不等式的基本性质与证明

合集下载

高中数学知识点精讲精析 不等式的基本性质

高中数学知识点精讲精析 不等式的基本性质

4.1不等式的基本性质1.不等式的基本性质: ①对称性:a>b b<a; ②传递性:a>b,b>c a>c; ③可加性:a>b a+c>b+c; ④加法法则:a>b,c>d a+c>b+d; ⑤可乘性:a>b,c>0 ac>bc; a>b,c<0 ac<bc; ⑥乘法法则:a>b>0,c>d>0 ac>bd;⑦倒数法则:a>b,ab>0 ; ⑧乘方法则:a>b>0 an>bn;⑨开方法则:a>b>0 ;⑩绝对值不等式的性质: |a|-|b|≤|a+b|≤|a|+|b| 2.基本不等式(以下√表示根号,^表示指数)如果a 、b 都为实数,那么a 平方+b 平方≥2ab,当且仅当a=b 时等号成立 证明如下: ∵(a-b)^2≥0 ∴a^2+b^2-2ab≥0 ∴a^2+b^2≥2ab如果a 、b 、c 都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c 时等号成立 如果a 、b 都是正数,那么(a+b )/2 ≥√ab ,当且仅当a=b 时等号成立。

(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b 时等号成立。

)和定积最大:当a+b=S 时,ab≤S^2/4(a=b 取等) 积定和最小:当ab=P 是,a+b≥2√P(a=b 取等)ba 11<⇒nn b a >⇒均值不等式:如果a,b 都为正数,那么√(( a 平方+b 平方)/2)≥(a+b )/2 ≥√ab≥2/(1/a+1/b)(当且仅当a=b 时等号成立。

)( 其中√(( a 平方+b 平方)/2)叫正数a,b 的平方平均数也叫正数a,b 的加权平均数;(a+b )/2叫正数a,b 的算数平均数;√ab 正数a,b 的几何平均数;2/(1/a+1/b)叫正数a,b 的调和平均数。

高中数学 第一章 不等式的基本性质和证明不等式的基本

高中数学 第一章 不等式的基本性质和证明不等式的基本

1.5.2 综合法和分析法[对应学生用书P19][读教材·填要点]1.综合法从命题的已知条件出发,利用公理、已知的定义及定理,逐步推导,从而最后导出要证明的命题,这种方法称为综合法.2.分析法从需要证明的命题出发,分析使这个命题成立的充分条件,利用已知的一些定理,逐步探索,最后达到命题所给出的条件(或者一个已证明过的定理或一个明显的事实),这种证明方法称为分析法.[小问题·大思维]1.如何理解分析法寻找的是使要证命题成立的充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A 只需证B ”表示,说明只要B 成立,就一定有A 成立,所以B 必须是A 的充分条件才行,当然B 是A 的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A ⇒B 1⇒B 2⇒…⇒B n ⇒B (逐步推演不等式成立的必要条件), 即由条件出发推导出所要证明的不等式成立.分析法:B ⇐B 1⇐B 2⇐…⇐B n ⇐A (步步寻求不等式成立的充分条件), 总之,综合法与分析法是对立统一的两种方法.[对应学生用书P19][例1] 已知a ,b ,c 均为正实数,且互不相等,又abc =1. 求证:a +b +c <1a +1b +1c.[思路点拨] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c 2实现;也可以由右到左证明,按上述思路逆向证明即可.[精解详析] 法一:∵a ,b ,c 是不等正数,且abc =1,∴a +b +c =1bc+1ac+1ab <1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c. 法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c =a +b+c .(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ).②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,(a +b2)2≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +a b≥2.④a 2+b 2+c 2≥ab +bc+ca .1.已知a >0,b >0,求证a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0, 所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0, 所以b (c 2+a 2)≥2abc .因此a (b 2+c 2)+b (c 2+a 2)≥4abc .[例2] a ,b 均为正实数,且2c >a +b .求证:c-c2-ab<a<c+c2-ab.[思路点拨] 本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c2-ab<a-c<c2-ab,然后再证明.[精解详析] 要证c-c2-ab<a<c+c2-ab,只需证-c2-ab<a-c<c2-ab,即证|a-c|<c2-ab,两边平方得a2-2ac+c2<c2-ab,也即证a2+ab<2ac,即a(a+b)<2ac.∵a,b均为正实数,且a+b<2c,∴a(a+b)<2ac显然成立.∴原不等式成立.(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过平方将其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x>0,y>0,求证:(x2+y2)12>(x3+y3)13.证明:要证明(x2+y2)12>(x3+y3)13,只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3x2y4>2x3y3.∵x>0,y>0,∴x2y2>0.即证3x2+3y2>2xy.∵3x2+3y2>x2+y2≥2xy,∴3x2+3y2>2xy成立.∴(x2+y2)12>(x3+y3)13.[例3] 已知a ,b ,c 均为正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [思路点拨] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.[精解详析] 欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0. ∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立.(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明:法一:要证明1a -b +1b -c +1c -a>0, 只需要证明1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c, 1b -c >0,∴1a -b +1b -c >1c -a 成立. ∴1a -b +1b -c -1c -a>0成立. 法二:若令a -b =x ,b -c =y ,则a -c =x +y , ∵a >b >c ,∴x >0,y >0,证明1a -b +1b -c +1c -a>0, 只要证明:1x +1y -1x +y >0,也就是要证:y x +y +x x +y -xyxy x+y>0,即证:x 2+y 2+xyxy x +y>0,∵x >0,y >0,∴x +y >0,x 2+y 2+xy >0, ∴上式成立,即1x +1y -1x +y >0,故1a -b +1b -c +1c -a>0.[对应学生用书P20]一、选择题1.设a ,b 均为正实数,A =a +b ,B =a +b ,则A 、B 的大小关系是( ) A .A ≥B B .A ≤B C .A >BD .A <B解析:用综合法(a +b )2=a +2ab +b , 所以A 2-B 2>0. 又A >0,B >0, ∴A >B . 答案:C2.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:由已知得3x >x +y +z =0, 3z <x +y +z =0,∴x >0,z <0. 由⎩⎪⎨⎪⎧x >0,y >z得xy >xz .答案:C3.若a >0,b >0,下列不等式中不成立的是( ) A.b a +a b≥2B .a 2+b 2≥2ab C.b 2a +a 2b≥a +bD.1a +1b ≥2+2a +b解析:由b a∈(0,+∞)且a b ∈(0,+∞),得b a +a b ≥2b a ·ab,所以A 成立,B 显然成立,不等式C 可变形为a 3+b 3≥a 2b +ab 2⇔(a 2-b 2)(a -b )≥0.答案:D4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >PD .P ≤S <2P解析:∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca , 即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2. 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ).即S <2P . 答案:D 二、填空题5.已知a ,b ,c ∈R +,则1a +1b +1c与1ab+1bc +1ac的大小关系是________________.解析:因为1a +1b ≥21ab ,1b +1c≥21bc ,1a +1c≥21ab,三式相加可得1a +1b +1c≥1ab+1bc+1ac.答案:1a +1b +1c≥1ab +1bc +1ac6.若x >0,y >0,且5x +7y =20,则xy 的最大值是________________. 解析:xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝ ⎛⎭⎪⎫2022=207.当且仅当5x =7y =10即x =2,y =107时取等号.答案:2077.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b 2ab ,即R =2aba +b,显然P ≥Q ,又2ab a +b ≤2ab2ab=ab ,∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R 8.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,则λ的取值范围是________. 解析:不等式可化为1a -b +1b -c >λa -c. ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -c a -b +a -cb -c恒成立. ∵a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -cb -c =2+b -c a -b +a -bb -c≥2+2=4. ∴λ<4. 答案:(-∞,4) 三、解答题9.a ,b ,c 为互不相等的正数,且abc =1. 求证:1a +1b +1c>a +b +c .证明:法一:由左式推证右式∵abc =1,且a ,b ,c 为互不相等的正数,∴1a +1b +1c =bc +ac +ab =bc +ac 2+ac +ab 2+ab +bc 2>bc ·ac +ac ·ab +ab ·bc (基本不等式)=c +a +b . ∴1a +1b +1c>a +b +c .法二:由右式推证左式∵a ,b ,c 为互不相等的正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2(基本不等式) =1a +1b +1c .∴1a +1b +1c>a +b +c .10.已知a >b >0,求证:a -b28a <a +b2-ab <a -b28b.证明:要证a -b28a <a +b2-ab <a -b28b,只要证a -b24a<a +b -2ab <a -b24b,即证⎝⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b2b, 即证a +b a <2<a +bb, 即证1+b a <2<1+a b, 即证b a<1<ab 成立. 因为a >b >0,所以a b>1,b a<1,故ba <1,ab>1成立. 所以有a -b28a <a +b2-ab <a -b28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有ab =a +b2-a 2+b 22=-c2--c22=c 2-c .①由a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1.∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab =c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍).∴-13<c <0,即1<a +b <43.。

不等式的四条基本性质

不等式的四条基本性质

不等式的四条基本性质
不等式的四条基本性质是数学中一种重要的概念,它是解决方程的基础,是一门数学的基本知识。

归纳一下,不等式的四条基本性质包括:转置法则、结合率、分配法则、乘法法则。

首先,不等式的转置法则表明当两个不等式之间没有任何改动时,它们保持其相等状态。

例如,对于x>y,则y<x恒成立。

其次,不等式的结合率表明将二元不等式(即只包含两个未知量的不等式)通过乘以一个正实数结合到一起,它不会改变不等式的解的乘法,即任何一个二元不等式的乘法都是它的解的结合率。

例如,若x>0,不论乘以多少正实数都会使x
的大小保持不变,最终仍然>0。

再次,不等式的分配法则表明,当将一个正实常数分别与不等式的两边相乘时,它将被均匀地分配到不等式的两边。

例如,我们如果将2x与3x分别乘以k,那么可以得到(2kx + 3kx)>0,原来的不等式不变,同时常数k也是均匀地分配到不等式的两边。

最后,不等式的乘法法则表明,当将一个变量和一个正实常数相乘时,不等式的大小状态将保持不变。

例如,当我们将一个变量x和c乘起来,x>0时,必然有cx>0,而x<0时,有cx<0,因此这条不等式的大小状态不变。

总的来说,不等式的四条基本性质是探究方程解的根基,由它们可以更进一步地求解数学方程,对学习数学解题技巧再次有所帮助。

2020高中数学 第1章 不等式的基本性质和证明的基本方法 1.5.1 比较法讲义 4-5

2020高中数学 第1章 不等式的基本性质和证明的基本方法 1.5.1 比较法讲义 4-5

1.5.1 比较法学习目标:1.理解比较法证明不等式的依据。

2.掌握利用比较法证明不等式的一般步骤.3。

通过学习比较法证明不等式,培养学生对转化思想的理解和应用.教材整理1 比较法的定义比较法证明不等式可分为作差比较法和作商比较法两种.(1)作差比较法要证明a〉b,只要证明a-b〉0;要证明a〈b,只要证明a-b<0.这种证明不等式的方法,叫做作差比较法.(2)作商比较法若a〉0,b>0,要证明a〉b,只要证明ab>1;要证明b>a,只要证明错误!〉1.这种证明不等式的方法,叫做作商比较法.教材整理2 比较法证明不等式的步骤比较法是证明不等式的基本方法之一,其步骤是先求差(商),然后变形,最终通过比较作判断.1.设t=a+2b,s=a+b2+1,则下列t与s的大小关系中正确的是( )A.t>s B.t≥sC.t<s D.t≤s[解析] s-t=(a+b2+1)-(a+2b)=(b-1)2≥0,∴s≥t.[答案] D2.已知P=错误!,Q=a2-a+1,那么P,Q的大小关系是( )A.P>0 B.P<QC.P≥Q D.P≤Q[解析]∵QP=(a2-a+1)(a2+a+1)=(a2+1)2-a2=a4+2a2+1-a2=a4+a2+1≥1.∴P≤Q.[答案]D作差比较法证明不等式a b a b ab a b[精彩点拨] 此不等式作差后是含有两个字母的二次式,既可配成平方和的形式,也可根据二次三项式的判别式确定符号.[自主解答]法一:化成几个平方和.∵a2+b2-ab-a-b+1=错误![(a-b)2+(a-1)2+(b-1)2]≥0,∴a2+b2+1≥ab+a+b.法二:a2+b2-ab-a-b+1=a2-(b+1)a+b2-b+1。

对于a的二次三项式,Δ=(b+1)2-4(b2-b+1)=-3(b-1)2≤0,∴a2-(b+1)a+b2-b+1≥0,故a2+b2+1≥ab+a+b。

不等式的性质与证明方法总结

不等式的性质与证明方法总结

不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。

不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。

本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。

一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。

这个性质是不等式推理的基础,可以用于简化证明过程。

2. 加法性:如果a < b,则a + c < b + c。

这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。

3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。

这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。

4. 对称性:如果a < b,则-b < -a。

这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。

二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。

2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。

均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。

3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。

3不等式的性质证明和基本不等式

3不等式的性质证明和基本不等式

3.分析法: 由结论到条件,注意格式规范→步
步可逆即充要
x Ex:已知:
y 0 ,比较:
x y x y

x x
2 2
y y
2 2
的大小.
Ex:比较
x
2
与 2 x 的大小。
1 a b 1 b c 1 a c
ab 2
Ex:已知 a
b c ,求证:

Ex:已知 a , b
R , a b , 求证: a b b ( a b ) a

( Ex:已知 a , b R , 求证:
a
2
1
)2 (

b
2
1
1
1
)2 a 2 b 2
b
a
Ex:已知
求证: lg
2
a,b,c R ,
lg b c 2

且不全相等
a c 2 lg a lg b lg c
2

且可推广:

a,b,c R ,
a b c 3


3
abc 仅 当 a b c 0时 取 等 号
n
且进一步:
ai R ,
a1 a 2 a n n
a1 a n
称作:n个正数的算术平均数不小于它的几何平均数 且变形为:
1 a,b
二、不等式的基本性质
(1)传递性:a
b,b c a c
a (2)加法单调性:
a (3)乘法单调性:
b a c b c
b, c 0 ac bc b, c d a c b d b 0, c d 0 ac bd

不等式的性质证明

不等式的性质证明

不等式的性质证明不等式是数学中常见的概念,它描述了两个数、两个算式或两个函数之间的大小关系。

在数学研究和实际问题中,不等式的性质具有重要的意义。

本文将深入探讨不等式的基本性质,并进行相应的证明。

一、不等式的基本性质1. 传递性:对于任意的实数a、b、c,若a < b,b < c,则有a < c。

即如果一个数小于另一个数,而另一个数又小于另一个数,那么第一个数一定小于第三个数。

证明:设a < b,b < c,用反证法。

假设a ≥ c,那么由于a < b,根据传递性得知b ≥ c,与b < c矛盾。

故假设不成立,得证。

2. 加法性:对于任意的实数a、b、c,若a < b,则有a + c < b + c。

即两个不等式的同侧同时加上一个相同的数,不等号的方向不变。

证明:设a < b,用反证法。

假设a + c ≥ b + c,那么由于a < b,根据传递性得知a + c < b + c,与假设矛盾。

故假设不成立,得证。

3. 乘法性:对于任意的实数a、b和正数c,若a < b且c > 0,则有ac < bc。

即两个不等式的同侧同时乘上一个正数,不等号的方向不变;若c < 0,则有ac > bc,即两个不等式的同侧同时乘上一个负数,不等号的方向反向。

证明:设a < b,用反证法。

假设ac ≥ bc,若c > 0,则由于a < b,根据乘法性得知ac < bc,与假设矛盾;若c < 0,则有ac > bc,同样与假设矛盾。

故假设不成立,得证。

二、不等式中的常见定理及证明1. 加法定理:对于任意的实数a,b和c,若a < b,则有a + c < b + c。

证明:设a < b,令d = b - a,根据传递性得知0 < d。

由于c > 0,根据乘法性可得0 < c × d。

不等式的基本性质有哪些

不等式的基本性质有哪些

不等式的基本性质有哪些基本性质:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

不等式的基本性质有哪些1不等式8个基本性质如果x>y,那么y<x;如果y<x,那么x>y;如果x>y,y>z;那么x>z;如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;如果x>y,z>0,那么xz>yz,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;如果x>y,z<0,那么xz<yz,即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;如果x>y,m>n,那么x+m>y+n;如果x>y>0,m>n>0,那么xm>yn;如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。

2不等式定理口诀解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图、建模、构造法。

3基本不等式两大技巧“1”的妙用。

题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。

如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

调整系数。

有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。

不等式的基本性质和证明的基本方法

不等式的基本性质和证明的基本方法
证明方法
通过构造平方和并利用非负性进行证明。
应用领域
在线性代数、函数分析和概率论中有广泛应用,如证明某些函数的可 积性等。
切比雪夫不等式
定义
对于任意两个实数序列,序列和的乘积小于或等于序列各项乘积 的和。
证明方法
通过排序后应用算术-几何平均不等式进行证明。
应用领域
在数论、概率论和统计学中有应用,如证明某些概率分布的性质等。
06
经典不等式介绍及其证明
算术-几何平均不等式
定义
对于所有非负实数,算术平均数永远大于或等于 几何平均数。
证明方法
通过数学归纳法或拉格朗日乘数法进行证明。
应用领域
在概率论、信息论和统计学中广泛应用,如证明 熵的最大值等。
柯西-施瓦茨不等式
定义
对于任意两个向量,它们的内积的绝对值小于或等于它们的模的乘 积。
数列的单调性
利用不等式的性质,可以判断数列的单调性,即数列是递增还是 递减。
数列的有界性
通过不等式的性质,可以证明数列的有界性,即数列的每一项都落 在某个区间内。
数学归纳法中的不等式证明
在数学归纳法中,经常需要利用不等式的性质进行证明,如证明某 个不等式对所有的自然数都成立。
05
证明不等式的基本策略
不等式在数学、物理、工程等领域都有广泛应用,研究不等式有 助于解决实际问题。
不等式的基本性质概述
01
传递性
02
可加性
03 可乘性
04
特殊性
对称性
05
如果a>b且b>c,则a>c。 如果a>b,则a+c>b+c。 如果a>b且c>0,则ac>bc。 任何数都大于负数,小于正数。 如果a=b,则b=a。

不等式基本性质和证明

不等式基本性质和证明

第一讲 不等式的基本性质与证明一、 知识点分析不等式概念:我们把含有不等号的式子叫做不等式。

不等式的基本性质:(1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性) (3)c b c a b a ±>±⇒>(4)d b c a d c b a +>+⇒>>,(同向相加性) (5)bc ac c b a >⇒>>0,.,bc ac c b a <⇒<>0,(6)bd ac d c b a >⇒>>>>0,0(同向相乘性) (7)a ﹥b ,ab ﹥0,a 1⇒﹤b1(倒数变向性) (8))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则),)1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)注:1、无同向相减性和同向相除性,且同向相乘性须正数2、性质(8)中,若n 为正奇数,则无须b a ,都大于零两个实数大小的比较:作差法 b a b a >⇔>-0;b a b a =⇔=-0;b a b a <⇔<-0作商法 若b a ,﹥0,则b a ﹥1a ⇔﹥b ;b a ﹤1a ⇔﹤b ;ba=1a ⇔=b不等式的证明方法: ①作差法②作商法③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n (放缩程度较小);⑶1(212221--=-+<=n n n n nn⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法二、 例题精选例1.⑴比较a 与b 的大小:a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3⑵设21x x <,比较1211x x -+与2221x x -+的大小⑶设0,0>>b a ,试比较a b b a b a b a 与的大小 例2.⑴已知y x x yx y x y x ---≤≤≤≤5,,2,51,322求的取值范围 ⑵已知y x y x y -≤-≤≤+≤2,51,3x 2求的取值范围例3. 判断下列命题A 是命题B 的什么条件 ⑴ A :x >3 B:x 1<31 ⑵ A :x <3 B :x 1>31 ⑶ A :x >y B :yx 11< ⑷ A :32>>y x 且 B:65>>+xy y x 且例4. 甲乙两人从A 地同时出发沿同一条路线步行到B 地,甲在前一半时间行走的速度为x ,后一半时间行走的速度为y ,乙用速度x 走完前半段路程,用速度y 走完后半段路程,若x ≠y ,试指出谁先到达B 地,并说明理由。

不等式的性质与证明方法

不等式的性质与证明方法

不等式的性质与证明方法不等式是数学中常见的一种数对关系,描述了数值之间的大小关系。

在不等式中,我们关注的是不同数值之间的相对大小,而不是它们的具体数值。

本文将介绍不等式的一些基本性质以及一些常用的证明方法。

一、不等式的性质1. 传递性在不等式中,如果a>b,且b>c,那么有a>c。

这个性质叫做不等式的传递性。

传递性是不等式证明中常用到的性质,可以通过多次使用传递性来推导出一些复杂的不等式。

2. 反身性在不等式中,对于任何一个数a,都有a≥a。

这个性质叫做不等式的反身性。

即一个数总是大于等于自身。

3. 反对称性在不等式中,如果a≥b且b≥a,那么有a=b。

这个性质叫做不等式的反对称性。

反对称性表示如果两个数既大于等于彼此又小于等于彼此,则这两个数应该相等。

4. 加法性和减法性在不等式中,如果a≥b,那么有a+c≥b+c;如果a≥b,那么有a-c≥b-c。

这个性质叫做不等式的加法性和减法性。

加法性和减法性表示在不等式两边同时加或减一个常数,原不等式的大小关系仍然成立。

5. 乘法性和除法性在不等式中,如果a≥b且c>0,那么有ac≥bc;如果a≥b且c<0,那么有ac≤bc。

这个性质叫做不等式的乘法性和除法性。

乘法性和除法性表示在不等式两边同时乘或除一个正数(或负数),原不等式的大小关系仍然成立,但需要注意,当乘或除一个负数时,不等号的方向会颠倒。

二、证明方法1. 直接证明法直接证明法是最常见的证明方法之一,也是最简单的一种方法。

这种方法通过对不等式进行一系列的推导和化简,最终直接得出结论。

例如,对于不等式a+b≥2√(ab),可以利用乘法性、加法性和反身性进行证明。

2. 对偶证明法对偶证明法是一种证明方法,通过将不等式中的符号进行翻转,然后利用已知的性质或定理进行证明。

例如,对于不等式a+b≥2√(ab),可以对偶后得到4ab≥(a+b)²,然后再利用乘法性和加法性进行证明。

简述不等式的4个基本性质

简述不等式的4个基本性质

简述不等式的4个基本性质不等式是数学中一类非常重要的结构,其中内容涉及多个知识点,为研究和应用这类结构提供了有效的框架。

其中,不等式的4个基本性质是很重要的,它们是:(1)不等式的交换性;(2)不等式的可分解性;(3)不等式的传递性;(4)不等式的联合性。

本文旨在阐述这4个基本性质,并通过实例阐释它们的作用。

首先,让我们讨论不等式的交换性。

它的定义是:对于任一不等式,如果其双边都是相同的,那么可以交换左右两边。

比如,a>b,b<c,那么有a>c的结果,即a>b,b<c的结果等价于a>c的结果。

交换性的作用是,当某一不等式的两边均有相同的运算符时,可以通过交换左右两边,得到一个不同的不等式,而其结果也是完全相同的。

其次,让我们讨论不等式的可分解性。

它的定义是:对于一个不等式,可以将其分解成几个不等式的乘积,且其中的乘法操作不会改变其结果。

比如,有一个不等式x>2,那么,可以将其分解成x+1>3和x-3>-1两个不等式的乘积,且两边乘积的结果是不变的。

可分解性的作用是,可以将一个复杂的不等式,分解成若干个相对简单的不等式,有效拆解复杂问题,达到简化分析过程的目的。

第三,让我们讨论不等式的传递性。

它的定义是:如果某一不等式的两边都有相同的运算符,并且有一个中间变量,那么这个不等式的结果可以从左到右或者从右到左传递。

比如,a>b,b>c,那么可以得到a>c的结果。

传递性的作用是,当某一不等式的两边均有相同的运算符,并且有一个中间变量时,可以以中间变量为准,从左到右或者从右到左传递这个不等式的结果,从而可以得到更精确的结果。

最后,让我们讨论不等式的联合性。

它的定义是:当不等式上有满足某一条件的两个变量时,可以联合这两个变量,形成一个更大的范围。

比如,x>2,y>3,那么有x和y同时大于2和3,即x、y>2、3。

联合性的作用是,当不等式上有满足某一条件的两个变量时,可以将其联合,得到一个更大的范围,从而可以获得更精确的结果。

不等式的性质与证明

不等式的性质与证明

∴ B>D
综上:C>A>B>D
本题我们采用了赋值法(特
殊值法),先行猜想,使问题得
以简化、明朗.注意赋值法是解
选择题、开放题等常用的方法,
它可将复杂问题简单化,是我们
常用的数学思想.
例2.设 分析:
,且
,试比较

的大小.
比较两个数的大小,可用“作差比较法”、“作商比较法”.
前者依靠 A-B 与 0 的关系判断 A,B 大小,而后者则靠
∴a<2b<0这个结论不一定成立, 因此,只有(B)中两个结论均不成立. ∴选(B)
5.(01-上海春)
设 a,b为实数,则 a>b>0 是 A.充分不必要条件 B.必要不充分条件 C.充要条件 ( )
D.不充分也不必要条件
分析:
有条件a>b>0,可推出 但从 , .
不一定能推出a>b>0,只能是 的充分不必要条件.
1.不等式的定义:
若 2.不等式的性质:
(1) (2) (3)



(对称性) (传递性) (加法不变性)
推论:若a>b,且c>d,则a+c>b+d(同向,可加性)
(4)
; (乘法单调性) 推论1:若a>b>0,且c>d>0,则ac>bd 推论2:若a>b>0,则 推论3:若a>b>0,则 ( ( ,且 n>1) ,且 n>1)
∴条件a>b>0只能定
∴选(A)
1.注意不等式的性质中左侧表示实数的运 性 质 , 右 式 反 映 的 是 实 数 的 大 小 顺 序 , 起 来 即 为 实 数 运 算 性 质 与 大 小 顺 序 之 间 关系.这是不等式一章的理论基础,是不 式性质的证明,证明不等式和解不等式的 要依据.

不等式及其性质与解法

不等式及其性质与解法

(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。

(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。

热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。

(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。

[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。

A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。

高中数学 第一章 不等式的基本性质和证明的基本方法 1

高中数学 第一章 不等式的基本性质和证明的基本方法 1

>
������ ������2+1
,
故正确;对于选项
D,当 c=0 时不正确.
答案:C
【做一做2-2】 下列命题中正确的有
.
①若a>b,则ac2>bc2;
②若
������ ������2
>
������ ������2
,
则a>b;
③若
a>b,ab≠0,则
1 ������
<
1 ������
;
④若 a>b,c>d,则 ac>bd;
C.
������ ������2+1
>
������ ������2+1
D.a|c|>b|c|
解析:对于选项A,还需有ab>0这个前提条件;对于选项B,当a,b都
为负数时不成立,或一正一负时可能不成立,如2>-3,但22>(-3)2不正
确;对于选项
C,由
1 ������2+1
>
0,a>b,可知
������ ������2+1
(3) 加(减) 如果 a>b,那么 a+c>b+c,即 a>b⇔a+c>b+c
(4)
乘(除)
如果 a>b,c>0,那么 ac>bc; 如果 a>b,c<0,那么 ac<bc
(5) 乘方 如果 a>b>0,那么 an>bn(n∈N*,且 n≥2)
(6) 开方 如果 a>b>0,那么������ ������ > ������ ������(n∈N*,且 n≥2)

不等式的四个基本性质

不等式的四个基本性质

不等式的四个基本性质
《不等式的四个基本性质》
不等式是数学中一个重要的概念,它是用来判断两个数大小关系的符号表达式,用於限定变量的一系列值范围,是数学中重要的研究问题,涉及到许多数学应用,如优化问题等。

一般而言,不等式的四个基本性质是指:互换律、结合律、抵消律和对称性。

首先,不等式的互换律指的是变量在不等式中的顺序不会造成结论的改变,也就是说如果“x > y”,那么“y < x”也是成立的,数学上就满足交换律,所以这也是
不等式的一个基本性质。

其次,不等式的结合律是指可以在不等式的右边或左边添加同号的数,而不会改变不等式的结果,也就是说,“x > y”,当把m+n(m和n为正数)添加到右边时,“x > y + m+n ”也同样成立,所以这也是不等式的一个基本性质。

此外,不等式的抵消律指的是在不等式式左右加上少量
同号的数,可以抵消掉它们,也就是将等式变成不等式。

比如,“x = y + m+n”时,可以令“x > y+m-n”成立,因此抵消律也是不等式的一个基本性质。

最后一个不等式的基本性质是对称性,指的是不等式可以将大于(>)和小于(<)符号进行互换,使得其结果改变,而不必改变数字部分。

如“x > 2”,可以将大
于号换成小于号,得“x < 2”,所以对称性也是不等
式的一个基本性质。

总之,不等式的四个基本性质分别是:互换律、结合律、抵消律和对称性,是在探究不等式时需要遵循的基本性质,是研究不等式的前提。

理解并熟练掌握这四个性质有利于解决更多复杂不等式。

不等式的性质与证明方法

不等式的性质与证明方法

不等式的性质与证明方法不等式是数学中常见的一种数值关系表达方式,它描述了数值之间的大小关系。

在数学的研究中,不等式具有重要的意义,它在许多领域中都得到了广泛的应用。

本文将介绍不等式的性质和证明方法,希望能够帮助读者更好地理解和应用不等式。

一、不等式的基本性质1. 传递性:如果 a > b,b > c,那么可以得出 a > c。

这是不等式的一种基本性质,也是比较大小关系的基础。

2. 对称性:如果 a > b,则有 b < a。

不等式的对称性使得我们可以在不改变大小关系的前提下,对不等式进行变换和操作。

3. 相加性:如果 a > b,则对任意的 c,a + c > b + c。

不等式的相加性允许我们在不等式的两边同时加上一个相同的数,不改变大小关系。

4. 相乘性:如果 a > b,且 c > 0,则有 ac > bc。

不等式的相乘性使我们能够在不等式的两边同时乘以一个正数,仍然保持大小关系不变。

二、不等式的常见证明方法1. 直接证明法:通过逐步推导和运算,从已知条件出发,逐步推导出要证明的不等式,直至推导出所要证明的结论。

这是一种简单直接的证明方法,常用于证明不等式的基本性质。

例子:证明对任意正整数 n,都有 n^2 + n > 2n。

证明:对于任意正整数 n,我们有n^2 + n = n(n + 1)。

由于 n 是正整数,所以 n + 1 > 1,因此 n(n + 1) > n。

又因为对于任意正整数 n,n > 2,所以 n > 2n。

因此,n(n + 1) > n > 2n,即 n^2 + n > 2n。

2. 反证法:假设要证明的不等式不成立,即假设不等式的否定成立,然后通过推导得到矛盾,从而推断出假设的不等式成立。

这是一种常用的证明方法,适用于复杂的不等式证明。

例子:证明当 x > 0 时,有 x^2 + 1 > 2x。

简述不等式的4个基本性质

简述不等式的4个基本性质

简述不等式的4个基本性质
不等式的基本性质:1、在一个区间上可导,在另一个区间上也可导;2、对于任何实数,都存在至少一个解析式;3、当不等式两边同时乘以或除以一个常数时,所得结果仍然是不等式。

4、如果有增根,那么它们互为相反数。

不等式的解题思路:首先要弄清楚该不等式左右两边到底是什么关系,因此必须从函数的角度考虑问题,即把不等式转化成一般形式,然后再利用各种方法进行求解。

由于不等号两边的关系较复杂,建议大家通过举例来理解和掌握。

在做题过程中,应注意分类讨论的作用,多联想一些与之有关的知识点,能起到事半功倍的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章
不等式的性质与证明
引入:
人与人的年龄大小、高矮胖瘦,物与物的形状结构等等都表现出不等关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

一、不等式的相关概念:不等式相关概念1
1.不等式的定义:
用不等号表示不等关系的式子

比较两数大小的方法、依据及步骤•2、两数在数轴上的表示:
在数轴上右边的点比左边的点表示的数大
(2)比较两式大小的方法:作差比较法
作商比较法理论根据步骤理论根据
步骤
3、(1)比较两式大小的
方法:
赋值法(代入法)
例1:已知,那么在这三个数中,最小的数是____,最大的数是
_______01,0<<-<b a 2,,a ab ab
三、例题分析:
解法1:特殊值法用于简单判断或填空题解法2:作差比较法
例2:(1)已知,则从小到
大的顺序是______________________0,1a b a b <<+=22
1
,,,2,2a b ab a b +三、例题分析:
特殊值法: 取b
b a ab a <+<<<2
221243
,41==b a
作差比较两数大小的依据b a b a a b a b a b a <⇔<-=⇔=->⇔>-0)3(
0201)()(
书本:第40页18题
的大小与(比较(
)4)(2)5)(3-+-+a a a a 解:)
5)3-+a a ((15
215
3522--=-+-=a a a a a )
4)(2-+a a (8
28
2422--=-+-=a a a a a
的大小
与(比较()4)(2)5)(3-+-+a a a a )
4)2()5)(3-+--+a a a a (()82(1522
2-----=a a a a 821522
2++---=a a a a 0
7<-=)
4)2()5)(3-+<-+a a a a (所以(
书本:第40页
19题的大小与,比较(已知1)102422+++≠x x x x 解:2
2)1+x ()1)122++=x x ((1224+++=x x x 1224++=x x
的大小
与,比较(已知1)102422+++≠x x x x )
((1-)12422+++x x x 1
12x 2424---++=x x x )
0(02≠>=x x )
(所以(1)12422++>+x x x
小结:小结1
作差比较两数大小的步骤
(1)作差;
(2)变形;(3)定号;
(4)下结论;
常用手段:配方法,因式分
解法
2
22)(2b a b ab a ±=+±完成填空:1、x 2-4x+___=(x-__)
2 2、x 2+12x+___=(x+__)
23、y 2-8y+___=(y-__)24、x 2+1/2x+___ =(x+___)
24236 61641/161/4知识准备
-4x=2xb 12x=2xb
思考:你所填写的b 、b 2与一次项
的系数有怎样的关系?
X(x+6)=1601662=-+x x 即怎样解?
?的流程怎样想一想解方程01662
=-+x x 01662=-+x x 移项
16
62=+x x 两边加上32
,使左边配成的形式
222b bx x ++2
2231636+=++x x 左边写成完全平方形式
25
32=+)(x 降次
5
3±=+x 5
353-=+=+x x ,8
221-==x x ,:得
小结:
作差比较大小(变形是关键)变形
常见形式:变形为常数;
一个常数与几
个平方和;
几个因式的积
常用手段:配方法,因式分
解法注:平方差,完全平方,立方和、差等公式的应用
判断两个实数a 与b 的大小,归结为判断它们的差a-b 的符号,从而归结为实数运算的符号法则,分三步进行:
作差比较两数大小的步骤
(1)作差;(2)变形;
(3)定号;
(4)下结论;常用手段:配方法,因式分
解法。

常见形式:变形为常数;
一个常数与几个平方和;几个因式的积。

相关文档
最新文档