上海市徐汇区位育中学2019-2020学年高一下学期6月月考数学试题

合集下载

上海市位育高级中学2019-2020学年高三数学理模拟试题含解析

上海市位育高级中学2019-2020学年高三数学理模拟试题含解析

上海市位育高级中学2019-2020学年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数(,)的部分图象如图中实线所示,图中圆C与f(x)的图象交于M,N两点,且M在y轴上,则下列说法中正确的是()A. 函数f(x)的最小正周期是2πB. 函数f(x)的图象关于点成中心对称C. 函数f(x)在单调递增D. 将函数f(x)的图象向左平移后得到的关于y轴对称参考答案:C【分析】根据条件求出c的值,结合三角函数的周期关系求出周期,以及对应的对称轴,对称中心,利用三角函数的性质分别进行判断即可.【详解】解:根据函数(,)的部分图象以及圆C 的对称性,可得,两点关于圆心对称,故,则,解得:,函数的周期为,故A错误;∵函数关于点对称,∴函数的对称中心为,则当时,对称中心为,故B不正确;函数的一条对称轴为,在x轴负方向内,接近于y轴的一条对称轴为,由图像可知,函数的单调增区间为,,当时,函数的单调递增区间为,,故C正确;的一条对称轴为,∴函数的图象向左平移个单位后,此时,所得图象关于直线对称,故D错误.故选:C【点睛】本题考查了三角函数的图象与性质,解决问题的关键是由图象求出函数的性质,再根据图象变换的规则解决问题.2. 阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1 B.2 C.3 D.4参考答案:B略3. 曲线在点处的切线为.若直线与x,y轴的交点分别为A,B,则△OAB的周长的最小值为A. B. C.2 D.参考答案:【知识点】导数的几何意义;基本不等式求最值. B11 E6A 解析:∵,∴即,可得A(,0),B(0, ),∴△OAB的周长,当且仅当时等号成立.故选 A.【思路点拨】由导数的几何意义得直线的方程,从而求得A 、B的坐标,进而用表示△OAB的周长,再用基本不等式求得周长的最小值.4. 已知函数f(x)=acosx+xsinx,x∈.当1<a<2时,则函数f(x)极值点个数是( )A.1 B.2 C.3 D.4参考答案:C考点:利用导数研究函数的极值;函数零点的判定定理.专题:计算题;数形结合法;导数的概念及应用.分析:先判定该函数为偶函数,再通过运算得出x=0为函数的一个极值点,最后再判断函数在(0,)有一个极值点.解答:解:∵f(﹣x)=acos(﹣x)+(﹣x)sin(﹣x)=acosx+xsinx=f(x),∴f (x)为偶函数,又∵f'(x)=(1﹣a)sinx+xcosx,且f'(0)=0,﹣﹣﹣﹣﹣﹣﹣①所以,x=0为函数的一个极值点,而f''(x)=(2﹣a)cosx﹣xsinx,a∈(2,3),则f''(0)=2﹣a>0,故函数f'(x)在x=0附近是单调递增的,且f'()=1﹣a<0,结合①,根据函数零点的判定定理,必存在m∈(0,)使得f'(m)=0成立,显然,此时x=m就是函数f(x)的一个极值点,再根据f(x)为偶函数,所以f(x)在(﹣,0)也必有一个极值点,综合以上分析得,f(x)在共有三个极值,故选C.点评:本题主要考查了函数的极值,以及运用导数研究函数的单调性和函数零点的判定,属于中档题5. 双曲线的渐近线与圆相切,则双曲线的离心率为()(A)(B)(C)(D)参考答案:C略6. “0<x<1”是“log2(x+1)<1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:7. 函数的大致图象是参考答案:D因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为,由,得,所以,当,,函数单调递减,当时,,函数单调递增,所以当时,函数取得极小值,选D.8. 函数的图象A.关于直线对称B.关于直线对称C.关于点对称D.关于点对称参考答案:B略9. 已知点在曲线上,且该曲线在点处的切线与直线垂直,则方程的实数根的个数为()A.0个B.1个C.2个D.不确定参考答案:A10. 多面体的三视图如图所示,则该多面体表面积为(单位)A. B.C.D.参考答案:【知识点】三视图求表面积.G2A根据多面体的三视图可知该几何体如下图所示:由题意得:,所以,所以,,,在三角形ABD 中,,,,所以该几何体的表面积为这四个面的面积和,故选A。

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C三点.则△ABC的面积为___ .5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .6.(填空题.3分)已知sin(x- π4)= 35.则sin2x的值为 ___ .7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2).为了得到f(x)的图象.则只需将g(x)=cos2x的图象()A.向右平移π12个单位B.向右平移π6个单位C.向左平移π12个单位D.向左平移π6个单位14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π1215.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.202017.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.2019-2020学年上海中学高一(下)期中数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .【正确答案】:[1]- √55【解析】:根据三角函数的坐标法定义.直接计算即可.【解答】:解:设O为坐标原点.因为A(2.-1).由已知得|OA|=√22+(−1)2=√5 .∴ sinα=−1|OA|=−√55.故答案为:−√55.【点评】:本题考查三角函数的坐标法定义.以及学生的运算能力.属于基础题.2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .【正确答案】:[1]2【解析】:由题意利用正弦函数的周期性.得出结论.【解答】:解:函数y=sin(πx+2)的最小正周期是2ππ=2.故答案为:2.【点评】:本题主要考查正弦函数的周期性.属于基础题.3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .【正确答案】:[1]4cm2【解析】:由已知利用扇形的面积公式即可计算得解.【解答】:解:由已知可得:半径r为2cm.圆心角α的弧度数为2.则扇形的面积S= 12 r2α= 12×22×2 =4cm2.故答案为:4cm2.【点评】:本题主要考查了扇形的面积公式的应用.属于基础题.4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C 三点.则△ABC的面积为___ .【正确答案】:[1] √3π4【解析】:画出两个函数的图象.求出三个点的坐标.然后求解三角形面积.【解答】:解:函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象.可得A(0.0).B(π.0).令sinx= 12 tanx.解得C(π3. √32).所以S△ABC= 12× π×√32= √3π4.故答案为:√3π4.【点评】:本题考查三角函数的图象以及三角形的面积的求法.考查转化思想以及计算能力.5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .【正确答案】:[1]- 79【解析】:方法一:根据教的对称得到sinα=sinβ= 13.cosα=-cosβ.以及两角差的余弦公式即可求出方法二:分α在第一象限.或第二象限.根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】:解:方法一:∵角α与角β均以Ox为始边.它们的终边关于y轴对称.∴sinα=sinβ= 13.cosα=-cosβ.∴cos(α-β)=cosαcosβ+sinαsinβ=-cos2α+sin2α=2sin2α-1= 29 -1=- 79方法二:∵sinα= 13.当α在第一象限时.cosα=2√23. ∵α.β角的终边关于y 轴对称.∴β在第二象限时.sinβ=sinα= 13.cosβ=-cosα=- 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79:∵sinα= 13 .当α在第二象限时.cosα=-2√23. ∵α.β角的终边关于y 轴对称.∴β在第一象限时.sinβ=sinα= 13 .cosβ=-cosα= 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79综上所述cos (α-β)=- 79 .方法三:∵α.β角的终边关于y 轴对称. ∴α+β=π+2kπ.k∈Z .∴cos (α-β)=cos (α-(π+2kπ-α))=cos (2α-π)=-cos2α=2sin²α-1=2×( 13 )²-1=- 79. 故答案为:- 79 .【点评】:本题考查了两角差的余弦公式.以及同角的三角函数的关系.需要分类讨论.属于基础题6.(填空题.3分)已知sin (x- π4 )= 35 .则sin2x 的值为 ___ . 【正确答案】:[1] 725【解析】:利用二倍角的正弦可求得 sin 2(x −π4) = 1−sin2x 2 = 925.从而可得sin2x 的值.【解答】:解:∵sin (x- π4 )= 35. ∴ sin 2(x −π4) = 1−cos[2(x−π4)]2 = 1−sin2x 2 = 925. ∴1-sin2x= 1825. ∴sin2x= 725 . 故答案为: 725 .【点评】:本题考查二倍角的正弦.考查诱导公式的应用.考查转化思想与运算能力.属于中档题.7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .【正确答案】:[1] π2【解析】:结合已知条件.利用和差角公式.平方关系化简可得sin(x-y)=1.进而得到答案.【解答】:解:∵x.y∈(0.π).且-π<x-y<π.∴ sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1⇒sin2x(1−sin2y)+cos2x(cos2y−1)sin(x+y)=1⇒sin2xcos2y−cos2xsin2ysin(x+y)=(sinxcosy+cosxsiny)(sinxcosy−cosxsiny)sin(x+y)=1⇒sin(x+y)sin(x−y)sin(x+y)=sin(x−y)=1⇒x−y=π2(由于-π<x-y<π).故答案为:π2.【点评】:本题主要考查三角函数的化简求值.考查和差角公式以及同角三角函数基本关系的运用.考查运算能力.属于基础题.8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .【正确答案】:[1] √2【解析】:直接利用三角函数关系式的恒等变换和余弦定理的应用求出结果.【解答】:解:由于acosB+(b+3c)cosA=0.整理得:acosB+bcosA=-3ccosA.故是sinAcosB+cosAsinB=-3sinCcosA.即sin(A+B)=sinC=-3sinCcosA.故:cosA=−13.由余弦定理得:b2+c2-a2=2bccosA=-2.整理得bc=3.所以:S=√14[(bc)2−(b2+c2−a22)2]=√2.故答案为:√2【点评】:本题考查的知识要点:三角函数关系式的恒等变换.余弦定理的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .【正确答案】:[1] [π3,π3+1)【解析】:由题意将问题转化为y=2sin(2x+π6)与y=1-a在区间[0,π2]上有两个不同的交点的问题.作出两个函数的图象.可求解.【解答】:解:若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.即2sin(2x+π6)=1−a在区间[0,π2]上有两个不同的零点x1.x2.也就是y=2sin(2x+π6)与y=1-a区间[0,π2]上有两个不同的交点.横坐标分别为x1.x2.数形结合可知. x1+x22=π6,1−a∈[1,2) .∴ x1+x2=π3,−a∈[0,1)∴ x1+x2−a∈[π3,π3+1).故答案为:[π3,π3+1).【点评】:本题考查三角函数的图象与性质.以及利用数形结合思想解决问题的能力.同时考查了学生的运算能力.属于中档题.10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .【正确答案】:[1](-∞.1]【解析】:根据题意.任取0<α<β<π2.由函数单调性的定义分析可得f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0 .据此变形可得m<1+tanα2tanβ2tanα2+tanβ2.分析1+tanα2tanβ2tanα2+tanβ2的最小值.即可得答案.【解答】:解:根据题意.任取0<α<β<π2.若函数f(α)=m−sinαcosα在(0,π2)上单调递减.则有f(α)-f(β)>0.即f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0则有m•2sinα+β2•sinα−β2>2sinα−β2cosα−β2可得m<cosα−β2sinα+β2=cosα2cosβ2+sinα2sinβ2sinα2cosβ2+cosα2sinβ2=1+tanα2tanβ2tanα2+tanβ2.又由0<α<β<π2 .则0<α2<β2<π4,0<tanα2<tanβ2<1从而1+tanα2tanβ2−(tanα2+tanβ2)=(1−tanα2)(1−tanβ2)>0 .变形可得1+tanα2tanβ2tanα2+tanβ2>1 .必有m≤1.即m的取值范围为(-∞.1];故答案为(-∞.1].【点评】:本题函数的单调性的性质.涉及三角函数的恒等变形以及和差公式的应用.属于基础题11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k【正确答案】:A【解析】:由已知及同角三角函数基本关系的运用可求sinα.从而由诱导公式即可得解.【解答】:解:∵cosα=k.k∈R.α∈(π2.π).∴sinα= √1−cos2α = √1−k2 .∴sin(π+α)=-sinα=- √1−k2.故选:A.【点评】:本题主要考查了同角三角函数基本关系的运用.运用诱导公式化简求值.属于基本知识的考查.12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ【正确答案】:D【解析】:对于A.B中的α.β可以分别令为30°.60°验证即可.对于C中的α.β可以令他们都等于15°.验证即可.对于D我们可以用放缩法给出证明cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ【解答】:解:对于AB中的α.β可以分别令为30°.60°则知道A.B均不成立对于C中的α.β可以令他们都等于15°.则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选:D.【点评】:本题考查了两角和与差的正余弦公式.同时也考查了放缩法对命题的证明.属于基础题.13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π).为了2得到f(x)的图象.则只需将g(x)=cos2x的图象()个单位A.向右平移π12个单位B.向右平移π6C.向左平移π个单位12个单位D.向左平移π6【正确答案】:A【解析】:由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.可得f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律.得出结论.【解答】:解:利用函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2)的图象.可得A=1. 14•2πω= π3- π12.∴ω=2.再根据五点法作图.可得2× π12+φ= π2.∴φ= π3.故f(x)=sin(2x+ π3).将g(x)=cos2x=sin(2x+ π2)的图象向右平移π12个单位.可得y=sin(2x- π6 + π2)=sin(2x+ π3)=f(x)的图象.故选:A.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式.由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律.属于基础题.14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π12【正确答案】:B【解析】:求出函数f(x)、g(x)在(0.π)上的单调递减区间.从而求得b-a的最大值.【解答】:解:函数f(x)=sin(2x- π3)在(0. 5π12)上单调递增.在(5π12 . 11π12)上单调递减.在(11π12.π)上单调递减;函数g(x)=cosx-sinx= √2 cos(x+ π4)在(0. 3π4)上单调递减.在(3π4.π)上单调递增;∴f(x)、g(x)都在区间(5π12 . 3π4)上单调递减.∴b-a的最大值为3π4 - 5π12= π3.故选:B.【点评】:本题考查了三角函数在某一区间上的单调性问题.是中档题.15.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数【正确答案】:C【解析】:先利用α.β为锐角且α+β>π2结合三角函数的单调性得出cosαsinβ. cosβsinα的取值范围.再对x的值分类讨论.结合指数函数的单调性即可得出答案.【解答】:解:∵α.β为锐角且α+β>π2 .∴ π2>α>π2-β>0.∴cosα<cos(π2 -β).sinα>sin(π2-β).即0<cosα<sinβ.sinα>cosβ>0.∴0<cosαsinβ<1.0<cosβsinα<1.∴在(-∞.0]上. f(x)=(cosαsinβ)−x+(cosβsinα)−x为增函数.在(0.+∞)上. f(x)=(cosαsinβ)x+(cosβsinα)x为减函数.故选:C.【点评】:本题主要考查了指数函数的单调性与特殊点.考查了三角函数的性质.属于基础题.16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.2020【正确答案】:C【解析】:直接利用三角函数关系式的恒等变换和正弦定理余弦定理的应用求出结果.【解答】:解:由于△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.所以a2+b2-c2=2019c2.则:2tanA•tanBtanC(tanA+tanB)=2sinAcosAsinBcosBsinCcosC(sinAcosA+sinBcosB).= 2sinAsinBcosCsinC(sinAcosB+cosAsinB)=2sinAsinBcosCsin2C.= 2abcosCc2=a2+b2−c2c2=2019故选:C.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦定理余弦定理和三角形面积公式的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.17.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).【正确答案】:【解析】:利用诱导公式化简要求的式子.再利用同角三角函数的基本关系化简到最简形式.【解答】:解:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α)= (−sinα)(−cosα)sinα(−cosα)sinαtanα=−cosα.【点评】:本题考查同角三角函数的基本关系.诱导公式的应用.要特别注意公式中的符号.18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.【正确答案】:【解析】:(1)用五点作图法即可作出函数在一个周期上的图象.利用余弦函数的性质即可求解其值域.最小正周期.对称轴方程.(2)由条件利用y=Asin(ωx+φ)的图象变换规律和正弦函数的图象和性质即可求解y=g (x)的单调递增区间.【解答】:解:(1)f(x)=√3cos2x−sin2x =2cos(2x+ π6).列表如下:2x+ π6π2π3π22πx - π12π65π122π311π12y 2 -2 2 作图:可得:f(x)的值域为[-2.2].最小正周期为π.对称轴方程为x=kπ2−π12,k∈Z.(2)将f(x)=2cos(2x+ π6)的图象向左平移一个π4单位得到函数y=g(x)=2cos(2x+ π2+ π6)=-2sin(2x+ π6)的图象.令2kπ+ π2≤2x+ π6≤2kπ+ 3π2.k∈Z.解得kπ+ π6≤x≤kπ+ 2π3.k∈Z.可得函数的单调递增区间为:[kπ+π6,kπ+2π3],k∈Z.【点评】:本题主要考查用五点法作函数y=Asin(ωx+φ)在一个周期上的图象.y=Asin (ωx+φ)的图象变换规律.考查正弦函数的性质.属于基础题.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.【正确答案】:【解析】:(1)根据题意利用直角三角形的边角关系.即可证明cos(α+β)=cosαcosβ-sinαsinβ;(2)利用三角恒等变换化简求值即可.【解答】:解:(1)由已知∠ADE=∠BEF=α.所以cos(α+β)=cos∠DFC= CFDF = BC−BFDF= ADDE• DEDF- BFEF• EFDF=cosαcosβ-sinαsinβ;(2)由已知3π4+x∈(3π4,π),π4−y∈(−π2,0) .从而cos(3π4+x)=−√1−sin2(3π4+x)=−1213.sin(π4−y)=−√1−cos2(π4−y)=−35.所以cos(x−y)=−cos(x−y+π)=−cos[(3π4+x)+(π4−y)]= sin(3π4+x)sin(π4−y)−cos(3π4+x)cos(π4−y)=513•(−35)−(−1213)•45=3365.【点评】:本题考查了直角三角形边角关系应用问题.也考查了三角函数化简求值问题.是中档题.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)【正确答案】:【解析】:(1)在△ACD中与在△ABC中.分别利用正弦定理即可得出;(2)△ABC中.利用正弦定理可得:BC.再利用和差公式即可得出.【解答】:解:(1)在△ACD中. ∠CDA=θ+π6.由ADsin∠ACD =ACsin∠CDA.得AC=AD•sin∠CDAsin∠ACD=16√3sin(θ+π6) .在△ABC中. ∠ACB=π3−θ .由ABsin∠ACB =ACsin∠ABC.得ℎ=AC•sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2)△ABC中.由BCsin∠BAC =ACsin∠ABC.得BC=AC•sin∠BACsin∠ABC=32sin(θ+π6)sinθ .∴ AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ = 16sin2θ+8√3 .∵ π12≤θ≤π6.∴ π6≤2θ≤π3.∴当θ=π12时.AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小.最小值约为21.86米.【点评】:本题考查了正弦定理余弦定理、和差公式、三角函数求值.考查了推理能力与计算能力.属于中档题.21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.【正确答案】:【解析】:(1)利用三角函数关系式的恒等变换和函数的性质的应用求出结果.(2)利用函数的关系式的变换和三角函数的性质的应用求出结果.(3)利用分类讨论思想的应用和关系式的变换的应用求出参数的值.【解答】:解:(1)f(x)=5cosxsinθ+(4tanθ-3)sinx-5sinθ.f(x)是偶函数. ∴(4ta nθ-3)sinx=0对一切x∈R恒成立.∴ tanθ=34(2)f(x)=5sinθ(cosx-1).其最小值为-6.此时sinθ=35,cosx=−1 .∴f(x)=3(cosx-1).从而f(x)的最大值为0.此时x的取值为x=2kπ.k∈Z;(3)g(x)=λf(ωx)−f(ωx+π2)=3λcosωx−3λ−3cos(ωx+π2)+3=3λcosωx-3λ+3sinωx+3由g(x)在x=π6处取最小值.知g(x)的图象关于x=π6对称.有g(−π3)=g(2π3)=3−3λ故3λcos(−ωπ3)+3sin(−ωπ3)=0 .且3λcos2ωπ3+3sin2ωπ3=0 .从而λ=tanωπ3=−tan2ωπ3=tan(kπ−2ωπ3) .则ωπ3=kπ−2ωπ3.即ω=k(k∈Z)又ω>0.则ω是正整数.∵λ>0.ω是正整数.∴ ω=3l−2(l∈N∗),λ=√3 .当ω=1时. g(x)=3√3cosx+3sinx+3−3√3显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=4时. g(x)=3√3cos4x+3sin4x+3−3√3 .显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=7时. g(x)=3√3cos7x+3sin7x+3−3√3 .显然.g(x)g(x)在x=π6处有最小值.且y=g(x)的图象关于点(2π3,3−3√3)中心对称.∴λ+ω的最小值为√3+7.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦型函数的性质的应用.分类讨论思想的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.。

2019-2020学年高一数学下学期第二次(6月)月考试题 文.doc

2019-2020学年高一数学下学期第二次(6月)月考试题 文.doc

21=a 2019-2020学年高一数学下学期第二次(6月)月考试题 文一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1,下列命题中,正确的是( )A.若b a >,d c >,则bd ac >B.若bc ac >,则b a >C. .若b a >,d c >,则d b c a ->-D.若22c b c a <,则b a < 2.在数列{}n a 中,122,211=-=+nn a a a ,则101a 的值为( ) A .49 B .50 C .51D .52 3.不等式x x x 2522>-- 的解集是 A. }15{-≤≥x x x 或 B. }15{-<>x x x 或 C. }51{≤≤-x x D. }51{<<-x x4.数列 ,10,6,3,1的一个通项公式是( )A.)1(2--=n n a n B .12-=n a n C .2)1(+=n n a n D.2)1(-=n n a n 5,已知正数m,n 的等差中项是2,则mn 的最大值为( )A . 1 B. 2 C. 4 D. 86.等比数列{}n a 的前m 项和为4,前2m 项和为12,则它的前3m 项和是( )A.28B.48C.36D.52 7,在等差数列{}n a 中,已知112n a n =-,则使前n 项和n S 最大的n 值为( )A.4B.5C.6D.78.已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=( ) A. 33 B. 3 C. 1 D. -1 9.在等比数列}{n a 中,1020144117,5,6a a a a a a 则=+=⋅等于( )A .32B .23C .23或32D .-32或-2310.已知,m n 是满足1m n +=,且使19m n+取得最小值的正实数.若函数y x α=过点 2,3P m n ⎛⎫ ⎪⎝⎭,则α的值为 A. 3 B. 2 C. 12D. 1- 11. 设数列}{n a 是以2为首项,1为公差的等差数列,}{n b 是以1为首项,2为公比的等比数列,则=+++1021b b b a a a ( )A .1033B .2057C .1034D .205812.已知数列{n a }满足:1a =21,n n a a =+1+()()112n n ++()*N n ∈,则数列{n a }的通项公式为( )A.11+=n a nB.21212++-+=n n n a nC.12n n a n +=+D.1n n a n =+. 二、填空题(每小题5分,共20分) 13.数列{}n a 的前n项的和132++=n n S n,则此数列的通项公式n a =_______. 14.已知不等式220ax bx ++<的解集是(1,2),则b a +的值为___________.,15.若函数1()(2)2f x x x x =+>-,在x a =处取最小值,则a = . 16.已知在数列{}n a 中,n n a n n a 21+=+,且,则=n a三、解答题(本大题满分70分)17. (本小题满分10分)已知等差数列{}n a 满足:3710,26a a ==.(1)求数列{}n a 的通项公式;(2)请问88是数列{}n a 中的项吗?若是,请指出它是哪一项;若不是,请说明理由.18.(本小题满分12分)(1)已知x<54,求函数y =4x -2+145x -的最大值;(2)已知x>0,y>0且19x y+=1,求x +y 的最小值. 19.(本小题满分12分)已知在等比数列}{n a 中,128,252==a a .(1)求通项公式n a ;(2)若,log 2n n a b =数列}{n b 的前n S n n n 求且项和为,360,S =的值20.(本小题满分12分)已知}{n a 是等差数列,满足12,,341==a a ,数列}{n b 满足20,441==b b ,且}{n n a b -为等比数列.(1)求数列}{}{n n b a 和的通项公式; (2)求数列}{n b 的前n 项和.21.(本题满分12分)2009年推出一款新型家用轿车,购买时费用为14.4万元,每年应交付保险费、 养路费 及汽油费共0.7万元,汽车的维修费为:第一年无维修费用, 第二年为0.2万元,从第 三年起,每年的维修费均比上一年增加0.2万元.(1)设该辆轿车使用n 年的总费用(包括购买费用、保险费、养路费、汽油费及维修费) 为f (n ),求f (n )的表达式;(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?22,(本小题满分12分)数列{n a }的前n 项和为n S ,n a 是n S 和1的等差中项,等差数列{n b }满足140b S +=,91b a =.(1)求数列{}n a ,{}n b 的通项公式;(2)若()1(16)18n n n c b b =++,求数列{}n c 的前n 项和n W .。

上海市徐汇区2019-2020学年高一下学期期末考试数学试题(2020.7)+Word版含答案

上海市徐汇区2019-2020学年高一下学期期末考试数学试题(2020.7)+Word版含答案

12.①②
二、选择题 13.C 14.D
15.B 16.C
三、解答题
17.(1)10;(2) Sn 2n2 .
18.(1)
0,
6
;(2) 0
2
2 3
8 3

19.(1)
bn 1
an 1
2
1 2
an
1 2
1 2
an
1
1

bn an 2
an 2
an 2 2
∴{bn } 是首项为
1,公比为
参考答案
一、填空题 1.2 2.3 3. 1
4. [2, 0]
5. 1 2
6.10 7.2
4
8. n 2 n 2 2
9. 8 5
10. (, 3) (3, )
【第 12 题解析】数列{an } 、{bn } 的公共项恰为 an ,
11.
0,
1 2
1 2
,1
∴ S100 (b1 b2 b106 ) (a1 a2 a6 ) 11388 .
要非充分条件,下列判断正确的是( )
A.甲和乙均为真命题
B.甲和乙均为假命题
C.甲为假命题,乙为真命题
D.甲为真命题,乙为假命题
三、解答题 17.设等差数列{an } 的前 n 项和为 Sn ,若 a1 2 , ak 38 , Sk 200 . (1)求常数 k 的值; (2)求{an } 的前 n 项和 Sn .
20.(1)联结 B D ,则在△B C D 中 B D 200, B D C 45
BD 由
BC
,得: B C 200sin 45 200 6 163
sin B C D sin B D C

位育中学高一月考(2019.10)

位育中学高一月考(2019.10)

位育中学高一月考数学卷2019.10一. 填空题1. 已知集合{|22}A x x =-<<,{|1}B x x =≥-,则A B =I2. 事件“对任意实数x 与y ,都有222x y xy +≥成立”的否定形式为3. 已知U =R ,{|3}A x x =≤,{0,1,2,3,4,5}B =,则图中阴影部分所表示的集合为4. 已知集合2{|20}A x x x =-->,{|40}B x x p =+<,且B A ⊆,则p 的取值范围是5. 已知全集{1,2,3,4,5,6}U =,{2,3}M =,{1,4}N =,则集合{5,6}用含,,U M N 的集合运算式可以表示为6. 已知U =R ,{|30}A x mx =->,若1U A ∈ð,则实数m 的取值范围是7. 不等式20ax bx c ++>的解集是1(,3)2-,则不等式20cx bx a ++<的解集为8. 若不等式210ax ax --<的解集为R ,则实数a 的取值范围是 9. 已知集合2{|45}A x x x =+>,2{|0}B x x ax b =++≤,若A B =∅I ,(1,6]A B =-U ,则a b +=10. 运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目,15人参加游泳,8人参加田径,14人参加球类,同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有 人11. 若x A ∈,则2x A -∈,就称A 是“对偶关系”集合,若集合{,4,2,0,2,4,6,7}a --的所有非空子集中是“对偶关系”的集合一共15个,则实数a 的取值集合为12. 已知关于x 的不等式22232x kx k x -≤+≤-有唯一解,则实数k 的取值集合为二. 选择题13.“2m <”是“1m <”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要14. 下列选项是真命题的是( )A. 若a b <,则22ac bc <B. 若a b <,c d <,则a c b d -<-C. 若0a b >>,0c d <<,则ac bd >D. 若0b a <<,则11a b< 15. 已知命题“若0a b c ++≥,则a 、b 、c 中至少有一个非负数”,则该命题的逆命题、否命题、逆否命题3个命题中为真命题的个数是( )A. 0B. 1C. 2D. 316. 定义{}x 为不小于x 的最小整数(例如:{5.5}6=,{4}4-=-),则不等式2{}5{}60x x -+≤的解集为( )A. [2,3]B. [2,4)C. (1,3]D. (1,4]三. 解答题17. 已知,a b ∈R ,比较22a b +与245a b --的大小.18. 某旅店有200张床位,若每床每晚的租金为50元,则可全部出租,若将出租收费标准每晚提高10的整数倍,则出租的床位会减少10的相应倍数张,若要使该旅店每晚的收入超过15000元,则每个床位的出租价格应定在什么范围内?(答案用集合表示)19. 求解关于x 不等式:220x x a a -+-<.20. 已知命题p :2{|0}A x x x a =++=满足A R +=∅I ;命题q :不等式21x ax +≥对x ∈R 恒成立.(1)若p 为真命题,求实数a 的取值范围;(2)若p 、q 中有且只有一个为真命题,求实数a 的取值范围.21. 若集合A 具有以下性质:(ⅰ)0A ∈且1A ∈;(ⅱ)若,x y A ∈,则x y A -∈,且当0x ≠时,1A x∈,则称集合A 为“闭集”. (1)试判断集合{1,0,1}B =-是否为“闭集”,并说明理由;(2)设集合A 是“闭集”,求证:若,x y A ∈,则x y A +∈;(3)若集合M 是一个“闭集”,判断命题“若x M ∈,则2x M ∈”的真假,并说明理由.参考答案一. 填空题1. [1,2)-2. 存在实数x 与y ,222x y xy +<成立3. {4,5}4. [4,)p ∈+∞5.()U M N U ð6. (,3]-∞7. 1(2,)3-8. (4,0]- 9. 19 10. 19 11. {1,5}- 12. {1-二. 选择题13. B 14. D 15. B 16. C三. 解答题17. 22245a b a b +≥--.18. {110元,120元,130元,140元}. 19. 当12a >时,解集为(1,)a a -+;当12a =时,解集为∅;当12a <时,解集为(,1)a a -+. 20.(1)0a ≥;(2)20a -≤<或2a >. 21.(1)不是;(2)证明略;(3)真命题.。

上海市徐汇区2019-2020学年第三次中考模拟考试数学试卷含解析

上海市徐汇区2019-2020学年第三次中考模拟考试数学试卷含解析

上海市徐汇区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-5的相反数是( )A .5B .15C .5D .15- 2.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 23.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h4.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c5.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .45°B .60°C .70°D .90°6.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶57.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形8.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(﹣1,3)D .(3,4)9.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°10.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣211.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 12.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD =30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为_____.15.三人中有两人性别相同的概率是_____________.16.已知反比例函数y=2mx,当x>0时,y随x增大而减小,则m的取值范围是_____.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.18.16的算术平方根是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?20.(6分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=m x和直线y=kx+b 的解析式; (2)连接CD ,试判断线段AC 与线段CD 的关系,并说明理由;(3)点E 为x 轴上点A 右侧的一点,且AE=OC ,连接BE 交直线CA 与点M ,求∠BMC 的度数.21.(6分)已知关于 的方程mx 2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数的值. 22.(8分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m 、200m 、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .24.(10分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.25.(10分)如图,△ABC 与△A 1B 1C 1是位似图形.(1)在网格上建立平面直角坐标系,使得点A 的坐标为(-6,-1),点C 1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A 为位似中心,在网格图中作△AB 2C 2,使△AB 2C 2和△ABC 位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.26.(12分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.27.(12分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(3取1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.2.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.3.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.4.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.5.D【解析】已知△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠A B′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D .6.C【解析】【分析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可.【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC ,∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4,故选C .【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.D【解析】(1)结论A 正确,理由如下:解析函数图象可知,BC=10cm ,ED=4cm ,故AE=AD ﹣ED=BC ﹣ED=10﹣4=6cm .(2)结论B 正确,理由如下:如图,连接EC ,过点E 作EF ⊥BC 于点F ,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=,∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下: 如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=2NC=217∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故选D .8.B【解析】令x=0,y=6,∴B (0,6),∵等腰△OBC ,∴点C 在线段OB 的垂直平分线上,∴设C (a ,3),则C '(a -5,3),∴3=3(a -5)+6,解得a=4,∴C (4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.9.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC ,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理. 10.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.11.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.12.A【解析】【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 3【解析】【分析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13,故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.14【解析】【分析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•32m=m,∴m=43,∴k=43故答案为43 315.1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,∴三人中至少有两个人的性别是相同的,∴P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.16.m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.17.132. 【解析】【详解】试题分析:解:∵在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D 为AB 的中点,∴CD=AD=BD=AB=2.5,过D′作D′E ⊥BC ,∵将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.18.4【解析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.20.(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=2 5,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.21.(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=V ,从而可判断方程总有两个不相等的实数根; (2)先利用求根公式得到1211,1x x m=-=-,然后利用有理数的整除性确定整数m 的值. 试题解析:(1)证明:∵m≠0,∴方程为一元二次方程, Q 2(21)4(1)10m m m =---=>V , ∴此方程总有两个不相等的实数根;(2)∵(21)12m x m--±=, 1211,1x x m∴=-=-, ∵方程的两个实数根都是整数,且m 是整数,∴m=1或m=−1.22.(1)证明见解析;(2)BH =.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P 1==; (3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P 1==. 故答案为. 考点:列表法与树状图法.24.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.25.(1)作图见解析;点B 的坐标为:(﹣2,﹣5);(2)作图见解析;(3)62+45【解析】分析:(1)直接利用已知点位置得出B 点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP 的周长.详解:(1)如图所示:点B 的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB 2C 2,即为所求;(3)如图所示:P 点即为所求,P 点坐标为:(﹣2,1),四边形ABCP 的周长为:2244+2224+2222+2224+252525故答案为25点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.26.足球单价是60元,篮球单价是90元.【解析】【分析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.27.不需要改道行驶【解析】【详解】解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴()1.732AH AC sin60125125108.252=⋅︒==⨯=米. ∵AH >100米,∴消防车不需要改道行驶.过点A 作AH ⊥CF 交CF 于点H ,应用三角函数求出AH 的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.。

上海市徐汇区2019-2020学年高一下学期期末数学卷(2020.7)

上海市徐汇区2019-2020学年高一下学期期末数学卷(2020.7)

徐汇区高一下期末数学试卷2020.7一、填空题1.函数()sin f x x π=的最小正周期为 . 2.计算:22320lim n n n n→∞+=+ .311两数的等比中项是 . 4.函数()arcsin(1)f x x =+的定义域为 . 5.若tan 3α=,则tan()4πα-= .6.若数列{}n a 满足*12()n n a a n +=∈N ,且12a =,1024m a =,则m = . 7.已如sin 2cos 4sin cos αααα+=-,则tan α= .8.已知数列{}n a 满足*1()n n a a n n +-=∈N ,且11a =,则数列{}n a 的通项公式n a = . 9.已如扇形的圆心角为5π,弧长为45π,则扇形的面积为 . 10.已知数列{}n a 的前n 项和1*3()n n S k n +=+∈N ,且{}n a 不是等比数列,则常数k 的取值范围是 .11.设无穷等比数列{}n a 的各项和为12,则首项1a 的取值范围是 . 12.已知数列{}n a 、{}n b 的通项公式分别为32n n a =⋅,*24()n b n n =+∈N ,取出数列{}n a 、{}n b 中的不同的项从小到大排列组成一个新的数列{}n c ,设数列{}n c 的前n 项和为n S ,则100S = .二、选择题13.已知函数()sin()f x x ϕ=+的图像关y 轴对称,则实数ϕ的取值可能是( )A .4πB .3πC .2πD .π14.要得到函数sin(2)3y x π=-的图像,只需将函数sin 2y x =的图像( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位15.已知数列*sin ()2n n a n n π=⋅∈N ,则123100a a a a ++++等于( )A .48-B .50-C .52-D .54-16.设{}n a 是首项为正数的等比数列,公比为q ,对于以下两个命题:(甲)“1q >”是“{}n a 为递增数列”的充分非必要条件;(乙)“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要非充分条件,下列判断正确的是( )A .甲和乙均为真命题B .甲和乙均为假命题C .甲为假命题,乙为真命题D .甲为真命题,乙为假命题三、解答题17.设等差数列{}n a 的前n 项和为n S ,若12a =,38k a =,200k S =. (1)求常数k 的值; (2)求{}n a 的前n 项和n S .18.已知函数1()sin()62f x x π=+-.(1)若函数()f x 在区间[0,]a 上单调递增,求实数a 的取值范围; (2)求函数()f x 在区间[0,2]π上的所有零点.19.已知数列{}n a 满足*111()2n n a a n +=+∈N ,13a =,*2()n n b a n =-∈N .(1)证明:数列{}n b 是等比数列;(2)若*()n n c n b n =-⋅∈N ,求数列{}n c 中的最小项.20.今年年初新冠肺炎肆虐全球,抗击新冠肺炎的有效措施之一是早发现、早隔离.现某地发现疫情,卫生部门欲将一块如图所示的四边形区域ABCD 沿着边界用固定高度的板材围成一个封闭的隔离区.经测量,边界AB 与A D 的长都是200米,60BAD ∠=︒,120BCD ∠=︒.(1)若105ADC ∠=︒,求BC 的长(结果精确到米);(2)围成该区域至多需要多少米长度的板材?(不计损耗,结果精确到米).21.对于数列{}n a ,设数列{}n a 的前n 项和为n S ,若存在正整数k ,使得221kk S S -恰好为数列{}n a 的一项,则称数列{}n a 为“()P k 数列”.(1)已知数列1,2,3,x 为“(2)P 数到”,求实数x 的值;(2)已知数列{}n a 的通项公式为*2*2,21()23,2()n n n n m m a n m m -⎧=-∈⎪=⎨⎪⋅=∈⎩N N ,试问数列{}n a 是否是“()P k 数列”?若是,求出所有满足条件的正整数k ;若不是,请说明理由.参考答案一、填空题1.2 2.3 3.1± 4.[2,0]- 5.12- 6.10 7.28.222n n -+ 9.85π 10.(,3)(3,)-∞--+∞ 11.110,,122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 12.①②【第12题解析】数列{}n a 、{}n b 的公共项恰为n a , ∴10012106126()()11388S b b b a a a =+++-+++=.二、选择题13.C 14.D 15.B 16.C三、解答题17.(1)10;(2)22n S n =.18.(1)0,6π⎛⎤⎥⎝⎦;(2)280233πππ++=. 19.(1)111112121222222n n n n nn n n a a b a b a a a +++---====---, ∴{}n b 是首项为1,公比为12的等比数列,112n n b -⎛⎫= ⎪⎝⎭;(2)1102n n n c n b n -⎛⎫=-⋅=-⋅< ⎪⎝⎭,则112n n c n c n++=, ①1n =时,11n n c c +=,12c c =,②2n ≥时,11n ncc +<,1n n c c +>, ∴1234c c c c =<<<,即min 12()1n c c c ===-.20.(1)联结BD ,则在BCD △中200,45BD BDC =∠=︒由sin sin BD BCBCD BDC=∠∠,得:200sin 45163sin120BC ︒==≈︒ 所以BC 的长约为163米(2)方法一:设(0)3CBD πθθ∠=<<,则3BDC πθ∠=-在BCD △中,由sin sin sin BD BC CDBCD BDC CBD ==∠∠∠,得:sin(),3BC CD πθθ=-=所以[sin()sin ])33BC CD ππθθθ+=-++所以当6πθ=时,BC CD +400+千米,约为631米方法二:设BC x =千米,CD y =千米,(,x y +∈R )在BCD △中,由222cos 2BC CD BD BCD BC CD +-∠=⋅,得22400000x y xy ++-=所以2()40000x y xy +-=又由x y +≥21()4xy x y +≤,当且仅当x y =时等号成立所以221()40000()4x y x y +-+≤故x y +400+千米,约为631米21.(1)由题意,4366S x S +=为数列{}n a 中的项, ①6106x x +=⇒=,②6266x x +=⇒=,③63126x x +=⇒=,④6665x x x +=⇒=, 即实数x 的值为60,6,12,5;(2)121321242()()(1321)(2623)k k k k S a a a a a a k --=+++++++=+++-++++⋅2(121)2(13)31213k k k k k +-⋅-=+=+--,21212122(31)2331k k k k k k S S a k k ---=-=+--⋅=+-,222212121312(1)333131k k k k k S k k S k k ---+--==-+-+-≤, 若221k k SS -为{}n a 中的某一项只能为123,,a a a , ①2211k k S S -=,无解;②2212k k S S -=,得2k =;③2212k k SS -=,得1k =; 综上所述,1k =或2k =.。

2019-2020学年度第二学期检测试题高一数学【含答案】

2019-2020学年度第二学期检测试题高一数学【含答案】

33 (Ⅱ)若∥ ABC 的面积为 2 ,求 b 的值.
【答案】(Ⅰ) 45 ;(Ⅱ) 14
B π
【解析】(Ⅰ)∵ a 2 , b 3 ,
3,
2 3
a b sin A sin π
∴由正弦定理得 sin A sin B 即
2,
sin A 2

2,
∵ a b , A (0, π) ,
∴ A 45 .
7x 1
选项 D ,
7x ,当且仅当 7x 即 x 0 时取等号,故正确.
故选: D .
6.在∥ ABC 中,内角 A , B , C 所对的边分别是 a , b , c .已知 8b 5c , C 2B ,则 cosC ( ).
7 A. 25
7 B. 25
7 C. 25
24 D. 25
某同学用综合法证明第(Ⅰ)问,用分析法证明第(Ⅱ)问,证明过程如下,请你在横线上填上合适 的内容.
P E
A
N
D
M
证明:(Ⅰ)取 PD 的中点 E ,连结 EN , AE .
在△PCD 中,因为 E , N 分别为所在边的中点,
所以___________________,
又 AM CD ,
所以______________________,
1(I)解:n= 2 50
1分
0.04
(II)解:补全数据见下表(3 分);
组号
分组
频数
频率
1
[5,6) 2
0.04
2
[6,7) 10
0.20
3
[7,8) 10
0.20
4
[8,9) 20
0.40
5
[9,10 8

位育中学高一月考(2020.06)

位育中学高一月考(2020.06)

位育中学高一月考数学试卷2020.06一. 填空题1. 1与4的等比中项为2. 在等差数列{}n a 中,如果33a =,69a =,17n a =,那么n =3. 若1cos 3α=-,3(,)2παπ∈,则cos()2πα+= 4. 方程1sin 3x =,[0,]x π∈的解集为 (用反三角表示) 5. 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于6. 若2(2)3lim 41n a n bn n →∞-++=+,则a b += 7. 函数sin arcsin y x x =+的值域为8. 关于x cos 0x x a ++=在02x π≤≤上有两个不同解,则a 的取值范围是9.“远望巍巍塔七层,红灯点点倍加增.共灯三百八十一,请问尖头几盏灯?”(选自《九章 算法比类大全》诗中所述的尖头有 盏灯10. 设数列{}n a 的前n 项和为n S ,若11a =,1102n n S a +-=(*n ∈N ),则{}n a 的通项公 式为11. 已知数列{}n a 满足115a =,12n n a a n +-=(*n ∈N ),则n a n 的最小值为 12. 将函数()2sin(2)f x x =的图像向左平移6π个单位,再向上平移1个单位,得到函数 ()y g x =的图像,区间[,]a b (,a b ∈R ,且a b <)满足:()y g x =在[,]a b 上至少含有 100个零点,在所有满足上述条件的[,]a b 中,则b a -的最小值为二. 选择题13. 下列函数中既是奇函数又在(0,)π上单调递增的是( )A. sin y x =B. cos y x =C. tan y x =D. sin 2x y = 14. 已知q 是等比数列{}n a 的公比,则“1q >”是“数列{}n a 是递增数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15. 对于不等式21n n n +<+(*n ∈N ),某同学用数学归纳法证明的过程如下:① 当1n =时,21111+<+,不等式成立;② 假设当n k =(*k ∈N )时,不等式成立,即21k k k +<+,则当1n k =+时,2222(1)132(32)(2)(2)(1)1k k k k k k k k k +++=++<++++=+=++,所以当1n k =+时,不等式成立;则上述证法( )A. 过程全部正确B. 1n =验得不正确C. 从n k =到1n k =+的推理不正确D. 归纳假设不正确16. 等差数列{}n a 的前n 项和为n S ,若786S S S >>,则下列结论:①70a =;②80a <;③130S >;④140S <;其中正确的结论有( )个A. 1B. 2C. 3D. 4三. 解答题17. 已知等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,问:6b 是否为数列{}n a 中的项?若是的话,求出项数,若不是的话,说明理由.18. 如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A 、B 在同一水平面上,从A 和B 看D 的仰角分别为α和β,现测得28.12α=︒,18.45β=︒,求AD 与CD 的长.(结果精确到0.01米)19. 已知函数21()cos sin cos 2222x x x f x =--. (1)求函数()f x 的最小正周期和值域;(2)若()f α=sin2α的值.20. 有一个细胞集团最初有细胞10个,每小时内先消亡3个,余下的每个再分裂成2个,设n 小时后细胞个数为n a .(1)求出1a 、2a ,并写出n a 与1n a +的递推公式;(2)求出数列{}n a 的通项公式,问:至少多少小时后细胞个数超过10000个?21. 设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列,记n n n c a b =+.(1)令1n n n f c c d +=--,求证:数列{}n f 为等比数列;(2)若3d =,2q =,数列{}n c 前2项和为14,前8项和为857,求数列{}n c 通项公式;(3)在(2)的条件下,问:数列{}n c 中是否存在四项l c 、m c 、p c 、r c 成等差数列?请证明你的结论.参考答案一. 填空题1. 2±2. 103.4. 11{arcsin ,arcsin }33π-5. 6. 6 7. [sin(1),sin(1)]22ππ--+ 8. 2a -<≤9. 3 10. 2*11232n n n a n n -=⎧=⎨⋅≥∈⎩N且 11. 6.75 12. 1483π二. 选择题 13. D 14. D 15. C 16. B三. 解答题17.(1)22n a n =+,*n ∈N ;(2)6b 是{}n a 第63项.18. 50.12AD =米,25.35CD =米.19.(1)2T π=,[]22;(2)7sin 225α=. 20.(1)114a =,222a =,126n n a a +=-;(2)至少12小时后细胞个数超过10000个.21.(1)证明略;(2)33222n n c n =-+⋅,*n ∈N ;(3)略.。

徐汇区高一数学下学期期末考试试题含解析

徐汇区高一数学下学期期末考试试题含解析

上海市徐汇区2019-2020学年高一数学下学期期末考试试题(含解析)一、填空题1。

函数()sin f x x π=的最小正周期为____________. 【答案】2 【解析】 【分析】利用()sin y A x b ωϕ=++的最小正周期为2πω,即可得出结论. 【详解】解:函数()sin f x xπ=的最小正周期为:22ππ=。

故答案:2。

【点睛】本题主要考查三角函数的周期性,利用了()sin y A x b ωϕ=++的最小正周期为2πω,属于容易题. 2.计算:22320lim n n n n→∞+=+____________.【答案】3 【解析】 【分析】对分式分子分母同除以2n ,即可得到所求极限;【详解】解:22220332030lim lim 31101n n n n n n n→∞→∞+++===+++ 故答案为:3【点睛】本题考查数列的极限的求法,属于基础题.-1+1的等比中项是________.【答案】1±【解析】【分析】根据等比数列的等比中项即可求解。

+1-1的等比中项是1=±.【点睛】本题主要考查了等比数列的等比中项,属于容易题。

4。

函数()arcsin1y x=+的定义域是______。

【答案】[]2,0-【解析】【分析】根据反正弦函数的定义域列不等式可解得结果。

【详解】由111x-≤+≤得20x-≤≤,所以函数()arcsin1y x=+的定义域是[]2,0-.故答案为:[]2,0-【点睛】本题考查了反正弦函数的定义域,属于基础题.5。

若tan3α=,则tan()4πα-=____________.【答案】12-【解析】【分析】利用两角差的正切公式计算可得;【详解】解:因为tan3α=,所以tan tan1314tan()411321tan tan4παπαπα---===-+⨯+故答案为:12-【点睛】本题考查两角差的正切公式的应用,属于基础题.6。

(3份试卷汇总)2019-2020学年上海市徐汇区高一数学下学期期末预测试题

(3份试卷汇总)2019-2020学年上海市徐汇区高一数学下学期期末预测试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在 ABC 中, 80,100,45a b A ===︒,则此三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解2.已知4log 5a =,2log 3b =,sin2c =,则,,a b c 的大小关系为( ) A .a b c <<B .c a b <<C .b c a <<D .c b a <<3.在等比数列{}n a 中,若35733a a a =-,则28a a =( ) A .3B .17C .9D .134.函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示,为了得到sin2y x =的图象,只需将()f x 的图象( )A .向右平移3π个单位 B .向右平移6π个单位 C .向左平移3π个单位D .向左平移6π个单位5.已知数列{}n a 满足111222n n n a a a -+++=,*2,n n N ≥∈,且121,2a a ==,则16a = A .4B .5C .6D .86.已知向量(1,2)a =,(4,2)b =-,则a 与b 的夹角为( ) A .6π B .3π C .512π D .2π 7.已知α为第一象限角,5sin cos 4αα+=,则4041cos 22πα⎛⎫-=⎪⎝⎭( ) A .916-B .916C .57D .57168.已知()f x 为定义在R 上的函数,其图象关于y 轴对称,当0x ≥时,有(1)()f x f x +=-,且当[0,1)x ∈时,2()log (1)=+f x x ,若方程()0f x kx -=(0k >)恰有5个不同的实数解,则k 的取值范围是( ) A .11[,)74B .11[,)64C .11[,)65D .11[,)759.PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在335/g m μ以下空气质量为一级,在3335/~75/g m g m μμ之间空气质量为二级,在375/g m μ以上空气质量为超标.如图是某地11月1日到10日PM2.5日均值(单位:3/g m μ)的统计数据,则下列叙述不正确的是( )A .这10天中有4天空气质量为一级B .这10天中PM2.5日均值最高的是11月5日C .从5日到9日,PM2.5日均值逐渐降低D .这10天的PM2.5日均值的中位数是4510.等差数列{}n a 中,14736939,27a a a a a a ++=++=,则数列{}n a 前9项的和9S 等于( ) A .66B .99C .144D .29711.下列函数中,最小值为2的函数是( ) A .1y x x=+B .1sin 0sin 2y πθθθ⎛⎫=+<< ⎪⎝⎭C .1sin (0)sin y θθπθ=+<< D .222y x =+12.设函数是定义在上的奇函数,当时,,则不等式的解集为( ) A .B .C .D .二、填空题:本题共4小题13.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n = . 14.已知无穷等比数列{}n a 的首项为1a ,公比为q ,且13lim 1n n q q a →∞+-⎫⎪⎝⎭=⎛,则首项1a 的取值范围是________. 15.若()sin3f x x π=,则()()()()1232016f f f f ++++=__________.16.在等比数列{}n a 中,已知1232341,2a a a a a a ++=++=,则8910a a a ++=________________. 三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年上海中学高一下学期期中数学试卷(有解析)

2019-2020学年上海中学高一下学期期中数学试卷(有解析)

2019-2020学年上海中学高一下学期期中数学试卷一、单选题(本大题共6小题,共18.0分)1.若sin(π+α)=√53且α∈(−π2,0),则cos(π−α)=()A. −23B. −√53C. 23D. ±232.若sinαsinβ=1,则cos(α+β)=()A. 1B. −1C. 0D. 0或−13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2)的部分图象如图所示,则f(x)的解析式是()A. f(x)=2sin(2x+π3)B. f(x)=2sin(x+π3)C. f(x)=2sin(2x+π6)D. f(x)=2sin(x+π6)4.函数f(x)=cos(π6−x)的单调递减区间是()A. [2kπ+π6,2kπ+7π6],k∈Z B. [2kπ−5π6,2kπ+π6],k∈ZC. [2kπ+7π6,2kπ+13π6],k∈Z D. [2kπ,2kπ+π],k∈Z5.求满足2x(2sinx−√3)≥0,x∈(0,2π)的角α的集合()A. (0,π3) B. [π3,2π3] C. [π3,π2] D. [π2,2π3]6.在△ABC中,角A、B、C的对边分别为a,b,c,且ctanC=√3acosB+√3bcosA,若c=√7,a=2,则b的值为()A. 3B. 1C. 2D. √2二、单空题(本大题共10小题,共30.0分)7.点P是角α的终边上的一点,且P(3,−4),则sinα−cosα=______ .8.函数y=3sin(π2x+3)的最小正周期为________。

9.在单位圆中,面积等于1的扇形所对的圆心角的弧度数为____.10.已知(x0,0)是函数f(x)=3sin(x+π6)图象的一个对称中心,则tan(5π+x0)=.11.已知α,β∈(0,π2),sin(α−β)=35,cosβ=1213,则sinα=______.12.已知,则的值为_________.13.若,则的值为__________.14.在△ABC中,角A,B,C所对边长分别为a,b,c,若b2+c2=4a2,则cos A的最小值为______.15.函数y=2sin(3x+π3)在区间[−π6,π3]上的最小值为__________.16.函数y=x+5x−a在(−1,+∞)上是单调递减函数,则实数a的取值范围是____.三、解答题(本大题共5小题,共60.0分)17.已知α为第三象限角,f(α)=sin(α−π2)cos(3π2+α)tan(π−α)tan(−α−π)sin(−α−π).(1)化简f(α);(2)若f(α)=45,求tanα18.设函数的最小正周期为.(1)若f(α2+3π8)=2425,且α∈(−π2,π2),求tanα的值.(2)“五点法”画出函数y=f(x)在区间[0,π]上的简图.(3)y=f(x)的图象经过怎样的图象变换,可以得到y=sinx的图象.y=f(x)→ _____________ →y=sinx19.已知sinα=23,α∈(π2,π),cosβ=−35,β∈(π,3π2),求sin(α+β)的值.20.如图所示,在斜度一定的山坡上的一点A测得山顶上一建筑物顶端C对于山坡的斜度为15°,向山顶前进100米后到达点B,又从点B 测得斜度为45°,建筑物的高CD为50米.求此山对于地平面的倾斜角θ的余弦值.21.已知函数f(x)=2√3sin(x+π4)cos(x+π4)+sin2x+a的最大值为1.(1)求实数a的值;(2)若将f(x)的图象向左平移π6个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π2]上的最小值.【答案与解析】1.答案:A解析:解:∵sin(π+α)=√53,∴sinα=−√53,且α∈(−π2,0),∴cosα=√1−sin 2α=23,则cos(π−α)=−cosα=−23. 故选:A .已知等式利用诱导公式化简求出sinα的值,根据α的范围,利用同角三角函数间基本关系求出cosα的值,所求式子利用诱导公式化简后将cosα的值代入计算即可求出值. 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.2.答案:B解析:解:由sinαsinβ=1,得cosαcosβ=0, ∴cos(α+β)=cosαcosβ−sinαsinβ=−1. 故选:B .由sinαsinβ=1,得cosαcosβ=0,利用两角和的余弦函数公式可得答案. 本题考查两角和与差的余弦公式,考查学生的运算能力,属基础题.3.答案:B解析:本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,属于基础题.由函数的图象的顶点坐标求出A ,由周期求出ω,由f (76π)=−2结合0<φ<π2求出φ的值. 解:由函数过点(2π3,0),(7π6,−2) 可得A =2,14T =π2ω=7π6−2π3=π2则ω=1,即f (x )=2sin (x +φ),又f(76π)=−2,即sin(76π+φ)=−1,所以76π+φ=32π+2kπ(k∈Z),又0<φ<π2,所以φ=π3,所以函数f(x)=2sin(x+π3).故选B.4.答案:A解析:本题考查了余弦函数的单调性,属于基础题.先根据余弦函数的单调性判断出单调递减时x−π6的范围,进而求得x的范围,求得函数的单调递减区间.解:对于函数,∵y=cosx的单调减区间为[2kπ,2kπ+π],k∈Z,∴2kπ≤x−π6≤2kπ+π,k∈Z,解得2kπ+π6≤x≤2kπ+7π6,k∈Z,故函数f(x)的单调减区间为[2kπ+π6,2kπ+7π6],k∈Z故选A.5.答案:B解析:解:∵满足2x(2sinx−√3)≥0,2x>0.∴sinx≥√32,∵x∈(0,2π),∴π3≤x≤2π3,故选:B.满足2x(2sinx−√3)≥0,化为sinx≥√32,由于x∈(0,2π),利用正弦函数的单调性即可得出.本题考查了指数函数的单调性、正弦函数的单调性,属于基础题.6.答案:A解析:本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.由正弦定理,两角和的正弦函数公式化简已知等式可得sinCtanC =√3sinC ,结合sinC ≠0,可求得tanC =√3,结合范围C ∈(0,π),可求C ,进而根据余弦定理b 2−2b −3=0,解方程可求b 的值. 解:∵ctanC =√3acosB +√3bcosA ,∴由正弦定理可得:sinCtanC =√3(sinAcosB +sinBcosA)=√3sin(A +B)=√3sinC , ∵sinC ≠0, ∴可得tanC =√3, ∵C ∈(0,π), ∴C =π3, ∵c =√7,a =2,∴由余弦定理c 2=a 2+b 2−2abcosC ,可得7=4+b 2−2×2×b ×12,可得b 2−2b −3=0, ∴解得b =3,或b =−1(负值舍去). 故选A .7.答案:−73解析:解:∵|OP|=√32+(−4)2=5, ∴sinα=−45,cosα=35. ∴sinα−cosα=−45−35=−75.故答案为:−75.利用三角函数的定义即可得出.本题考查了三角函数的定义,属于基础题.8.答案:4解析:本题考查三角函数的周期公式.依题意,最小正周期为2ππ2=4,即可得到结果.解:因为y=3sin(π2x+3),所以最小正周期为2ππ2=4,故答案为4.9.答案:2解析:本题考查了扇形的面积公式应用问题,根据扇形的面积公式,计算该扇形的圆心角弧度数即可,是基础题.解:由题意可知扇形的半径为r=1,面积为S=1,则S=12α⋅r2=12α=1,α=2,∴该扇形的圆心角α的弧度数是2.故答案为2.10.答案:−√33解析:本题主要考查正弦函数的图像及性质和正切的诱导公式及周期,属于基础题.首先根据正弦函数的图像和性质求出x0,然后利用诱导公式求正切即可.解:因为(x0,0)是函数f(x)=3sin(x+π6)图象的一个对称中心,所以x0+π6=kπ(k∈Z),即x0=kπ−π6(k∈Z),所以tan(5π+x0)=tanx0=tan(kπ−π6)=−tanπ6=−√33.11.答案:5665解析:解:α,β∈(0,π2),sin(α−β)=35,cosβ=1213,可得cos(α−β)=√1−sin2(α−β)=45,sinβ=√1−cos2β=513,sinα=sin(α−β+β)=sin(α−β)cosβ+cos(α−β)sinα=35×1213+45×513=5665.故答案为:5665.利用同角三角函数基本关系式以及两角和与差的正弦函数化简求解即可.本题考查同角三角函数基本关系式以及两角和与差的三角函数,考查计算能力.12.答案:78解析:题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,属于基础题.由诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算求值.解:,,∴sin2x=cos(π2−2x)=1−2sin2(π4−x)=78.故答案为78.13.答案:解析:,则14.答案:34解析:本题考查了余弦定理和基本不等式的应用问题,是基础题.利用余弦定理和基本不等式,即可求得cos A的最小值.解:△ABC中,b2+c2=4a2,则a2=14(b2+c2),由余弦定理得,cosA=b2+c2−a22bc=b2+c2−14(b2+c2)2bc=3(b2+c2)8bc ≥3×2bc8bc=34,当且仅当b=c时取等号,∴cosA的最小值为34.故答案为:34.15.答案:−√3解析:因为x∈[−π6,π3],所以3x+π3∈[−π6,4π3],所以当3x+π3=4π3时,函数y=2sin(3x+π3)有最小值−√3...16.答案:(−5,−1]解析:本题以分式函数为例,考查了函数的单调性的判断与证明,属于基础题.题中的分式函数与反比例函数有关,因此用反比例函数的图象研究比较恰当.根据题意,将题中的函数分离常数,变形为y=1+a+5x−a ,进而研究反比例函数y=a+5x在区间(0,+∞)上是一个单调减的函数,从而得出实数a的取值范围.解:函数y=x+5x−a =1+a+5x−a函数的图象可由函数y=a+5x的图象先向右平移a个单位,再向上平移1个单位而得,∵函数在(−1,+∞)上单调递减,∴{a +5>0a ≤−1,可得−5<a ≤−1, 故答案为(−5,−1].17.答案:解:(1)由f(α)=sin(α−π2)cos(3π2+α)tan(π−α)tan(−α−π)sin(−α−π)=−cosαsinα⋅(−tanα)−tanα⋅sinα=−cosα. (2)∵f(α)=45,即cosα=−45,α为第三象限角,那么:sinα=−√1−cos 2α=−35可得tanα=sinαcosα=34.解析:(1)根据诱导公式化简可得f(α);(2)利用同角三角函数关系式即可得解.本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.18.答案:解:(1)∵函数的最小正周期为, ∴2πω=π,∴ ω=2.可知f(x)=sin(2x −3π4) , 由f(α2+3π8)=2425得:sinα=2425, ∵−π2<α<π2, ∴cosα=725,∴tanα=247.(2)由(1)知f(x)=sin(2x −3π4),于是有: x 0 π8 5π8π y −√22−1 0 1 0 −√22描点,连线,函数y =f(x)在区间[0,π]上的图象如下:(3)把y =f(x)=sin(2x −3π4)图象上点的横坐标变为原来的2倍, 可得函数y =sin(x −3π4)的图象; 再把图象向左平移3π4个单位长度,可得函数y =sinx 的图象.解析:本题主要考查正弦函数的性质,用五点法作函数y =Asin(ωx +φ)在一个周期上的简图,函数y =Asin(ωx +φ)的图象变换规律,属于中档题.(1)由周期可得:f(x)=sin(2x −3π4),然后利用已知结合α的取值范围求解.(2)用五点法作函数y =Asin(ωx +φ)在一个周期上的简图.(3)根据函数y =Asin(ωx +φ)的图象变换规律,可得结论.19.答案:解:∵sinα=23,α∈(π2,π),cosβ=−35,β∈(π,3π2),∴cosα=−√1−sin 2α=−√53,sinβ=−√1−cos 2β=−45, ∴sin(α+β)=sinαcosβ+cosαsinβ=23×(−35)+(−√53)×(−45)=4√5−615. 解析:由已知利用同角三角函数基本关系式可求cosα,sinβ的值,进而利用两角和的正弦函数公式即可计算得解sin(α+β)的值.本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于基础题.20.答案:解:在△ABC 中,∠BAC =15°,AB =100米,∠ACB =45°−15°=30°. (3分)根据正弦定理有100sin30∘=BC sin15∘,∴BC =100sin15°sin30∘. (6分)又在△BCD 中,∵CD =50,BC =100sin15°sin30∘,∠CBD =45°,∠CDB =90°+θ,根据正弦定理有50sin45∘=100sin15°sin30∘sin(90∘+θ).(10分)解得cosθ=√3−1(12分)解析:在△ABC中,根据正弦定理求出BC,在△BCD中,推出∠CDB=90°+θ,通过正弦定理转化求解即可.本题考查正弦定理的实际应用,解三角形的方法,考查计算能力.21.答案:解:(1)∵函数f(x)=2√3sin(x+π4)cos(x+π4)+sin2x+a=√3cos2x+sin2x+a=2sin(2x+π3)+a≤2+a=1,∴a=−1;(2)将f(x)的图象向左平移π6个单位,得到函数g(x)的图象,∴g(x)=f(x+π6 )=2sin[2(x+π6)+π3]−1=2sin(2x+2π3)−1.当x∈[0,π2]时,2x+2π3∈[2π3,5π3],故当2x+2π3=3π2时,sin (2x+2π3)=−1,函数g(x)取得最小值为−2−1=−3.解析:本题主要考查三角函数的恒等变换及化简求值,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图像和性质,属于中档题.(1)由条件利用三角恒等变换化简函数的解析式为函数f(x)=2sin(2x+π3)+a,可得a=−1.(2)根据函数y=Asin(ωx+φ)的图象变换规律,可得g(x)=2sin(2x+2π3)−1.再根据x∈[0,π2],利用正弦函数的图像和性质求得函数g(x)的最小值.。

上海中学2019-2020学年高一下学期数学阶段性练习(PDF版)

上海中学2019-2020学年高一下学期数学阶段性练习(PDF版)

上海中学2019学年高一第二学期数学阶段性练习一、填空题(每空3分,共30分)1.己知点>1(2,-1)在角。

的终边上,则sm a =2.函数y = sin(^.v + 2)的最小正周期是4. 己知函数/(.v) = sm.v(.re[0,^])和函数g(x) = :tanx 的图像交于n B , C 三点,则AABC 的面积为5. 在平面直角坐标系xQy 中.角。

与角0都以工轴正半轴为始边.它们的终边关于y 轴对称.若sina = |,则 cos(a -/?) =,人 36. __________________________________ 己知 sin x ——=-,则 sin lx -i 们5r s 小 、sin 2.x-cos 2.v+cos 2xcos 2v-siifxsiir v . I1I(.7. 设 x“£(0,7),且满足 --------------------------- :----------- =1,贝Ox- y= _____________ .sin(.r + y)8. 我国古代数学家秦九韶在《数学九章》中记述了 “三斜求积术”,用现代式子表示即为:在MBC 中,匕4, ZB,a cos B + (b + 3c) cos A = 0 . H. k - 如一 c~ = 2 .则膏 BC 的面枳为围是二、选择题(每题4分,共24分),则 sin(〃 + a)=(2.对任意的锐角aR ,下列不等关系中正确的是()3. 一个扇形半径是2,心角的弧度数是2,则此扇形的面积是/C 所对的边长分别为4, b , c ,则M.BC 的面积S =(a^ + b^c 1< _2-.根据此公式,若9,若函数f (.x) = 2sin 2x + g +a-l(ieA)在区间[o,71上有两个不同的零点土,气,则玉。

的取值范10.已知函数加)二〃1岫 cos a在上单调递减,则实数〃,的取值范围是1.己知 cos a = 4 -J1*C. ±J1-妒D.-kA. siii(a + 0) > sin a + sin 0B. sin(a + 0) > cost + cos pC 向左平移个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市徐汇区位育中学2019-2020学年高一下学期6
月月考数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、填空题
1. 和的等比中项是__________.
2. 在等差数列中,如果,,,那么________
3. 若,,则________
4. 方程,的解集为________(用反三角表示)
5. 已知的三边长分别为3,5,7,则该三角形的外接圆半径等于
_________.
6. 若,则________
7. 函数的值域是______.
8. 关于的方程在上有两个不同解,则的取值范围是________
9. “远望巍巍塔七层,红灯点点倍加增.共灯三百八十一,请问尖头几盏灯?”(选自《九章算法比类大全》诗中所述的尖头有________盏灯
10. 设数列的前项和为,若,(),则
的通项公式为________
11. 已知数列满足,则的最小值为_______
12. 将函数的图像向左平移个单位,再向上平移1个单位,
得到函数的图像,区间(,且)满足:在
上至少含有100个零点,在所有满足上述条件的中,则的最小值为________
二、单选题
13. 下列函数中既是奇函数又在上单调递增的是()
A.B.C.
D.
14. 设是公比为的等比数列,则“”是“为递增数列”的()A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
15. 对于不等式,某同学用数学归纳法证明的过程如下:
(1)当时,,不等式成立.
(2)假设当时,不等式成立,当时,
.
当时,不等式成立,则上述证法()
A.过程全部正确
B.验得不正确
C.归纳假设不正确
D.从到的推理不正确
16. 等差数列的前项和为,若,则下列结论:①,
②,③,④,其中正确的结论有()个
A.1 B.2 C.3 D.4
三、解答题
17. 已知等差数列满足,.
(1)求的通项公式;
(2)设等比数列满足,,问:是否为数列中的项?若是的话,求出项数,若不是的话,说明理由.
18. 如图,某公司要在、两地连线上的定点处建造广告牌,其中
为顶端,长35米,长80米,设、在同一水平面上,从和看
的仰角分别为和,现测得,,求与的长.(结果精确到0.01米)
19. 已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若,求的值.
20. 有一个细胞集团最初有细胞10个,每小时内先消亡3个,余下的每个再分裂成2个,设小时后细胞个数为.
(1)求出、,并写出与的递推公式;
(2)求出数列的通项公式,问:至少多少小时后细胞个数超过10000个?
21. 设是公差为的等差数列,是公比为()的等比数列,记
.
(1)令,求证:数列为等比数列;
(2)若,,数列前2项和为14,前8项和为857,求数列
通项公式;
(3)在(2)的条件下,问:数列中是否存在四项、、、成等差数列?请证明你的结论.。

相关文档
最新文档