有一条对称轴——直线有一个对称中心——点 沿对称轴对折 绕对称中心旋转180O 对折后与原图形重合旋转后与原图形重合二、举例:例1:如图,将点阵中的图形绕点O 按逆时针方向旋转900,画出旋转后的图形.例2:画出将ΔABC 绕点O 按顺时针方向旋转180°后的对应三角形。
例3:如图,已知ΔABC 是直角三角形,BC 为斜边。
若AP=3,将ΔABP 绕点A 逆时针旋转后,能与ΔACP ′重合,求PP ′的长。
例4:已知:如图,在△ABC 中,∠BAC=1200,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,若AB=3,AC=2,求∠BAD 的度数与AD 的长.例6:如图,直线l 1⊥l 2,垂足为O ,点A 1与点A 关于直线l 1对称,点A 2与点A 关于直线l 2对称。
点A1与点A2有怎样的对称关系?你能说明理由吗?4、如图是一个平行四边形土地ABCD ,后来在其边缘挖了一个小平行四边形水塘DFGH ,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),简要说明理由.第2课时 平行四边形一、知识点:1、平行四边形的定义: ·O AP ′PCBACBDAEO·HA BDCGEF2组对边分别平行的四边形叫做平行四边形。
中心对称图形导教学教案
中心对称图形导教学教案一、教学目标知识与技能:1. 学生能够理解中心对称图形的概念。
2. 学生能够识别生活中的中心对称图形。
3. 学生能够运用中心对称性质进行图形的变换。
过程与方法:1. 学生通过观察、操作、思考,培养观察能力和空间想象力。
2. 学生通过合作交流,提高解决问题的能力。
情感态度价值观:1. 学生培养对几何图形的兴趣,激发学习热情。
2. 学生在解决实际问题中,体会数学与生活的联系。
二、教学重点与难点重点:1. 中心对称图形的概念。
2. 中心对称图形的性质。
难点:1. 理解中心对称图形与轴对称图形的区别。
2. 运用中心对称性质进行图形变换。
三、教学准备教师准备:1. 中心对称图形的图片素材。
2. 教学PPT或黑板。
3. 剪刀、彩纸等教具。
学生准备:1. 课本及相关学习资料。
2. 笔记本、彩笔等学习用品。
四、教学过程1. 导入新课:教师展示一些生活中的图形,如剪纸、图案等,引导学生观察。
提问:这些图形有什么特点?学生可能回答出“对称”、“漂亮”等词语。
教师总结:这些图形都是中心对称图形,今天我们就来学习中心对称图形的知识。
2. 自主学习:学生阅读课本,了解中心对称图形的概念和性质。
教师巡视课堂,解答学生疑问。
3. 课堂讲解:教师结合PPT或黑板,讲解中心对称图形的概念和性质。
讲解过程中,引导学生参与互动,如举例、提问等。
4. 动手实践:教师发放剪刀、彩纸等教具,学生动手制作中心对称图形。
教师巡回指导,解答学生疑问。
5. 成果展示:学生将自己的作品展示给大家,分享制作过程中的心得体会。
教师点评,给予鼓励和指导。
6. 课堂小结:教师引导学生总结本节课的中心对称图形的概念、性质和运用。
五、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的中心对称图形,拍下照片或手绘图形,下节课分享。
3. 思考如何运用中心对称性质解决实际问题,下节课交流。
六、教学反思1. 学生对中心对称图形的理解和掌握程度如何?2. 教学过程中是否有不足之处,如何改进?3. 学生参与度和积极性如何,有哪些方法可以提高?4. 如何针对不同学生的学习情况,进行针对性的辅导?七、评价与反馈1. 教师通过对学生的课堂表现、作业完成情况进行评价,了解学生对中心对称图形的掌握程度。
中心对称图形复习课教案
中心对称图形复习课教案一、教学目标1. 知识与技能:(1)能够识别和理解中心对称图形的概念。
(2)能够运用中心对称图形的性质解决实际问题。
(3)能够进行中心对称图形的绘制和变换。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和动手能力。
(2)运用小组合作和讨论,提高学生的交流和合作能力。
3. 情感态度与价值观:(1)激发学生对中心对称图形的兴趣和好奇心。
(2)培养学生的观察力和耐心。
二、教学重点与难点1. 教学重点:(1)中心对称图形的概念和性质。
(2)中心对称图形的绘制和变换方法。
2. 教学难点:(1)理解中心对称图形与轴对称图形的区别。
(2)能够灵活运用中心对称图形的性质解决实际问题。
三、教学准备1. 教具准备:(1)中心对称图形的示例图片。
(2)中心对称图形的绘制工具(如剪刀、彩纸等)。
2. 教学环境:(1)教室环境布置,以便进行观察和操作活动。
四、教学过程1. 导入:(1)利用中心对称图形的示例图片,引导学生回顾中心对称图形的概念。
2. 新课导入:(1)介绍中心对称图形的性质和特点。
(2)引导学生进行观察和操作,发现中心对称图形的变换规律。
3. 实践操作:(1)学生分组进行中心对称图形的绘制和变换练习。
(2)教师巡回指导,解答学生的疑问。
4. 小组合作:(1)学生进行小组合作,共同解决一个中心对称图形的问题。
(2)各小组分享解题过程和答案,教师进行评价和指导。
五、作业布置1. 完成中心对称图形的绘制和变换练习题。
2. 选择一个中心对称图形的问题,进行解答和分享。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和合作能力。
2. 作业评价:检查学生完成作业的质量,包括答案的准确性、解题过程的清晰性以及创新性。
3. 学生自评和互评:鼓励学生进行自我评价和同伴评价,提高学生的自我认知和反思能力。
七、教学反思1. 学生对中心对称图形的理解和掌握程度如何?2. 教学方法和教学内容是否适合学生的学习需求?3. 如何改进教学策略,提高学生的学习兴趣和参与度?八、拓展活动1. 邀请相关领域的专家或企业代表,进行中心对称图形在实际应用中的讲座或展示。
中心对称图形复习课教案
中心对称图形复习课教案一、教学目标1. 知识与技能:(1)能够识别和理解中心对称图形的概念。
(2)能够运用中心对称图形的性质解决一些简单的问题。
(3)能够画出给定中心对称图形的一种或多种对称图形。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力和抽象思维能力。
(2)培养学生运用中心对称图形的性质解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对中心对称图形的兴趣,培养学生的审美情趣。
(2)培养学生独立思考、合作交流的学习习惯,提高学生的团队协作能力。
二、教学内容1. 中心对称图形的概念及其性质。
2. 中心对称图形与轴对称图形的区别与联系。
3. 运用中心对称图形的性质解决实际问题。
三、教学重点与难点1. 教学重点:(1)中心对称图形的概念及其性质。
(2)运用中心对称图形的性质解决实际问题。
2. 教学难点:(1)中心对称图形与轴对称图形的区别与联系。
(2)如何运用中心对称图形的性质解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究中心对称图形的性质。
2. 利用多媒体辅助教学,直观展示中心对称图形的特点。
3. 组织学生进行小组讨论,培养学生的团队协作能力。
4. 创设实践环节,让学生动手操作,提高学生的实践能力。
五、教学过程1. 导入新课:(1)复习轴对称图形的概念及其性质。
(2)提问:轴对称图形与中心对称图形有什么区别与联系?2. 探究中心对称图形的概念及其性质:(1)引导学生观察和操作,让学生体会中心对称图形的定义。
(2)引导学生发现中心对称图形的性质,如:对称中心、对称轴等。
3. 运用中心对称图形的性质解决实际问题:(1)出示例题,让学生独立解决。
(2)组织学生进行小组讨论,分享解题思路和解题方法。
4. 巩固练习:(1)出示一些有关中心对称图形的练习题,让学生独立完成。
(2)教师对学生的练习情况进行讲解和指导。
5. 课堂小结:(1)总结本节课的中心对称图形的概念及其性质。
3.3中心对称教案
此外,我发现有些学生在面对具有挑战性的问题时,会倾向于依赖同伴或老师,而不是自己独立思考。这提醒我,在教学中要注重培养学生的独立解决问题的能力,鼓励他们在遇到困难时先尝试自己解决,然后再寻求帮助。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中心对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中心对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
举例:设计一些具有挑战性的几何作图问题,让学生尝试运用中心对称的性质进行解决,引导学生发现解决问题的方法。
(3)空间观念的培养:对于部分学生来说,空间观念较弱,难以在脑中形成中心对称图形的直观图像。
举例:采用直观教具、动态软件等辅助手段,帮助学生建立起中心对称图形的空间观念,提高空间想象力。
(4)几何直观的培养:学生在面对复杂的中心对称问题时,可能难以直接看出解题思路,需要培养几何直观。
(二)新课讲授(用时10分钟)
中心对称图形复习课教案
ABCD
5.(湖北省黄石市2005年中考题)下列图案(图5)中,既是轴对称图形,又是中心对称图形的是()
6. (安徽无为县2004年初中毕业题)某校计划建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案,你认为符合条件的是()
A.等边三角形B.等腰梯形C.菱形D.正五边形
A.第一张B.第二张C.第三张D.第四张
2. (山东临沂2004年中考题)下列五种图形:①平行四边形②矩形③菱形④正方形⑤等
边三角形。其中既是中心对称图形又是轴对称图形的共有种
3.下图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________。
①②③④⑤
布置
作业
课堂作业课后作业
下节课预习内容
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、小结
达标
检测
8.(湖南娄底2003年中考题)下列图案(图7)是中心对称图形,不是轴对称图形的是().
10.(绍兴市2004年中考题)图9中4张扑克牌如图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左数起是()
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时年月日
课题
中心对称与中心对称图形(复习课)
教学模式
教学
目标(认知技能
情感)
经历观察、操作、思考、讨论等数学活动,通过具体实例认识中心对称,探索中心对称的性质
认识中心对称图形,探索中心对称图形的性质
教学重难点
第三章中心对称图形一全章教案
课题3.1 图形的旋转教学目标⒈经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
教学重点⒈旋转图形的性质⒉旋转图形的画法教学难点旋转图形的画法教学过程1.创设情境日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。
提出问题:⑴上述情境中的旋转现象有什么共同的特征?⑵生活还有类似的例子吗?2.探索活动一⒈将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。
你发现了什么?⒉将绕点按顺时针方向旋转到的位置。
问题:度量∠AOA`、∠BOB`、∠COC`的度数,线段AO与A`O、BO与B`O、CO与C`O的长度。
你发现了什么?在学生看了与做了的基础上,得出概念。
旋转,旋转中心,旋转角【注意】对旋转概念的教学,要帮助学生理解如下两点:⑴“将一个图形绕着一个定点旋转一定的角度”意味着图形上的每一点同时都按相同的方式旋转相同的角度;⑵与平移的情况相同,“图形的旋转不改变图形的形状、大小”,这是对旋转概念的一个补充。
⒉通过操作活动,让学生讨论:三角形在旋转过程中哪些发生了改变?哪些没有发生改变?通过学生的讨论得出旋转的性质:旋转前、后的图形全等。
对应点到旋转中心的距离相等。
每一对对应点与旋转中心的连线所成的角彼此相等。
⒊练一练⑴ P75练习1⑵ P76习题3.1 第1题4、探索活动二旋转作图⒈已知线段AB和点O,按下面的方法画出线段AB绕点O按逆时针放向旋转1000后的图形:⒉在图3-4中,画出△ABC按顺时针方向绕点O旋转120后对应的三角形。
⒊练一练:练习25、课堂小结6、作业课 时3.2中心对称与中心对称图形(1)教学目标经历观察.操作.分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质. 教学重点⒈中心对称的涵义 ⒉中心对称的性质.⒊成中心对称的图形的画法 教学难点⒈中心对称的性质.⒉成中心对称的图形的画法 教学过程 1、情境引入利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转1800,能与另一个重合吗?2、新课讲授 ⒈ 引出概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。
中心对称图形教案
一、教案基本信息1. 教学科目:数学2. 教学年级:五年级3. 教学课时:2课时4. 教学目标:a. 让学生了解中心对称图形的概念及特点b. 培养学生识别和绘制中心对称图形的能力c. 培养学生的空间想象能力和逻辑思维能力二、教学重点与难点1. 教学重点:中心对称图形的概念、特点及绘制方法2. 教学难点:中心对称图形的识别和应用三、教学方法1. 采用直观演示法,让学生通过观察实物和图形,了解中心对称图形的概念及特点。
2. 采用实践操作法,让学生动手绘制中心对称图形,提高学生的实践能力。
3. 采用问题引导法,引导学生思考和探讨中心对称图形的相关问题,培养学生的逻辑思维能力。
四、教学准备1. 教学课件:中心对称图形的图片、实例等2. 教学道具:正方形、圆形等图形3. 学生用具:画图工具、练习本等五、教学过程1. 导入:通过展示一些生活中的中心对称图形,如剪刀、时钟等,引导学生关注中心对称图形,激发学生的学习兴趣。
2. 新课导入:介绍中心对称图形的概念,引导学生认识中心对称图形的特点。
3. 实例讲解:通过展示不同类型的中心对称图形,如正方形、圆形等,引导学生了解中心对称图形的绘制方法。
4. 实践操作:让学生动手绘制中心对称图形,培养学生的实践能力。
5. 问题探讨:提出相关问题,引导学生思考和探讨中心对称图形的性质和应用。
7. 作业布置:布置一些有关中心对称图形的练习题,巩固所学知识。
六、教学反思在课后,对整个教学过程进行反思,分析学生的学习情况,掌握学生的掌握程度,并根据学生的实际反馈对教学方法和教学内容进行调整,以便更有效地促进学生的理解和应用。
七、课后作业1. 请学生绘制一个中心对称图形,并写一篇短文,解释其如何构成中心对称图形。
2. 找一找生活中的中心对称图形,并拍照记录,下节课分享。
八、单元测验在单元结束后,设计一份测验,以检验学生对中心对称图形的理解和掌握程度,测验应包括选择题、填空题和应用题等不同类型的题目。
初中数学苏科版八年级上第三章《中心对称图形》(一)--16教案
教学过程
教学活动内容个人主页
一、回顾、梳理本章所学内容:
1、旋转———图形的旋转————绕着某点旋转180°———中心对称、
中心对称图形;
(1)复习由一般旋转到图形的旋转,进一步理解旋转前后的图形全等,对
应点到旋转中心的距离相等;(2)由转动任意角度到转动180°的情形,培
养学生由一般到特殊的辨证观;(3)通过旋转使学生进一步明确中心对称
及中心对称图形的有关概念和性质.
2、已知:△ABC和一点O,画△ABC关于点O成中心对称的三角形;
(1)点O在△ABC外;
(2)点O与△ABC的一个顶点重合;
(3)点O是△ABC的一边BC的中点
通过画图:(1)进一步巩固中心对称的概念;(2)通过本题,使学生进一
步掌握画一个图形关于某点成中心对称的画法——关键是找对称点;(3)
从一般到特殊画对称三角形;(4)通过画对称三角形,使学生进一步理解
平行四边形是中心对称图形,对理解平行四边形的性质也有所帮助。
3、中心对称图形有:线段、平行四边形、(矩形、菱形、正方形等)圆等;
(1)通过在已学过的图形中寻找中心对称图形,使学生进一步明确中心对
称图形的特点;(2)认识平行四边形从一般到特殊的规律——条件越来越
多,而范围却越来越小;(3)应以学生讨论为主,让学生自己去体会。
二、回顾、思考本章所学内容所渗透的数学思想方法:
1、四边形——平行四边形——矩形——菱形——正方形之间的关
系:
(1)范围及关系
教学反思。
八年级数学上册第三章中心对称图形教案新人教版
年级学科课题《第三章中心对称图形》教案新人教版教学目标1.复习旋转的性质,探索图形之间的变换关系。
2.复习平行四边形、矩形、菱形、正方形的概念、性质和判定。
3.复习三角形中位线、梯形中位线的性质。
4.复习平面图形的镶嵌知识。
重难点学生应用知识解决问题的综合能力的培养。
课时1课时时间教学过程:一知识点归纳:1 旋转的三要素:----------------,---------------,------------------。
2 旋转的性质:--------------------------------------------------------------------------------------------3 成中心对称的两个图形,对称点连线都--------------------------------------------------。
4 轴对称图形和中心对称图形的判别--------------------------------------------------------。
5 平行四边形的定义,性质,判定分别是什么?6 矩形,菱形,正方形的定义,性质,判定分别是什么?各图形之间关系如图:7 三角形的中位线的性质是----------------------------------------------。
中点三角形的周长,面积与原来的三角形的周长,面积之间的关系:------------------。
8 梯形中位线的性质是--------------------------------------------------.中点四边形的形状与原四边形的--------------有关系。
关系如下图:原图形对角线的关系中点四边形的形状 无关系平行四边形 相等(如:等腰梯形,矩形)菱形 垂直(如:菱形)矩形 垂直且相等(如:正方形)正方形 9、镶嵌原理正n 边形的每个内角为︒⨯-180)2(n n ,要求m 个正n 边形各有一个内角拼于一点,恰好覆盖地面,这样有︒=⨯-⨯︒360180)2(nn m ,由此导出:)2(42)2(2-+=-=n n n m ,而n m ,为整数,所以n 只能为3,4,6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷
阜宁县陈集中学八年级数学复习题
第1课时 中心对称与中心对称图形
一、知识点:
1、图形的旋转;图形旋转的性质。
2、中心对称;中心对称的性质。
3、中心对称图形:
4、中心对称与中心对称图形之间的关系: 区别:
(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:
若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .
5、对比轴对称图形与中心对称图形:
二、举例:
例1:如图,将点阵中的图形绕点O 按逆时针方向旋转900,画出旋转后的图形.
例2:画出将ΔABC 绕点O 按顺时针方向旋转180°后的对应三角形。
例3:如图,已知ΔABC 是直角三角形,
BC 为斜边。
若AP=3,将ΔABP 绕点A 逆时针旋转后,能与ΔACP ′重合,求PP ′的长。
例4:已知:如图,在△ABC 中,∠BAC=1200,以BC
为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,若AB=3,AC=2,求∠BAD 的度数与AD 的长.
例6:如图,直线l 1⊥l 2,垂足为O ,点A 1与点A 关于直线l 1对称,点A 2与点A 关于直线l 2对称。
点A1与点A2有怎样的对称关系?你能说明理由吗?
4、如图是一个平行四边形土地ABCD ,后来在其边缘挖了一个小平行四边形水塘DFGH ,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留
作图痕迹),简要说明理由.
第2课时 平行四边形
一、知识点:
1、平行四边形的定义:
·O C
B
C
B
B
B
数学试卷
2组对边分别平行的四边形叫做平行四边形。
记作:□ABCD ,读作平行四边形ABCD.
平行四边形是中心对称图形,对角线的交点是它的对称中心。
2、平行四边形的性质:
①平行四边形的对边平行; ②平行四边形的对边相等; ③平行四边形的对角相等; ④平行四边形的对角线互相平分。
3、平行四边形的判定:
①2组对边分别平行的四边形是平行四边形; ②2组对边分别相等的四边形是平行四边形; ③2组对角分别相等的四边形是平行四边形; ④对角线互相平分的四边形是平行四边形; ⑤一组对边平行且相等的四边形是平行四边形。
二、举例:
例1:如图,□ABCD 中,E 、F 分别是BC 和AD 边上的点,且BE=DF ,请说明AE 与CF 的关系,并说明理由。
例2:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线与AD 、BC 分别相交于点E 、F 。
试探求OE 与OF 是否相等,并且说明理由。
例3:如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,四边形AECF 是平行四边形吗?为什么?
例4:如图,在□ABCD 中,点E 、F 在AC 上,且AF=CE ,点G 、H 分别在AB 、CD 上,且AG=CH ,
AC 与GH 相交于点O ,
试说明:(1)EG ∥FH ,(2)GH 、EF 互相平分。
例5:如图,在平行四边形ABCD 中,点E 在AC 上,AE=2EC ,点F 在AB 上,BF=2AF ,如果△BEF 的面积为2cm 2,求平行四边形ABCD 的面积。
例6:在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?
例7:已知:如图,分别以△ABC 的三边为其中一边,在BC 的同侧作三个等边三角形:△ABD 、△BCE 、△ACF 。
求证:AE 、DF 互相平分。
第3、4课时 矩形、菱形、正方形
D
Q C
数学试卷
C
E
F
一、知识点:
1、矩形的定义:
2、矩形的性质:
3、矩形的判定:
4、菱形的定义:
5、菱形的性质:
6、菱形的判定:
7、菱形的面积:
8、正方形的定义:9、正方形的性质:10、正方形的判定:
二、举例:
例1:如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°。
(1)求对角线AC的长;(2)求矩形ABCD的周长
例2:如图,在矩形ABCD中,CE⊥BD,E为垂足,∠DCE:∠ECB=3:1。
求∠ACE的度数。
例3:如图,在矩形ABCD中,点E在AD上,EC平分∠BED。
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠ABE=45°,求BC的长
例4:如图,平行四边形ABCD中,4个内角平分线围成的四边形PQRS是矩形吗?说说你的理由。
例5:已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=1:2,对角线AC、BD相交于点O,求
AC的长及菱形的面积。
例6:如图,在四边形ABCD中,AD∥BC,对角线AC的垂直平分线与边AD、BC分别相交于点E、F。
四边形AFCE是菱形吗?为什么?
例7:如图,在⊿ABC中,∠C=90°,∠BAC、∠ABC的角平分线交于点D,
DE⊥BC于E,DF⊥AC于F。
问四边形CFDE是正方形吗?请说明理由。
例8:如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接
AF、BD.
⑴AF与BD是否相等?为什么?
⑵如果点C在线段AB的延长线上,⑴中的结论是否成立?请作图,并说
明理由.
三、作业:
1、如图,矩形ABCD中,AE平分∠BAD,交BC于E,对角线AC、BD交于O,若∠OAE=15°。
(1)
试说明:OB=BE;(2)求∠BOE的度数.
2、如图,将矩形
ABCD沿着直线BD折叠使点C落在点C'处,BC'交AD于E,AD=8
,AB=4,求△
BED的面积。
D
C
D
C
C
A
D
C
B E
C′
E D
C
B
A
数学试卷
3、已知:如图,△ABC 中,∠ACB=90°,CD 是高,AE 是角平分线,交CD 于点F ,
EG ⊥AB ,G 为垂足。
试说明四边形CEGF 是菱形。
第5、6课时 三角形、梯形的中位线
一、知识点:
1、三角形的中位线:三角形中位线的性质
2、梯形的中位线:⑵梯形中位线的性质
二、举例:
例1:如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、、DA 的中点。
四边形EFGH 是平行四边形吗?为什么?
例2:如图,矩形ABCD 的对角线相交于点O ,点E 、F 、G 、H 分别是OA 、OB 、OC 、DO 的中点,四边形EFGH 是矩形吗?为什么?
例3:已知:如图,AD 是△ABC 的中线,E 、G 分别是AB 、AC 的中点,GF ∥AD 交ED 的延长线于点F 。
⑴猜想:EF 与AC 有怎样的关系? ⑵试证明你的猜想。
例4:已知在△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 为BC 的中点。
试说明DM =
2
1
AB 例5:等腰梯形ABCD 中,AD ∥BC ,EF 为中位线,EF=18,AC ⊥AB ,∠B=60°,求梯形ABCD 的周长及面积。
例6、已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC=90°,E 是梯形外一点,且AE=BE ,F 是CD 的
中点。
试说明:EF ∥BC 。
例7:如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是两条对角线BD 、AC 的中点,试说明:MN ∥BC 且MN =
2
1
(BC -AD)。
例8:已知:如图,四边形ABCD 为等腰梯形,AD ∥BC ,AC 、BD 相交于点O ,点P 、Q 、R 分别为AO 、BO 、CD 的中点,且∠AOD =60°。
试判断ΔPQR 的形状,并说明理由?
三、作业:
1、已知:如图,在△ABC 中,D 是AB 的中点,DE ∥BC 交AC 于点E 。
试说明:DE=2
1
BC 。
2、已知:如图,在△ABC 中,中线BD 、CE 相交于点O ,F 、G 分别是OB 、OC 的中点。
试说明:四边形DEFG 是平行四边形。
3、已知:如图矩形ABCD 的对角线相交于点O ,E 、F 分别是OA 、OD 的中点。
试说明:四边形CBEF 是等腰梯形。
4、已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 、F 、M 、N 分别是AD 、BC 、BD 、AC 的中点。
试说明:EF 与MN 互相垂直平分。
B
H G
F E
o D
C B
A
D
M
D C
B
A N
C
A O
B
D
Q P R
数学试卷。