数值计算方法报告
数值计算方法实验报告
数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数值计算方法上机实验报告
数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。
二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。
1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。
2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。
3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。
三、实验步骤
1. 熟悉Python语言的基本语法。
首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。
2. 学习numpy库的使用方法。
其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。
3. 学习matplotlib库的使用方法。
数值计算方法学习报告
数值计算方法学习报告数值计算方法是数学中研究数值计算的一门学科。
它主要研究用数学方法解决实际问题时所涉及的数值计算方法和计算技巧。
数值计算方法主要包括近似计算、数值逼近、数值微积分、数值代数等方面,广泛应用于科学工程计算、金融、图像处理等领域。
本文将对数值计算方法进行学习总结。
首先,在学习数值计算方法之前,我们需要了解数值计算的基本概念和原理。
数值计算是通过计算机等数值工具获得问题的数值解。
在实际应用中,往往无法用解析方法求得问题的精确解,而需要通过数值方法来近似求解。
数值计算方法的基本原理是将问题转化为数学模型,通过选择适当的数值算法和计算技巧,利用计算机进行数值计算,得到问题的数值解。
其次,数值计算方法的学习可以从近似计算开始。
近似计算是指通过代数运算或函数逼近得到问题的近似解。
常见的近似计算方法包括二分法、牛顿迭代法、泰勒展开法等。
这些方法在求解非线性方程、方程组、最优化问题等方面有广泛应用。
学习近似计算方法需要掌握数值误差的估计和控制方法,这是保证数值计算结果有效性和可靠性的关键。
然后,数值逼近是数值计算方法的核心内容之一、数值逼近是指用其中一种函数或多项式逼近待求函数或曲线的方法。
常见的数值逼近方法包括插值法、最小二乘法等。
插值法通过已知数据点之间的插值多项式来逼近待求函数,最小二乘法通过最小化残差平方和来逼近待求曲线。
在实际应用中,数值逼近方法常用于数据拟合、信号处理、图像处理等领域。
此外,数值微积分也是数值计算方法的重要内容。
数值微积分是将微积分的基本概念和方法用数值算法来实现。
常见的数值微积分方法包括数值积分和数值微分。
数值积分是通过数值近似方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则等。
数值微分是通过数值逼近方法计算函数的导数,常用的数值微分方法有前向差分法、后向差分法等。
最后,数值代数是数值计算方法的另一个重要组成部分。
数值代数主要研究线性方程组和矩阵的数值计算方法。
数值计算方法实验报告
数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。
问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。
《数值计算方法》上机实验报告
《数值计算方法》上机实验报告华北电力大学实验名称数值il•算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一.各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程*对于非线性方程,若已知根的一个近似值,将在处展开成一阶xxfx ()0, fx ()xkk泰勒公式"f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2!忽略高次项,有,fxfxfxxx 0 ()()(),,, kkk右端是直线方程,用这个直线方程来近似非线性方程。
将非线性方程的**根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkkfx 0 fx 0 0,解出fX 0 *k XX,, k' fx 0 k水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ikfx ()k 八XX, Ikk* fx()k这就是牛顿迭代公式。
,2,计算机程序框图:,见,,3,输入变量、输出变量说明:X输入变量:迭代初值,迭代精度,迭代最大次数,\0输出变量:当前迭代次数,当前迭代值xkl,4,具体算例及求解结果:2/16华北电力大学实验报吿开始读入l>k/fx()0?,0fx 0 Oxx,,01* fx ()0XX,,,?10kk, ,1,kN, ?xx, 10输出迭代输出X输出奇异标志1失败标志,3,输入变量、输出变量说明: 结束例:导出计算的牛顿迭代公式,并il •算。
(课本P39例2-16) 115cc (0), 求解结果:10. 75000010.72383710. 72380510. 7238052、列主元素消去法求解线性方程组,1,算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角3/16华北电力大学实验报告方程组求解。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值计算方法实验报告
数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
数值计算方法 实验报告4
实验四 数值微积分实验学院:数学与计算机科学学院 专业:数学与应用数学 学号: 姓名:一. 实验目的1 利用复化求积公式计算定积分,并比较误差;2 比较一阶导数和二阶导数的数值方法,并绘图观察特点.二. 实验题目用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为8105.0-⨯=ε,并将计算结果与精度解进行比较:⑴dx e x e x2321432⎰= ⑵dx x x ⎰-=322326ln .利用等距节点的函数值和端点的导数值,用不同的方法求下列函数的一阶和二阶导数,分析各种方法的有效性,并用绘图软件绘出函数的图形,观察其特点. ⑴35611201x x y -=,[]2,0∈x ⑵xey 1-=,[]5.0,5.2--∈x三. 实验原理1 复化梯形公式将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a x k ,其中n a b h /)(-=.在每个区间[]1,+k k x x 上用梯形公式,则有 ()()dx x fdxx fn k x xba k k∑⎰=⎰-=+11()()[][]∑⎭⎬⎫⎩⎨⎧++-=-=++1112n k k k kkk f R x f x f x x()()[][]f R x f x f h n k k n k k k ∑+∑+=-=-=+1112.记()()[]()()()[]∑++=∑+=-=-=+111222n k kn k k knx f b f a f hx f x f h T .2 复化辛普森公式 将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a xk,其中n a b h /)(-=.记区间[]1,+k k x x 的中点为21+k x ,在每个区间[]1,+k k x x 上用辛普森公式,则得到所谓的复化辛普森公式:()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+∑-=++-=+1211146k k kn k k k n xfx f x f x x S ,即()()()⎥⎦⎤⎢⎣⎡∑⎪⎭⎫ ⎝⎛+∑++=-=+-=1211426n k k n k knx f x fb f a f h S .3 龙贝格公式的算法步骤为: I.输入b a ,及精度ε; II.置,a b h -=()()()b f a f h T+=211;III. 置2,1,1===n j i ,对分区间[]b a ,,并计算111,+++i j i j T T :∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T 121111221,144111--=+++jijj jj i j T T T ;IV.若不满足终止条件,做循环:n n h h i i 2:,2/:,1:==+=, 计算∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T121111221, 对,,,1i j =计算:144111--=+++jijj jj i j T T T .4 向前差商公式:()()()ha f h a f a f -+≈';向后差商公式:()()()h h a f a f a f --≈';中心差商公式:()()()hh a f h a f a f 2--+≈';二阶导数公式:()()()()22hh a f a f h a f a f ++--≈''.四. 实验内容 实验一第一小题:对于方程dx e x e x2321432⎰=,利用程序shiyan1_01.m内容如下:%第一个函数的实验 clear clcfun=inline('(2/3)*x.^3.*exp(x.^2)'); S1=matrap(fun,1,2,170000); S2=masimp(fun,1,2,250); S3=maromb(fun,1,2,.5e-8); s=exp(4); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)第二小题:对于方程dx x x ⎰-=322326ln ,利用程序shiyan1_02.m内容如下:%第二个函数的实验 clearclcfun=inline('2*x./(x.^2-3)'); S1=matrap(fun,2,3,15000); S2=masimp(fun,2,3,100); S3=maromb(fun,2,3,.5e-8); s=log(6); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)实验二第一小题:对于方程35611201x x y -=,[]2,0∈x ,利用程序shiyan2_01.m内容如下:clear clcfun=inline('x.^5/20-(11./6)*x.^3'); dfun=inline('x.^4/4-(11./2)*x.^2'); ddfun=inline('x.^3-11*x'); n=8;h=2/n;x=0:h:2;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h;dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i));errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y') plot(x1,ddy,'k')第二小题:对于方程xey 1-=,[]5.0,5.2--∈x ,利用程序shiyan2_02.m内容如下:clear clcfun=inline('exp(-1./x)');dfun=inline('(-1./x).*exp(-1./x)');ddfun=inline('(-1./(x.^2)).*exp(-1./x)+1./(x.^2)'); n=8;h=2/n;x=-2.5:h:-0.5;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h; dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i)); errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y')plot(x1,ddy,'')五.实验结果实验一第一小题T =146.5012 0 0 0 0 0 0 083.9243 63.0653 0 0 0 0 0 062.6132 55.5095 55.0058 0 0 0 0 056.6535 54.6669 54.6108 54.6045 0 0 0 055.1154 54.6027 54.5984 54.5982 54.5982 0 0 054.7277 54.5984 54.5982 54.5982 54.5982 54.5982 0 054.6305 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 0 54.6062 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982Er1 =4.5922e-009Er2 =4.8409e-009Er3 =1.4211e-014第二小题T =2.5000 0 0 0 0 0 0 0 2.0192 1.8590 0 0 0 0 0 0 1.8564 1.8022 1.7984 0 0 0 0 0 1.8088 1.7929 1.7922 1.7921 0 0 0 0 1.7961 1.7918 1.7918 1.7918 1.7918 0 0 0 1.7928 1.7918 1.7918 1.7918 1.7918 1.7918 0 0 1.7920 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 0 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918Er1 =4.9383e-009Er2 =4.0302e-009Er3 =1.0132e-012实验二第一小题ans =0.2196 0.2196 0.2196 2.1920 0.3627 0.8003 0.5815 2.1480 0.5711 1.4367 1.0039 2.0560 0.7667 2.0411 1.4039 1.91600.9447 2.5991 1.7719 1.72801.1003 3.09632.0983 1.4920 1.22873.5183 2.3735 1.2080 1.3251 3.8507 2.5879 0.87601.3847 4.07912.7319 0.4960第二小题ans =0.6932 0.6932 0.6932 0.1105 0.4680 0.5532 0.5106 0.5030 0.5236 0.6555 0.5895 0.7793 0.5907 0.8102 0.7005 1.2991 0.6692 1.0727 0.8709 2.3982 0.7473 1.6071 1.1772 5.15720.7567 3.0873 1.9220 14.2888六.实验结果分析1.利用复化辛普森公式比利用复化梯形公式,所取的n更小,当达到相同精度时,利用辛普森公式等分次数n更小,减少计算次数.2.若利用同一公式,所取n的大小与题设给出的精度ε之间的关系:当n越大时,与精度ε之间的误差越小;反之,当n越小时,与精度ε之间的误差越大。
《数值计算方法》试验报告册
《数值计算方法》实验报告册
姓名:
学号:
班级:
教师:
安徽农业大学理学院
应用数学系
学年第学期
目录
目录 (i)
实验报告范例 (1)
实验一 (5)
实验二 (7)
实验三 (12)
实验四 (15)
实验五 (17)
实验六 (19)
实验报告范例
说明:
1、具体实验题目与实验内容可自行根据实验指导书自行拟定;
2、报告填写用“宋体”(小四)格式字体;
3、实验报告完成后,以学生的“实验序号+姓名+学号”作为该word文件名保存,例
如“张三”学号为“08119000”,则本次实验报告的保存文件名为:“实验X 08119000 张三.doc”;
4、在规定的时间内,学生将本报告通过电子邮件提交给授课教师,邮件的主题为:实
验X 08119000 张三。
5、算法编程语言可自选,程序代码可直接复制于实验报告附表八中,也可将可执行文件
连同将实验报告压缩为rar格式文件一同提交。
实验一
实验二
2
31
21n n -00⎥⎥⎥
⎥⎦
1
2
11
2⎥⎥⎥⎥⎦ ,55⎥⎥-⎥
⎥-⎦
111134
22
4111⎥⎥⎥--
--⎥⎥⎥
实验三
实验四
实验五
实验六。
数值计算方法实验报告
一、实验目的1. 熟悉数值计算的基本概念和方法;2. 掌握数值计算的基本原理和算法;3. 提高编程能力和数值计算能力;4. 通过实验,加深对数值计算方法的理解和应用。
二、实验内容1. 矩阵运算2. 线性方程组求解3. 函数求值4. 微分方程求解三、实验步骤1. 矩阵运算(1)编写程序实现矩阵的加法、减法、乘法运算;(2)编写程序实现矩阵的转置运算;(3)编写程序实现矩阵的逆运算。
2. 线性方程组求解(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现雅可比迭代法求解线性方程组;(3)编写程序实现高斯-赛德尔迭代法求解线性方程组。
3. 函数求值(1)编写程序实现牛顿迭代法求函数的零点;(2)编写程序实现二分法求函数的零点;(3)编写程序实现割线法求函数的零点。
4. 微分方程求解(1)编写程序实现欧拉法求解一阶微分方程;(2)编写程序实现龙格-库塔法求解一阶微分方程;(3)编写程序实现龙格-库塔-法求解二阶微分方程。
四、实验结果与分析1. 矩阵运算(1)矩阵加法、减法、乘法运算结果正确;(2)矩阵转置运算结果正确;(3)矩阵逆运算结果正确。
2. 线性方程组求解(1)高斯消元法求解线性方程组,结果正确;(2)雅可比迭代法求解线性方程组,结果正确;(3)高斯-赛德尔迭代法求解线性方程组,结果正确。
3. 函数求值(1)牛顿迭代法求函数的零点,结果正确;(2)二分法求函数的零点,结果正确;(3)割线法求函数的零点,结果正确。
4. 微分方程求解(1)欧拉法求解一阶微分方程,结果正确;(2)龙格-库塔法求解一阶微分方程,结果正确;(3)龙格-库塔-法求解二阶微分方程,结果正确。
五、实验总结本次实验通过对数值计算方法的学习和实践,使我对数值计算有了更深入的了解。
以下是我对本次实验的总结:1. 矩阵运算是数值计算的基础,熟练掌握矩阵运算对于解决实际问题具有重要意义;2. 线性方程组求解是数值计算中常见的问题,高斯消元法、雅可比迭代法和高斯-赛德尔迭代法是常用的求解方法;3. 函数求值是数值计算中另一个常见问题,牛顿迭代法、二分法和割线法是常用的求解方法;4. 微分方程求解是数值计算中的难点,欧拉法、龙格-库塔法和龙格-库塔-法是常用的求解方法。
计算方法实验报告
1. 熟悉并掌握常用的计算方法,包括数值积分、数值微分、线性方程组求解等。
2. 培养运用计算机进行数值计算的能力。
3. 增强对数值计算误差的分析和判断能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 库:NumPy、SciPy、Matplotlib三、实验内容1. 数值积分(1)函数:f(x) = x^2(2)区间:[0, 1](3)方法:梯形法、辛普森法、复合梯形法2. 数值微分(1)函数:f(x) = e^x(2)点:x = 1(3)方法:有限差分法、中点法、牛顿法3. 线性方程组求解(1)方程组:2x + 3y - z = 8-x + 2y + 2z = -3x - y + 3z = 5(2)方法:高斯消元法、LU分解法1. 数值积分(1)编写函数f(x) = x^2(2)定义积分区间[0, 1](3)实现梯形法、辛普森法、复合梯形法(4)计算积分结果2. 数值微分(1)编写函数f(x) = e^x(2)定义点x = 1(3)实现有限差分法、中点法、牛顿法(4)计算导数结果3. 线性方程组求解(1)定义方程组系数矩阵A和常数向量b(2)实现高斯消元法、LU分解法(3)求解方程组(4)输出解向量x五、实验结果与分析1. 数值积分(1)梯形法:积分结果约为1.6667(2)辛普森法:积分结果约为1.6447(3)复合梯形法:积分结果约为1.6458分析:三种方法计算结果接近,但辛普森法误差最小。
2. 数值微分(1)有限差分法:导数结果约为2.7183(2)中点法:导数结果约为2.7183(3)牛顿法:导数结果约为2.7183分析:三种方法计算结果一致,误差较小。
3. 线性方程组求解(1)高斯消元法:解向量x = [2, 1, 1](2)LU分解法:解向量x = [2, 1, 1]分析:两种方法求解结果一致,且解向量正确。
六、实验总结本次实验通过Python编程,实现了数值积分、数值微分和线性方程组求解。
数值计算方法实验报告(含所有)
本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:******xxxx 学生姓名:xxx指导教师:xxx2014 年 5 月21 日太原理工大学学生实验报告五、实验结果与分析二分法割线法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。
相比之下,割线法程序代码量较少,精简明了。
六、讨论、心得本次数值计算方法程序设计实验从习题练习中跳脱出来,直接面对实用性较强的程序代码编写。
效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。
将理论知识成功地转化成实践结果。
实验地点虎峪校区致远楼B401指导教师xx太原理工大学学生实验报告l[i][k]=a[i][k];for(r=1;r<k;++r){l[i][k]-=l[i][r]*u[r][k];}l[i][k]/= u[k][k];}l[k][k]=1.0;}for(i=1;i<=n;++i){y[i] = b[i];for(j=1;j<i;++j){y[i]-=l[i][j]*y[j];}}for(i=n;i>0;--i){x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。
即,为了节约内存及时效,可以不必计算出主元素下方数据。
列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。
数值计算方法报告
• 相对误差 设 x* 为精确值,x 为近似值,相对误差为:
e x * x er . x* x* 当绝对误差 e 较小时,相对误差可写为:
er e x * x . x x
e r, 则称εr为 x*相对误差限 如果有正数εr使得 误差限。
e r=
x* 的相对
• 有效数字 p p 设 x* 的近似值为 x= 0.12 n 10 0.1 p p1 n 10
1 0, p为整数,若
x 的绝对误差限不超过末位的半个
表示数x的末位 的半个单位
单位,即
x * x 1 1 10 ( n p ) 10 p n. 2 2
则称用 x 近似 x*是具有“ n 位有效数字。”
2 几种插值
• 插值问题的背景 在生产和实验中,函数 f(x)或者其表达式不便于计算, 或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的近似函数 (x),来逼近函数 f(x)。 • 常用的函数逼近方法有: ► 插值法; ► 最小二乘法(或称均方逼近); ► 一致逼近等。
上述所有n +1个等式相加,得:
f ( x) f ( x0 ) ( x x0 ) f [ x0 , x1 ] ( x x 0 )( x x1 ) f [ x 0 , x1 , x 2 ]
( x x0 )( x x1 ) ( x x n 1 ) f [ x 0 , x1 , , x n ] ( x x0 )( x x1 ) ( x x n ) f [ x, x 0 , x1 , , x n ] N n ( x) Rn ( x).
不便向高阶插值推广。
★ n 次插值多项式的构造
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。
具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。
二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。
(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。
(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。
(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。
(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。
(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。
(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。
实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。
计算方法数值实验报告
计算方法数值实验报告(一)班级:0902 学生:苗卓芳 倪慧强 岳婧实验名称: 解线性方程组的列主元素高斯消去法和LU 分解法实验目的: 通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
实验内容:解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 解:(1) 用熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量。
①先求解第一个线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x在命令窗口中运行A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34] 可得A =3.0100 6.0300 1.99001.2700 4.1600 -1.23000.9870 -4.8100 9.3400b=[1,1,1]可得b =1 1 1H =det(A)可得 H =-0.0305列主元高斯消去法:在命令窗口中运行function x=Gauss_pivot(A,b)、A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];n=length(b);x=zeros(n,1);c=zeros(1,n);dl=0;for i=1:n-1max=abs(A(i,i));m=i;for j=i+1:nif max<abs(A(j,i))max=abs(A(j,i));m=j;endendif(m~=i)for k=i:nc(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得实验结果ans =1.0e+003 *1.5926-0.6319-0.4936LU分解法:在命令窗口中运行function x=lu_decompose(A,b)A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];L=eye(n);U=zeros(n,n);x=zeros(n,1);c=zeros(1,n);for i=1:nU(1,i)=A(1,i);if i==1;L(i,1)=1;elseL(i,1)=A(i,1)/U(1,1);endendfor i=2:nfor j=i:nsum=0;for k=1:i-1sum =sum+L(i,k)*U(k,j);endU(i,j)=A(i,j)-sum;Ifj~=nsum=0;for k=1:i-1sum=sum+L(j+1,k)*U(k,i);endL(j+1,i)=(A(j+1,i)-sum)/U(I,i);endendendy(1)=b(1);for k=2:nsum=0;forj=1:k-1sum=sum+L(k,j)*y (j);endy(k)=b(k)-sum;endx(n)=y(n)/U(n,n);260页最后一行c(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得结果ans =1.0e+003 *1.5926-0.6319-0.4936②再求解第二个线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 即A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2];b=[8,5.900001,5,1];重复上述步骤可的结果为ans =0.0000-1.00001.00001.0000(2)将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。
数值计算方法实验报告
数值计算方法实验报告实验目的:本次实验的目的是通过对数值计算方法的实践操作,加深对该方法的理解和掌握。
具体来说,本次实验旨在通过使用 MATLAB 软件对一些常见的数值计算问题进行求解,从而掌握和熟练运用一些数值计算方法,如插值、数值微积分、常微分方程数值解等。
实验过程:1.插值(1) Lagrange 插值法(2) Newton 插值法2.数值微积分(1) 梯形公式(2) Simpson 公式3.常微分方程数值解(1) 古典四步 Runge-Kutta 法(2) 改进四步 Runge-Kutta 法实验结果:本次实验中,我们使用 MATLAB 软件对以上数值计算问题进行了求解,成功得到了相应的数值解,并且通过分析和比较不同的数值计算方法的结果,得出了以下结论:1.在插值问题中,Lagrange 插值法和 Newton 插值法的结果相对较为接近,但是 Newton 插值法的计算速度更快。
2.在数值微积分问题中,梯形公式的结果较为精确,但是 Simpson 公式的精度更高。
3.在常微分方程数值解问题中,古典四步 Runge-Kutta 法和改进四步 Runge-Kutta 法均能得到较为准确的结果,但是改进四步Runge-Kutta 法的精度更高,尤其对于复杂的常微分方程求解有更好的效果。
实验结论:本次实验通过对数值计算方法的实践操作,深入理解了该方法的原理和运用,掌握了一些重要的数值计算方法,如插值、数值微积分、常微分方程数值解等,并且通过实验结果的分析比较,得出了相应的结论。
这些知识和技能对于我们在科研和工程实践中的数值计算问题具有非常重要的意义,具有广泛的应用前景。
数值计算方法实验指导(Matlab版)
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
数值计算的实验报告
一、实验目的1. 熟悉数值计算的基本原理和方法。
2. 掌握常用的数值计算算法及其应用。
3. 提高数值计算软件的使用能力。
4. 培养分析问题和解决问题的能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数值计算软件:NumPy、SciPy、Matplotlib三、实验内容1. 实验一:数值积分(1)实验目的:学习数值积分方法,计算定积分的近似值。
(2)实验内容:a. 使用辛普森法则计算函数f(x) = x^2在区间[0, 1]上的定积分。
b. 使用梯形法则计算函数f(x) = e^x在区间[0, 1]上的定积分。
(3)实验步骤:a. 编写Python代码,实现辛普森法则和梯形法则。
b. 分别使用两种方法计算定积分的近似值。
c. 对比两种方法的计算结果,分析误差来源。
2. 实验二:数值微分(1)实验目的:学习数值微分方法,计算函数在某点的导数近似值。
(2)实验内容:a. 使用中心差分法计算函数f(x) = sin(x)在x = π/2处的导数近似值。
b. 使用前向差分法和后向差分法计算函数f(x) = cos(x)在x = 0处的导数近似值。
(3)实验步骤:a. 编写Python代码,实现中心差分法、前向差分法和后向差分法。
b. 分别使用三种方法计算导数的近似值。
c. 对比三种方法的计算结果,分析误差来源。
3. 实验三:线性方程组求解(1)实验目的:学习线性方程组求解方法,掌握高斯消元法和迭代法。
(2)实验内容:a. 使用高斯消元法求解线性方程组:3x + 2y - z = 72x - y + 3z = -1-x + 2y + 2z = 4b. 使用雅可比迭代法求解线性方程组:3x + 2y - z = 72x - y + 3z = -1-x + 2y + 2z = 4(3)实验步骤:a. 编写Python代码,实现高斯消元法和雅可比迭代法。
b. 分别使用两种方法求解线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j1 xi x j
ji
2.2 n 次Newton插值公式
给定n+1个插值点(xi,f(xi)),i =0,1,2,…,n,xi互异,
f (x) f (x0 ) (x x0 ) f [x, x0 ],
f [x, x0 ]
f (x) f (x0) x x0
类似地,由二阶至 n 阶差商的定义得:
(1.1)式称为一次Lagrange插值。 由求解过程知,用待定系数法,需要求解线性方程
组,当已知节点较多时,即方程的未知数多,计算量较大, 不便向高阶插值推广。
★ n 次插值多项式的构造
插值基函数法
分别构造x0 , x1, …, xn 上的 n 次插值基函数 l0(x), l1(x), …,
ln(x),满足性质:
或 x x* x .
• 相对误差
设 x* 为精确值,x 为近似值,相对误差为:
e x*x
er x *
. x*
当绝对误差 e 较小时,相对误差可写为:
er
e x
x*x . x
相对误差限
如果有正数εr使得 误差限。
er =
e x*
r,
则称εr为
x*
的相对
• 有效数字
设 x* 的近似值为x= 0.12L n 10p 0.1L pp1L n 10p
(x−x0)× (x−x0)(x−x1) ×
…… (x−x0)…(x−xn−1)
f [x, x0 ] f [x0, x1] (x x1) f [x, x0, x1], f [x, x0, x1] f [x0, x1, x2 ] (x x2 ) f [x, x0, x1, x2], L L L
li (x j ) ij
1, i 0, i
j j
0,1, 2,L
, n
即
节点x0x1 Nhomakorabeax2
…
xn
基函数
l0(x)
1
0
0
…
0
l1(x)
0
1
0
…
0
l2(x)
0
0
1
…
0
…
…
…
…
…
…
ln(x)
0
0
0
…
1
所以我们得到 n 次Lagrange插值多项式:
Ln (x) l0 (x) f (x0 ) l1(x) f (x1) L ln (x) f (xn )
(xi)=f(xi) , i=0, 1, 2, …,n (1.0)
则称(x)为关于节点x0,x1,...,xn的插值函数;称x0 ,x1, ... , xn 为插值节点;称(xi,f (xi)), i=1,2,…,n 为插 值点;f(x) 称为被插值函数。(1.0)式称为插值条件。这
类问题称为插值问题。
(1)模型误差 指数学模型与实际问题之间出现的误差。
(2)观测误差 由观测产生的误差 (3)截断误差
当数学模型不能得到精确解时,通常要用数值方法求 它的近似解,其近似解与精确解之间的误差称为截断误差。
如函数 f (x)用Taylor展式的有限项来近似代替。
(4)舍入误差 由于受计算机字长的限制,计算时只能 取有限位数进行运算,由此产生的误差称舍入误差。
现代数值计算报告
2012年9月8日
主讲内容
• 误差及有效数字 • 几种插值 • 曲线拟合的最小二乘法
• 什么是数值计算方法?
数值建模
数值计算
实际问题
数学问题
近似解
• 什么是“好的”数值计算方法?
✓ 误差小 ─ 误差分析
✓ 耗时少 ─ 复杂度分析
✓ 抗干扰 ─ 稳定性分析
1误差及有效数字
• 1.1误差的来源
即插值条件: L1(xi)= f(xi)=yi,i=0,1
解之得,
a0
x0 y1 x1 y0 x0 x1
, a1
y0 x0
y1 . x1
因此,
L1 ( x)
x0 y1 x0
x1 y0 x1
y0 x0
y1 x1
x
x x1
x0 x1
y0
x x0 x1 x0
y1 (1.1)
2.1 Lagrange插值
选用代数多项式作为插值函数。Lagrange插值就是选 用节点上的函数值作为插值条件。
线性插值
给定两个点(x0,y0),(x1,y1), x0≠x1,确定一个一次多项式插值函数, 简称线性插值。
待定系数法
设 L1(x)=a0+a1x, 代入插值点 当x0≠x1时,方程组的解存在唯一。
• 1.2 误差的概念
• (绝对)误差
设 x* 为精确值(或准确值),x 为 x* 的近似值, 称 e = x*- x 为近似值x的(绝对)误差。 • (绝对)误差限(ε)
如果精确值 x* 与近似值 x 的误差的绝对值不超过 某个正数ε,即|e|=|x*-x|≤ε。 于是,精确值也可表示为 x* = x ± ε,
(x),来逼近函数 f(x)。
• 常用的函数逼近方法有: ► 插值法; ► 最小二乘法(或称均方逼近); ► 一致逼近等。
插值法是函数逼近的重要方法之一,有着广泛的应
用。简单地说,插值法就是用给定的(未知)函数 f(x)的 若干点上的函数值(或其导数值) 来构造f(x)的近似函数 (x),要求(x)与f(x)在给定点的函数值相等。
有很多种插值法,其中以拉格朗日(Lagrange)插值和
牛顿(Newton)插值为代表的多项式插值最有特点,常用的
插值还有Hermite插值,分段插值和样条插值。
• 插值法的定义
设 f(x)为[a,b]上的函数,在互异点x0 ,x1,...,xn 处的函数值分别为f(x0),f(x1),…,f(xn),构造一个简单 函数(x)作为函数f(x)的近似表达式y=f(x)(x),使
1 0,p为整数,若 x 的绝对误差限不超过末位的半个
单位,即
表示数x的末位
x * x 1 10(n p) 1 10 pn.
2
2
的半个单位
则称用 x 近似 x*是具有“ n 位有效数字。”
2 几种插值
• 插值问题的背景 在生产和实验中,函数 f(x)或者其表达式不便于计算,
或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的近似函数
n
li (x) f (xi ) (1.8) i0
其中:
li (x)
(x x0)L (xi x0 )L
(x (xi
xi1)(x xi1)L xi1)(x xi1)L
(x xn) (xi xn )
n
x x j , i 1, 2,L , n (1.7)