2015-2016年北京海淀高三上学期期末文科数学试题及答案
2016-2017年北京市海淀区高三上学期期末数学试卷(文科)和答案
第 5 页(共 20 页)
2016-2017 学年北京市海淀区高三 (上) 期末数学试卷 (文 科)
参考答案与试题解析
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选 出符合题目要求的一项. 1. (5 分)复数 i(2﹣i)在复平面内对应的点的坐标为( A. (﹣2,1) B. (2,﹣1) C. (1,2) D. (﹣1,2) 【解答】解:复数 i(2﹣i)=2i+1 在复平面内对应的点的坐标为(1,2) , 故选:C. )
3. (5 分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( A. B.y=﹣x2 C.y=log2x D.y=|x|+1 =0, ( )• =2,则| |=( )
4. (5 分)已知向量 , 满足 A. B.1 C. D.2
5. (5 分)如图程序框图所示的算法来自于《九章算术》 ,若输入 a 的值为 16,b 的值为 24,则执行该程序框图的结果为( )
三、解答题共 6 小题,共 80 分.解答应写出文字说明、演算步骤或证明过程. 15. (13 分)已知数列{an} 是各项均为正数的等比数列,且 a2=1,a3+a4=6 (Ⅰ)求数列{an} 的通项公式; (Ⅱ)设数列{an﹣n} 的前 n 项和为 Sn,比较 S4 和 S5 的大小,并说明理由. 16. (13 分)已知函数 (Ⅰ)求 f(x) 的定义域及 (Ⅱ)求 f(x) 在 的值; 上的单调递增区间.
19. (13 分)已知椭圆 的右顶点 A(2,0) ,且交椭圆 G 于另一点 C (Ⅰ)求椭圆 G 的标准方程;
的离心率为
,直线 l 过椭圆 G
第 4 页(共 20 页)
(Ⅱ)若以 AC 为直径的圆经过椭圆 G 的上顶点 B,求直线 l 的方程. 20. (14 分)已知函数 .
2015年高考文科数学北京卷及答案
数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(北京卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{52}A x x =-<<,{33}B x x =-<<,则AB =( )A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<< 2.圆心为(1,1)且过原点的圆的方程是 ( )A .22(1)(1)1x y -+-=B .22(1)(1)1x y +++=C .22(1)(1)2x y +++=D .22(1)(1)2x y -+-=3.下列函数中为偶函数的是( )A .2sin y x x = B .2cos y x x = C .|ln |y x =D .2x y -=4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,( )A .90B .100C .180D .300 5.执行如果所示的程序框图,输出的k 值为( )A .3B .4C .5D .6 6.设a ,b 是非零向量,“a • b=|a||b|”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1BC D .28.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上. 9.复数i(1i)+的实部为__________.10.32-,123,2log 5三个数中最大的数是___________. 11.在ABC △中,3a =,b =,2π3A ∠=,则B ∠=___________. 12.已知2,0()是双曲线2221y x b-=(0b >)的一个焦点,则b =__________. 13.如图,ABC △及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为___________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是____________;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页)数学试卷 第6页(共15页)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2sin 2xf x x =-().(Ⅰ)求f x ()的最小正周期; (Ⅱ)求f x ()在区间2π[0,]3上的最小值.16.(本小题满分13分)已知等差数列{n a }满足1a +2a =10,4a -3a =2. (Ⅰ)求{n a }的通项公式;(Ⅱ)设等比数列{n b }满足23=b a ,37=b a ;问:6b 与数列{n a }的第几项相等?17.(本小题满分13分)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(本小题满分14分)如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC ,O ,M 分别为AB ,VA 的中点. (Ⅰ)求证:VB ∥平面MOC ; (Ⅱ)求证:平面MOC ⊥平面VAB ; (Ⅲ)求三棱锥V -ABC 的体积.19.(本小题满分13分)设函数2()ln 2x f x k x =-,0k >.(Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.20.(本小题满分14分)已知椭圆22:33C x y +=.过点1,0D ()且不过点2,1E ()的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M . (Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率; (Ⅲ)试判断直线BM 与直线DE 的位置关系,并说明理由.数学试卷 第7页(共15页)数学试卷 第8页(共15页) 数学试卷 第9页(共15页)2015年普通高等学校招生全国统一考试(北京卷)数学(文科)答案解析第Ⅰ卷{|AB x =-【提示】在数轴上,将集合A,B 表示出来,如图所示:AB 为图中阴影部分,即【考点】集合的交集运算 A【解析】||||cos ,a b a b a b =<>,cos ,1a b ∴<>=,即,0a b <>=,//a b .又当//a b 时,,a b <>还可能是π,||||a b a b ∴=-,所以“||||a b a b =”是“//a b ”的充分而不必要故选A.【提示】||||cos ,a b a b a b =<>,由已知得cos ,1a b <>=,即,0a b <>=,//a b .而当//a b ,a b <>还可能是π,此时||||a b a b =-,故“||||a b a b =”是“//a b ”的充分而不【考点】充分必要条件,向量共线 【解析】四棱锥的直观图如图所示:(Ⅰ)()sinf x=(Ⅱ)2π3x≤≤π在区间0,⎛⎝数学试卷第10页(共15页)数学试卷第11页(共15页)数学试卷第12页(共15页)数学试卷 第13页(共15页) 数学试卷 第14页(共15页) 数学试卷 第15页(共15页)。
北京市海淀区2015届高三上学期期末练习数学(文)试题 Word版含答案
海淀区高三年级第一学期期末练习数学(文科)2015、1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷与答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出得四个选项中,选出符合题目要求得一项。
(1)已知全集{|0}U x x=∈>R,集合{|2}A x x=∈≥R,则UC A=()(A){|2}x x∈<R(B){|02}x x∈<<R(C){|2}x x∈≤R(D){|02}x x∈<≤R(2)如图所示,在复平面内,点A对应得复数为z,则z=()A1-2Oyx(A)12i-(B)12i+(C)2i--(D)2i-+(3)已知直线1:(2)10l ax a y+++=,2:20l ax y-+=、若1l∥2l,则实数a得值就是()(A)0或3-(B)2或1-(C)0(D)3-(4)当向量(1,1)==-a c,(1,0)=b时,执行如图所示得程序框图,输出得i值为()(A)5(B)4(C)3(D)2(5)为了解某年级女生五十米短跑情况,从该年级中随机抽取8名女生进行五十跑测试,她们得测试成绩(单位:秒)得茎叶图(以整数部分为茎,7 88 6 1 89 1 5 7 8小数部分为叶)如图所示、由此可估计该年级女生五十米跑成绩及格(及格成绩为9、4秒)得概率为( ) (A )0.375(B )0.625(C )0.5(D )0.125(6)已知函数22()log ()log ()()f x x a x a a =++-∈R 、 命题:p a ∃∈R ,函数()f x 就是偶函数;命题:q a ∀∈R ,函数()f x 在定义域内就是增函数、 那么下列命题为真命题得就是( )(A )q ⌝(B )p q ∧(C )()p q ⌝∧(D )()p q ∧⌝(7)某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示、 记此堆雪从融化开始到结束得平均融化速度为3(m /h)v 、 那么瞬时融化速度等于3(m /h)v 得时刻就是图中得( )(A )1t(B )2t(C )3t(D )4t(8)在正方体1111ABCD A B C D -中,点E 为底面ABCD 上得动点、 若三棱锥1B D EC -得表面积最大,则E 点位于( )(A )点A 处(B )线段AD 得中点处 (C )线段AB 得中点处(D )点D 处二、填空题共6小题,每小题5分,共30分。
2015-2016年北京市海淀区高三(上)期末数学试卷和参考答案(文科)
2015-2016学年北京市海淀区高三(上)期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)复数(1+i)(1﹣i)=()A.2 B.1 C.﹣1 D.﹣22.(5分)已知数列{a n}是公比为2的等比数列,且满足,则a4的值为()A.2 B.4 C.8 D.163.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣14.(5分)如图,在边长为3的正方形内有区域A(阴影部分所示),张明同学用随机模拟的方法求区域A的面积.若每次在正方形内每次随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为()A.5 B.6 C.7 D.85.(5分)某程序框图如图所示,执行该程序,若输入的a值为1,则输出的a 值为()A.1 B.2 C.3 D.56.(5分)若点(2,﹣3)不在不等式组表示的平面区域内,则实数a的取值范围是()A.(﹣∞,0)B.(﹣1,+∞)C.(0,+∞)D.(﹣∞,﹣1)7.(5分)已知函数则下列结论正确的是()A.∃x0∈R,f(﹣x0)≠﹣f(x0)B.∀x∈R,f(﹣x)≠f(x)C.函数f(x)在上单调递增D.函数f(x)的值域是[﹣1,1] 8.(5分)已知点A(5,0),抛物线C:y2=4x的焦点为F,点P在抛物线C上,若点F恰好在PA的垂直平分线上,则PA的长度为()A.2 B.C.3 D.4二、填空题共6小题,每小题5分,共30分.9.(5分)lga+lgb=1,则ab=.10.(5分)已知双曲线的一条渐近线过点(1,2),则b=,其离心率为.11.(5分)某三棱柱的三视图如图所示,则该三棱柱的体积为.12.(5分)直线l经过点A(t,0),且与曲线y=x2相切,若直线l的倾斜角为45°,则t=.13.(5分)已知圆(x﹣a)2+y2=4截直线y=x﹣4所得的弦的长度为,则a=.14.(5分)已知△ABC,存在△A1B1C1,满足==,则称△A1B1C1是△ABC的一个“友好”三角形.(1)在满足下列条件的三角形中,存在“友好:三角形的是;(请写出符合要求的条件的序号)①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°(2)若△ABC存在”友好“三角形,且A=70°,则另外两个角的度数分别为.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)等差数列{a n}的首项a1=1,其前n项和为S n,且a3+a5=a4+7.(Ⅰ)求{a n}的通项公式;(Ⅱ)求满足不等式S n<3a n﹣2的n的值.16.(13分)已知函数f(x)=2cosx(sinx+cosx)﹣1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值与最小值的和.17.(13分)为了研究某种农作物在特定温度下(要求最高温度t满足:27℃≤t≤30℃)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验.现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D1,D2,估计D1,D2的大小?(直接写出结论即可).(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.18.(14分)如图,四边形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,点F为PA的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅱ)求证:平面PAE⊥平面PAD;(Ⅲ)求三棱锥P﹣ADE的体积.19.(13分)已知函数.(Ⅰ)当k=1时,求函数f(x)单调区间和极值;(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.20.(14分)如图,椭圆的离心率为,其左顶点A在圆O:x2+y2=16上.(Ⅰ)求椭圆W的方程;(Ⅱ)直线AP与椭圆W的另一个交点为P,与圆O的另一个交点为Q.(i)当时,求直线AP的斜率;(ii)是否存在直线AP,使得?若存在,求出直线AP的斜率;若不存在,说明理由.2015-2016学年北京市海淀区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)复数(1+i)(1﹣i)=()A.2 B.1 C.﹣1 D.﹣2【解答】解:(1+i)(1﹣i)=1﹣i2=1+1=2,故选:A.2.(5分)已知数列{a n}是公比为2的等比数列,且满足,则a4的值为()A.2 B.4 C.8 D.16【解答】解:∵数列{a n}是公比为2的等比数列,且满足,∴=0,解得a1=1,∴a4=1×23=8.故选:C.3.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣1【解答】解:由题意正方形ABCD中,E为DC的中点,可知:=.则λ+μ的值为:.故选:A.4.(5分)如图,在边长为3的正方形内有区域A(阴影部分所示),张明同学用随机模拟的方法求区域A的面积.若每次在正方形内每次随机产生10000个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6600个,则区域A的面积约为()A.5 B.6 C.7 D.8【解答】解:由题意,∵在正方形中随机产生了10000个点,落在区域A内点的个数平均值为6600个,∴概率P==,∵边长为3的正方形的面积为9,∴区域A的面积的估计值为≈6.故选:B.5.(5分)某程序框图如图所示,执行该程序,若输入的a值为1,则输出的a 值为()A.1 B.2 C.3 D.5【解答】解:模拟执行程序框图,可得a=1i=1a=2×1﹣1=1,i=2,不满足条件i>3,a=2×2﹣1=3,i=3不满足条件i>3,a=2×3﹣3=3,i=4满足条件i>3,退出循环,输出a的值为3.故选:C.6.(5分)若点(2,﹣3)不在不等式组表示的平面区域内,则实数a的取值范围是()A.(﹣∞,0)B.(﹣1,+∞)C.(0,+∞)D.(﹣∞,﹣1)【解答】解:点(2,﹣3)不在不等式组表示的平面区域内,可知(2,﹣3)满足x﹣y≥0,满足x+y﹣2≤0,所以不满足ax﹣y﹣1≤0,即2a+3﹣1>0,解得a>﹣1.故选:B.7.(5分)已知函数则下列结论正确的是()A.∃x0∈R,f(﹣x0)≠﹣f(x0)B.∀x∈R,f(﹣x)≠f(x)C.函数f(x)在上单调递增D.函数f(x)的值域是[﹣1,1]【解答】解:分段函数的图象如图:可知:A不正确;∀x∈R,f(﹣x)≠f(x),B不正确;函数f(x)在上单调递增,所以C不正确;函数f(x)的值域是[﹣1,1],所以D正确.不正确的选项为D.故选:D.8.(5分)已知点A(5,0),抛物线C:y2=4x的焦点为F,点P在抛物线C上,若点F恰好在PA的垂直平分线上,则PA的长度为()A.2 B.C.3 D.4【解答】解:点A(5,0)在x轴上,抛物线C:y2=4x的焦点为F(1,0),点P在抛物线C上,若点F恰好在PA的垂直平分线上,可知三角形PFA是等腰三角形,即:|PF|=|AF|,可得|PF|=4,由抛物线的定义可知,P的横坐标为:3,纵坐标为:2.则PA的长度为:=4.故选:D.二、填空题共6小题,每小题5分,共30分.9.(5分)lga+lgb=1,则ab=10.【解答】解:由lga+lgb=1,得:lg(ab)=1,所以,ab=10.故答案为10.10.(5分)已知双曲线的一条渐近线过点(1,2),则b=2,其离心率为.【解答】解:双曲线的一条渐近线y=bx,过点(1,2),可得b=2,a=1,c=,可得双曲线的离心率为:e=.故答案为:2;.11.(5分)某三棱柱的三视图如图所示,则该三棱柱的体积为4.【解答】解:由三视图可知三棱柱的底面为直角边为2等腰直角三角形,棱柱的高为2,这是一个歪放的三棱柱∴V==4.故答案为4.12.(5分)直线l经过点A(t,0),且与曲线y=x2相切,若直线l的倾斜角为45°,则t=.【解答】解:设切点为(m,m2),y=x2的导数为y′=2x,即有切线l的斜率为k=2m=tan45°=1,解得m=,可得切点为(,),由1=,解得t=.故答案为:.13.(5分)已知圆(x﹣a)2+y2=4截直线y=x﹣4所得的弦的长度为,则a= 2或6.【解答】解:∵圆(x﹣a)2+y2=4截直线y=x﹣4所得的弦的长度为,圆心(a,0)到直线y=x﹣4的距离d=,∴=,解得a=2或a=6.故答案为:2或6.14.(5分)已知△ABC,存在△A1B1C1,满足==,则称△A1B1C1是△ABC的一个“友好”三角形.(1)在满足下列条件的三角形中,存在“友好:三角形的是②;(请写出符合要求的条件的序号)①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°(2)若△ABC存在”友好“三角形,且A=70°,则另外两个角的度数分别为65°,45°.【解答】解:(1)①若存在友好三角形,则,显然不成立,故①不存在友好三角形.②若存在友好三角形,则,∴a1:b1:c1=sinA1:sinA2:sinA3=:2:2.∴a1+b1=>2,③若存在友好三角形,则,∴a1:b1:c1=sinA1:sinA2:sinA3=::2.∴a1+b1=2(﹣)<2.与三角形两根之和大于第三边矛盾.故③不存在友好三角形.综上,存在友好三角形的是②.(2)C=180°﹣70°﹣B=110°﹣B.∴,即,∴,∵,∴sinA1=sin20°,sinB1=sin(90°﹣B),sinC1=sin(B﹣20°),∴A1=20°或160°,B1=90°﹣B,或B1=90°+B,C1=B﹣20°或200°﹣B.∵A1+B1+C1=180°,∴20°+90°﹣B+200°﹣B=180°,或20°+90°+B+B﹣20°=180°,解得B=65°,或者B=45°.∴C=45°,或C=65°.故答案为65°,45°.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)等差数列{a n}的首项a1=1,其前n项和为S n,且a3+a5=a4+7.(Ⅰ)求{a n}的通项公式;(Ⅱ)求满足不等式S n<3a n﹣2的n的值.【解答】解:(Ⅰ)设数列{a n}的公差为d.….(1分)因为a3+a5=a4+7,所以2a1+6d=a1+3d+7.….(3分)因为a1=1,所以3d=6,即d=2,….(5分)所以a n=a1+(n﹣1)d=2n﹣1.….(7分)(Ⅱ)因为a1=1,a n=2n﹣1,所以,….(9分)所以n2<3(2n﹣1)﹣2,所以n2﹣6n+5<0,….(11分)解得1<n<5,所以n的值为2,3,4.….(13分)16.(13分)已知函数f(x)=2cosx(sinx+cosx)﹣1.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值与最小值的和.【解答】解:(Ⅰ)因为f(x)=2cosx(sinx+cosx)﹣1=sin2x+cos2x….(4分)=….(6分)所以函数f(x)的最小正周期.….(8分)(Ⅱ)因为,所以,所以,….(9分)根据函数f(x)=sinx的性质,当时,函数f(x)取得最小值,….(10分)当时,函数f(x)取得最大值.….(11分)因为,所以函数f(x)在区间上的最大值与最小值的和为0.….(13分)17.(13分)为了研究某种农作物在特定温度下(要求最高温度t满足:27℃≤t ≤30℃)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验.现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D1,D2,估计D1,D2的大小?(直接写出结论即可).(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.【解答】解:(Ⅰ)研究某种农作物在特定温度下(要求最高温度t满足:27℃≤t≤30℃)的生长状况,由关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录,得到农学家观察试验的起始日期为7日或8日.….(3分)(少写一个扣1分)(Ⅱ)最高温度的方差大,即D1>D2.….(6分)(Ⅲ)设“连续三天平均最高温度值都在[27,30]之间”为事件A,….(7分)则基本事件空间可以设为Ω={(1,2,3),(2,3,4),(3,4,5),…,(29,20,31)},共计29个基本事件….(9分)由图表可以看出,事件A中包含10个基本事件,….(11分)所以,….(13分)所选3天每天日平均最高温度值都在[27,30]之间的概率为.18.(14分)如图,四边形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,点F为PA的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅱ)求证:平面PAE⊥平面PAD;(Ⅲ)求三棱锥P﹣ADE的体积.【解答】解:(Ⅰ)取AD中点G,连接FG,BG,∵点F为PA的中点,∴FG∥PD且.∵BE∥PD,且,∴BE∥FG,BE=FG,∴四边形BGFE为平行四边形.∴EF∥BG,又∵EF⊄平面ABCD,BG⊂平面ABCD,∴EF∥平面ABCD.(Ⅱ)连接BD.∵四边形ABCD为菱形,∠DAB=60°,∴△ABD为等边三角形.∵G为AD中点,∴BG⊥AD,∵PD⊥平面ABCD,BG⊂平面ABCD,∴PD⊥BG,又∵PD∩AD=D,AD⊂平面PAD,PD⊂平面PAD,∴BG⊥平面PAD.∵四边形BGFE为平行四边形,∴EF∥BG,∴EF⊥平面PAD,又∵EF⊂平面PAE,∴平面PAE⊥平面PAD.(Ⅲ)∵△ABD为等边三角形,AD=2,∴BG=.∵.,∴V=V棱锥E﹣ADP=S△PAD•EF=.棱锥P﹣ADE19.(13分)已知函数.(Ⅰ)当k=1时,求函数f(x)单调区间和极值;(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.【解答】解:(Ⅰ)函数的定义域为(0,+∞).….(1分).….(3分)当k=1时,,令f'(x)=0,得x=1,….(4分)所以f'(x),f(x)随x的变化情况如下表:….(6分)所以f(x)在x=1处取得极小值f(1)=1,无极大值.….(7分)f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).….(8分)(Ⅱ)因为关于x的方程f(x)=k有解,令g(x)=f(x)﹣k,则问题等价于函数g(x)存在零点,….(9分)所以.….(10分)令g'(x)=0,得.当k<0时,g'(x)<0对(0,+∞)成立,函数g(x)在(0,+∞)上单调递减,而g(1)=1﹣k>0,,所以函数g(x)存在零点.….(11分)当k>0时,g'(x),g(x)随x的变化情况如下表:所以为函数g(x)的最小值,当时,即0<k<1时,函数g(x)没有零点,当时,即k≥1时,注意到,所以函数g(x)存在零点.综上,当k<0或k≥1时,关于x的方程f(x)=k有解.….(13分)法二:因为关于x的方程f(x)=k有解,所以问题等价于方程1+kx(lnx﹣1)=0有解,….(9分)令g(x)=kx(lnx﹣1)+1,所以g'(x)=klnx,….(10分)令g'(x)=0,得x=1当k<0时,g'(x),g(x)随x的变化情况如下表:所以函数g(x)在x=1处取得最大值,而g(1)=k(﹣1)+1>0.,所以函数g(x)存在零点.….(11分)当k>0时,g'(x),g(x)随x的变化情况如下表:所以函数g(x)在x=1处取得最小值,而g(1)=k(﹣1)+1=1﹣k.当g(1)=k(﹣1)+1=1﹣k>0时,即0<k<1时,函数g(x)不存在零点.当g(1)=k(﹣1)+1=1﹣k≤0,即k≥1时,g(e)=ke(lne﹣1)+1=1>0所以函数g(x)存在零点.….(13分)综上,当k<0或k≥1时,关于x的方程f(x)=k有解.法三:因为关于x的方程f(x)=k有解,所以问题等价于方程有解,….(9分)设函数g(x)=x(1﹣lnx),所以g'(x)=﹣lnx.….(10分)令g'(x)=0,得x=1,g'(x),g(x)随x的变化情况如下表:所以函数g(x)在x=1处取得最大值,而g(1)=1,….(11分)又当x>1时,1﹣lnx<0,所以x(1﹣lnx)<1﹣lnx,所以函数g(x)的值域为(﹣∞,1],….(12分)所以当时,关于x的方程f(x)=k有解,所以k∈(﹣∞,0)∪[1,+∞).….(13分)20.(14分)如图,椭圆的离心率为,其左顶点A在圆O:x2+y2=16上.(Ⅰ)求椭圆W的方程;(Ⅱ)直线AP与椭圆W的另一个交点为P,与圆O的另一个交点为Q.(i)当时,求直线AP的斜率;(ii)是否存在直线AP,使得?若存在,求出直线AP的斜率;若不存在,说明理由.【解答】解:(Ⅰ)∵椭圆W的左顶点A在圆O:x2+y2=16上,∴a=4.又离心率为,∴,则,∴b2=a2﹣c2=4,∴W的方程为;(Ⅱ)法一:(i)设点P(x1,y1),Q(x2,y2),显然直线AP存在斜率,设直线AP的方程为y=k(x+4),与椭圆方程联立得,化简得到(1+4k2)x2+32k2x+64k2﹣16=0,∵﹣4为上面方程的一个根,∴,则.由,代入得到,解得k=±1,∴直线AP的斜率为1,﹣1;(ii)∵圆心到直线AP的距离为,∴.∵,代入得到.显然,∴不存在直线AP,使得.法二:(i)设点P(x1,y1),Q(x2,y2),显然直线AP存在斜率且不为0,设直线AP的方程为x=my﹣4,与椭圆方程联立得,化简得到(m2+4)y2﹣8my=0,显然﹣4上面方程的一个根,∴另一个根,即,由,代入得到,解得m=±1.∴直线AP的斜率为1,﹣1;(ii)∵圆心到直线AP的距离为,∴.∵,代入得到.若,则m=0,与直线AP存在斜率矛盾,∴不存在直线AP,使得.。
2015年北京高考数学(文科)试题及答案
2015年北京高考文科数学试题及答案2015年普通高等学校招生全国统一考试数学(文)(北京卷)一、选择题共8小题,每小题5分,共40分。
(1)若集合A={x|-5<x <2},B={x|-3<x <3},则A B=( )A. -3<x <2B. -5<x <2C. -3<x <3D. -5<x <3(2)圆心为(1,1)且过原点的圆的方程是( )(A )(x-1)2+(y-1)2=1 (B )(x+1)2+(y+1)2=1(C )(x+1)2+(y+1)2=2 (D )(x-1)2+(y-1)2=2(3)下列函数中为偶函数的是( )(A )y=x ²sinx (B )x x y cos 2= (C )x y ln = (D )x y -=2(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( )(A )90 (B )100 (C )180 (D )300类别人数 老年教师900 中年教师1800 青年教师1600 合计 4300(5)执行如果所示的程序框图,输出的k 值为( )(A )3 (B )4 (C)5 (D)6(6)设a ,b 是非零向量,“a ·b=IaIIbI ”是“a//b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )(A)1 (B )错误!未找到引用源。
(B )错误!未找到引用源。
(D)2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )(A )6升 (B )8升 (C )10升 (D )12升二、填空题(共6小题,每小题5分,共30分)(9)复数()i i +1的实部为(10)32- , 213 , log 25三个数中最大数的是 (11)在△ABC 中,a=3,b=错误!未找到引用源。
2015年高三上学期期末考试名校联考(文科)数学试题及答案
2015年高三上学期期末名校联考数学试卷(文科)一、选择题(每小题5分,共60分)1. 复数224(1)i i ++的共轭复数是( ) A. 2i + B. 2i -+ C. 2i - D. 2i --2. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A. 112 B. 110 C. 15 D. 3103. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A. 4B. 14-C. 2D. 12- 4. 已知点(,)P x y 在不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动,则z x y =-的取值范围是( )A. []2,1--B. []2,1-C. []1,2-D. []1,25. 设,x y 是两个实数,则“,x y 中至少有一个数大于1”是“222x y +>”成立的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件6.设在△ABC 中,3AB BC ==,30ABC ∠=︒,AD 是边BC 上的高,则AD AC 的值等于( )A. 0B. 94C. 4D. 94- 7. 设集合{}2|230A x x x =+->,集合{}2|210,0B x x ax a =--≤>。
若A B 中恰含有一个整数u ,则实数a 的取值范围是( ) A. 30,4⎛⎫ ⎪⎝⎭ B. 34,43⎡⎫⎪⎢⎣⎭ C. 3,4⎡⎫+∞⎪⎢⎣⎭ D. ()1,+∞8. 等差数列{}n a 的前n 项和为*()n S n N ∈,且满足150S >,160S <,则11S a ,22S a ,…,1515S a 中最大的项为( ) A. 66S a B. 77S a C. 99S a D. 88S a 9. 三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC 外接球的体积是( ) A. 202π B. 12526π C. 12523π D. 50π 10. 已知双曲线的两个焦点分别为1(5,0)F -,2(5,0)F ,P 是双曲线上的一点,12PFPF ⊥且122PF PF =,则双曲线方程是( )A. 22123x y -=B. 2214x y -=C. 22132x y -= D. 2214y x -= 11. 在如图所示的程序框图中,当*(1)n N n ∈>时,函数()n f x 等于函数1()n f x -的导函数,若输入函数1()sin cos f x x x =+,则输出的函数()n f x可化为( ) A. 2sin()4x π+ B. 2sin()4x π- C. 2sin()4x π-- D. 2sin()4x π-+12. 已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若()1f x ax ≥-,则a 的取值范围是( )A. []2,0-B. []2,1-C. []4,0-D. []4,1-二、填空题(每小题5分,共20分)13. 方程210xx =-的根(,1),x k k k Z ∈+∈,则k=_____。
20152016学年第一学期海淀期中高三数学(文)试题及答案
海淀区高三年级第一学期期中练习数 学(文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{}2|0P x x x =-≤,{}0,1,3,4M =,则集合P M 中元素的个数为C. 3 2. 下列函数中为偶函数的是A.y =B. lg y x = C. ()21y x =- D.2x y =3. 在ABC ∆中,60A ∠=︒, 2,1AB AC ==, 则AB AC ⋅的值为A. 1B. 1-C.12 D.12- 4. 数列{}n a 的前n 项和为n S ,若121n n S S n --=-(2n ≥),且23S =,则1a 的值为 A. 0 B. 1 C. 3 5. 已知函数22()cos sin f x x x =-,下列结论中错误..的是 A. ()cos2f x x = B. ()f x 的最小正周期为πC. ()f x 的图象关于直线0x =对称D. ()f x 的值域为[6. “0x =”是“sin x x =-”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 如图,点O 为坐标原点,点(1,1)A . 若函数x y a =(0a >,且1a ≠)及log b y x =(0b >,且1b ≠)的图象与线段OA 分别交于点M ,N ,且 M ,N 恰好是线段OA 的两个三等分点,则,a b 满足 A. 1a b << B . 1b a << C. 1b a >> D. 1a b >>8. 已知函数1, 1(), 111, 1x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,函数21()4g x ax =+. 若函数()()y f x g x =-恰有2个不同零点,则实数a 的取值范围是 A.(0,)+∞ B.(,0)(2+)-∞∞, C.1(,)(1,+)2-∞-∞ D. (,0)(0,1)-∞二、填空题共6小题,每小题5分,共30分。
2015-2016学年第一学期海淀期中高三数学(文)试题及答案
2015-2016学年第一学期海淀期中高三数学(文)试题及答案海淀区高三年级第一学期期中练习数 学(文科) 2015.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{}2|0P x x x =-≤,{}0,1,3,4M =,则集合P M I 中元素的个数为A.1B.2C. 3D.42. 下列函数中为偶函数的是 A.y = B.lg y x= C.()21y x =-D.2xy =3. 在ABC ∆中,60A ∠=︒,2,1AB AC ==u u u r u u u r , 则AB AC⋅u u u r u u u r的值为A. 1B. 1- C. 12D.12- 4. 数列{}na 的前n 项和为nS ,若121nn SS n --=-(2n ≥),且23S=,则1a 的值为A. 0B. 1C. 3D.55. 已知函数22()cos sin f x x x=-,下列结论中错误..的是 A.()cos2f x x= B. ()f x 的最小正周期为π C. ()f x 的图象关于直线0x =对称 D.()f x 的值域为[6. “0x =”是“sin x x =-”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 如图,点O 为坐标原点,点(1,1)A . 若函数xy a =(0a >,且1a ≠)及log by x =(0b >且1b ≠)的图象与线段OA 分别交于点M,N ,且M,N 恰好是线段OA 的两个三等分点,则,a b 满足 A. 1a b << B . 1b a <<C. 1b a >>D.1a b >>8. 已知函数1, 1(), 111, 1x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,函数21()4g x ax =+. 若函数()()y f x g x =-恰有2个不同零点,则实数a 的取值范围是A.(0,)+∞B.(,0)(2+)-∞∞U ,C.1(,)(1,+)2-∞-∞U D.(,0)(0,1)-∞U二、填空题共6小题,每小题5分,共30分。
北京市海淀区2015 -2016学年度第一学期期末试卷高三文科数学分析
市海淀区2015 -2016学年度第一学期期末试卷高三文科数学分析一、试卷整体分析试卷一直延续市高考文科数学试卷题型分布的特点,同时又符合数学高考改革方向,注重基础知识的考察,中等难度为主,选填全面考察了考纲内容,大题一如既往地保持题型不变,重点考察学生审题、读题、分析试题的能力。
总体难度比较适中,试题分布由易到难、循序渐进,选择填空相对比较简单,简答题后两道(导数、解析)有偏难趋势。
试题的命制典型的呈现出入手容易深入难,多题把关的特点,有较好的区分和选拔意味。
1.回归教材,注重基础试题突出对数学概念的考查,回归课本,注重考查学生对数学概念内涵以外延的理解,而不是对定义、公式、定理等的机械记忆,选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、数列、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.同时,在立体几何、导数等题目上进行了一些微创新,这些题目的设计回归教材和中学教学实际. 2.稳中有变,稳中创新很多试题设计新颖、形式脱俗,注重对学生的“思维能力、数学素养”的考查,重点考查学生的思维过程,坚持“少算多想”的原则,考查学生对数学问题的直观感知、操作、探究等的意识和能力。
对学生读题、审题的要求增大,这给平时不注重对解题的通性通法深刻理解的学生带来了较大的困难。
试卷的整体难度增大,单一知识点考题大幅度减少;中档题目增加,大部分题目考查2个或以上知识点,更加考查学生的综合分析能力,着重数学方法和数学思想的考察,同时对学生计算能力的要求增加.选择题难度主要集中在第7题和第8题,有的同学平时此类型的题目见的较少,需要在考场紧X 的状态下独自解决,这考查了同学在压力状态下分析问题,解决问题的能力.填空题第14题,容易失分。
解答题,第15、16、17、18、是常规题型,第19题、20题难度较大,容易失分。
二、易错点和难点题分析第(7)题:已知函数, 1,()πsin , 1,2x x f x x x ≤⎧⎪=⎨>⎪⎩则下列结论正确的是( ) A .000,()()x f x f x ∃∈-≠-R B .,()()x f x f x ∀∈-≠RC .函数()f x 在ππ[,]22-上单调递增 D .函数()f x 的值域是[1,1]- 【答案】D 【分值】5【解析】显然()f x 是奇函数,所以选项A 错误; 因为当0x =时,()()f x f x -=,所以选项B 错误; 令322222k x k πππππ+≤≤+,解得1434k x k +≤≤+,所以函数sin 2y x π=在区间[14,34]k k ++上单调递减,所以选项C 错误;因为函数,||1y x x =≤的值域为[1,1]-,函数sin 2y x π=,||1x >的值域为[1,1]-,所以函数()f x 的值域为[1,1]-. 故选D .【考查方向】本题考查的知识点有:1.三角函数的奇偶性;2.三角函数的单调性;3.三角函数的值域.【易错点】代数方法易出错,建议画图,直观上判断()x f 是一个R 上的奇函数,即有命题()()x f x f R x p -=-∈∀,:为真命题,所以非()()000x f x f R x p -≠-∈∃,:为假命题.【解题思路】常规方法是逐项检验,但如果能发现选项D 明显正确,则可避免验证其他三项,以节约时间.【举一反三】【2015高考文科3】 下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x = D .2x y -=【答案】B【解析】试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 【归纳方法】考查函数的奇偶性,常规方法是逐项检验.第(8)题:已知点(5,0)A ,抛物线2:4C y x =的焦点为F ,点P 在抛物线C 上,若点F 恰好在PA 的垂直平分线上,则PA 的长度为( ) A .2 B .C . 3D .4 【答案】D 【分值】5【解析】因为点P 在抛物线C 上,所以点C 的坐标可设为2(,)4y y ,则线段PA 的中点Q 的坐标为220(,)82y y+.因为点F 的坐标为(1,0),直线PA 与直线FQ 垂直,所以1PA FQ k k =-,即224412012y y y y ⨯=--+,解得y =±.不妨取点Q 的坐标为,则|PA |2||4QA == .另解:抛物线中焦准距,2=p 由中垂线的定义知415=-==FA PF ,又12+=+=p p x px PF .,所以3=p x ,故()323,P ,()()40325322=-+-=PA【考查方向】本题考查的知识点为:1.中点公式;2.直线垂直的判定与性质;3.两点间距离公式.在近几年高考题出现的频率非常高,属圆锥曲线与直线交汇命题. 【易错点】学生常常想到用代数方法解决几何问题,但是该题在解方程时易出现错误. 【解题思路】题干中如果出现焦点、点在曲线上等与定义有关的字样,应该及时联想定义,往往会事半功倍.【举一反三】1.【2015高考文科12】已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b =.【解析】试题分析:由题意知2,1c a ==,2223b c a =-=,所以b =.【考点】双曲线的焦点.2.【2015高考卷文科20】已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M . (Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率.【答案】(1(2)1. 【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用ce a=计算离心率;第二问,由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与x=3相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c =.所以椭圆C 的离心率c e a ==. (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--. 令3x =,得1(3,2)M y -. 所以直线BM 的斜率112131BM y y k -+==-.考点:椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.【归纳方法】以上问题都是考查圆锥曲线的简单性质,考查了转化与化归的数学思想.一般解决此类问题,要从定义与标准方程出发,找出基本量a,b,c 之间的关系,利用关系,建立等式关系式,再利用圆锥曲线的几何性质解题.第(19)题:已知函数1()ln ,0.f x k x k x=+≠ (Ⅰ)当1k =时,求函数()f x 单调区间和极值;(Ⅱ)若关于x 的方程()f x k =有解,某某数k 的取值X 围.【答案】(Ⅰ)()f x 的极小值(1)1f =,无极大值.()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(Ⅱ)0k <或1k ≥. 【分值】13 【解析】(Ⅰ)函数1()ln f x k x x =+的定义域为(0)+∞,. 21'()kf x x x=-+. 当1k =时,22111'()x f x x x x-=-+=,令'()0f x =,得1x =, 所以'(),()f x f x 随x 的变化情况如下表:所以()f x 在1x =处取得极小值(1)1f =, 无极大值.()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(Ⅱ)因为关于x 的方程()f x k =有解,令()()g x f x k =-,则问题等价于函数()g x 存在零点,所以2211'()k kx g x x x x-=-+=. 令'()0g x =,得1x k=.当0k <时,'()0g x <对(0,)+∞成立,函数()g x 在(0,)+∞上单调递减,而(1)10g k =->,1111111111()(1)110e ee kk kg ek k k ---=+--=-<-<,所以函数()g x 存在零点.当0k >时,'(),()g x g x 随x 的变化情况如下表:所以11()lnln g k k k k k k k=-+=-为函数()g x 的最小值, 当1()0g k >时,即01k <<时,函数()g x 没有零点, 当1()0g k≤时,即1k ≥时,注意到1()0g k k =+->e e , 所以函数()g x 存在零点. 综上,当0k <或1k ≥时,关于x 的方程()f x k =有解. 法二:因为关于x 的方程()f x k =有解,所以问题等价于方程1(ln 1)0kx x +-=有解, 令g()(ln 1)1x kx x =-+,所以'()ln g x k x =, 令'()0g x =,得1x =当0k <时,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最大值,而g(1)(1)10k =-+>.1111111(e)1e(11)1e 0kkk g k k---=+--=-<,所以函数()g x 存在零点.当0k >时,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最小值,而g(1)(1)11k k =-+=-. 当g(1)(1)110k k =-+=->时,即01k <<时,函数()g x 不存在零点. 当g(1)(1)110k k =-+=-≤,即1k ≥时,g(e)e(lne 1)110k =-+=> 所以函数()g x 存在零点.综上,当0k <或1k ≥时,关于x 的方程()f x k =有解. 法三:因为关于x 的方程()f x k =有解,所以问题等价于方程1(1ln )x x k=-有解, 设函数()(1ln )g x x x =-,所以'()ln g x x =-.令'()0g x =,得1x =,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最大值,而g(1)1=, 又当1x >时,1ln 0x -<, 所以(1ln )1ln x x x -<-, 所以函数g()x 的值域为(,1]-∞,所以当1(,1]k∈-∞时,关于x 的方程()f x k =有解,所以(,0)[1,)k ∈-∞+∞. 【考查方向】本题考查了利用导数求函数的单调性与极值,在近几年的高考题出现的频率非常高.【易错点】未注意到函数的定义域致误.最小值小于零的函数不一定有零点. 【解题思路】(Ⅰ)先求出函数 的导函数 ,再利用极值判定定理求得极值与单调性. (Ⅱ)将方程解的问题转换为函数存在零点问题. (Ⅲ)零点存在定理是判断零点的基本方法. 【举一反三】【2015高考卷文科19】设函数()2ln 2x f x k x =-,0k >.(Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(1,e ⎤⎦上仅有一个零点.【答案】(1)单调递减区间是(0,)k ,单调递增区间是(,)k +∞;极小值(1ln )()2k k f k -=; (2)证明详见解析.【解析】由()2ln 2x f x k x =-,0k >得:x k x x k x x f -=-='2)(, 由,0)(='x f 得x=√k.则:所以,()f x 的单调递减区间是k ,单调递增区间是()k +∞;()f x 在x k =(1ln )2k k f k -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.【归纳方法】本题考查导数与函数单调性、零点、不等式等知识,属于中高档题.三、试卷对比分析1.与往年高考题的对比(1)本试卷的选择题、填空题考查了复数、三角函数、简易逻辑、几何概型、解析几何、向量、框图、二项式定理、线性规划等知识点,属于常规题型,是学生在平时训练中常见的类型,除几何概型外,与近几年高考高频考点一致.解答题部分,与2015年高考出题顺序保持一致,试题考查知识也大致相同,学生容易上手.(2)更加注重对数学思想的诠释和对数学能力的考查:例如第7、8、14、20题等,更加考查学生的综合分析能力,着重数学方法和数学思想的考察,同时对学生计算能力的要求增加.新课标试卷命题按照考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,延续了卷的风格。
北京市海淀区高三一学期期末数学文科试题纯word版含答案
海淀区高三年级第一学期期末练习数学(文科) 2013.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i -- 2.向量(1,1),(2,)t ==a b ,若⊥a b ,则实数t 的值为 A. 2- B.1- C. 1D. 23.在等边ABC ∆的边BC 上任取一点P ,则23ABP ABC S S ∆∆≤的概率是 A.13B. 12C. 23D. 564.点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为 A .2 B.3 C. 4 D.55.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A. 4,30n S == B. 4,45n S == C. 5,30n S == D. 5,45n S ==6.已知点(1,0),(cos ,sin )A B αα-, 且||AB =, 则直线AB 的方程为A.y =+y =y =+或y =C.1yx =+或1y x =-- D.y =或y =7.已知函数sin , sin cos ,()cos , sin cos ,x x x f x x x x ≥⎧=⎨<⎩则下面结论中正确的是A.()f x 是奇函数 B.()f x 的值域是[1,1]-C.()f x 是偶函数D.()f x 的值域是[2-8.如图,在棱长为1的正方体1111ABCD A B C D -中,点, E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面,AEF则线段1A P 长度的取值范围是 A.[1,2B. []42C. 2D. 二、填空题:本大题共6小题,每小题5分,共30分.9. tan225的值为________.10.双曲线22133x y -=的渐近线方程为_____;离心率为______.11.数列{}n a 是公差不为0的等差数列,且268a a a +=,则55_____.S a = 12.不等式组0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域为Ω,直线1y k x =-与区域Ω有公共点,则实数k 的取值范围为_________.13.三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为______.14. 任給实数,,a b 定义, 0,, 0.a b a b a b a a b b⨯⨯≥⎧⎪⊕=⎨⨯<⎪⎩设函数()ln f x x x =⊕,则1(2)()2f f +=______;若{}n a 是公比大于0的等比数列,且51a =,123781()()()()(=,f a f a f a f a f a a +++++)则1___.a =三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题满分13分)已知函数21()sin cos cos 2f x x x x =-+,ABC ∆三个内角,,A B C 的对边分别为,,,a b c 且()1f A =.(I )求角A 的大小;(Ⅱ)若7a =,5b =,求c 的值.DABCB 1C 1D 1A 1F E BC DA16. (本小题满分13分)某汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:(I ) 试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);(Ⅱ)现从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,试估计这辆汽 车是A 型车的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,1AB AC AA ==,且E 是BC 中点.(I )求证:1//A B 平面1AEC ; (Ⅱ)求证:1B C ⊥平面1AEC .18.(本小题满分13分)已知函数211()22f x x =-与函数()ln g x a x =在点(1,0)处有公共的切线,设 ()()()F x f x mg x =-(0)m ≠.(I )求a 的值;(Ⅱ)求()F x 在区间[1,e]上的最小值. .EC 1B 1A 1CBA19. (本小题满分14分)已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为 “一阶比增函数”.(Ⅰ) 若2()f x ax ax =+是“一阶比增函数”,求实数a 的取值范围;(Ⅱ) 若()f x 是“一阶比增函数”,求证:12,(0,)x x ∀∈+∞,1212()()()f x f x f x x +<+; (Ⅲ)若()f x 是“一阶比增函数”,且()f x 有零点,求证:()2013f x >有解.海淀区高三年级第一学期期末练习数 学 (文)参考答案及评分规范2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为 21()cos cos 2f x x x x =-+12cos222x x =- πsin(2)6x =-………………6分又π()sin(2)16f A A =-=,(0,)A π∈,………………7分所以ππ7π2(,)666A -∈-, πππ2,623A A -==………………9分(Ⅱ)由余弦定理2222cos a b c bc A =+-得到2π492525cos 3c c =+-⨯,所以25240c c --=………………11分解得3c =-(舍)或 8c =………………13分 所以8c =16.(本小题满分13分) 解:(I )由数据的离散程度可以看出,B 型车在本星期内出租天数的方差较大………………3分(Ⅱ)这辆汽车是A 类型车的概率约为3A 333A,B 10313==+出租天数为天的型车辆数出租天数为天的型车辆数总和这辆汽车是A 类型车的概率为313………………7分 (Ⅲ)50辆A 类型车出租的天数的平均数为3343051567754.6250A x ⨯+⨯+⨯+⨯+⨯==………………9分50辆B 类型车出租的天数的平均数为310410515610754.850B x ⨯+⨯+⨯+⨯+⨯==………………11分答案一:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为4.8,选择B 类型的出租车的利润较大,应该购买B 型车………………13分答案二:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为 4.8,而B 型车出租天数的方差较大,所以选择A 型车 ………………13分 17.(本小题满分14分)解:(I) 连接A C 1交AC 1于点O ,连接EO 因为1ACC A 1为正方形,所以O 为A C 1中点 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B ………………3分 又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC ………………6分(Ⅱ)因为AB AC =,又E 为CB 中点,所以AE BC ⊥………………8分 又因为在直三棱柱111ABC A B C -中,1BB ⊥底面ABC , 又AE ⊂底面ABC , 所以1AE BB ⊥, 又因为1BB BC B =,所以AE ⊥平面11BCC B ,又1B C ⊂平面11BCC B ,所以AE ⊥1B C ………………10分在矩形11BCC B 中, 111tan tan CB C EC C ∠=∠=,所以111CB C EC C ∠=∠, 所以11190CB C EC B ∠+∠=,即11B C EC ⊥………………12分又1AEEC E =,所以1B C ⊥平面11BCC B ………………14分18.(本小题满分13分) 解:(I )因为(1)(1)0,f g ==所以(1,0)在函数(),()f x g x 的图象上又'(),'()af x xg x x==,所以'(1)1,'(1)f g a == 所以1a =………………3分 (Ⅱ)因为211()ln 22F x x m x =--,其定义域为{|0}x x > 2'()m x mF x x x x-=-=………………5分 当0m <时,2'()0m x mF x x x x-=-=>,所以()F x 在(0,)+∞上单调递增,所以()F x 在[1,e]上最小值为(1)0F =………………7分当0m >时,令2'()0m x mF x x x x-=-==,得到120,0x x =>=< (舍)1时,即01m <≤时,'()0F x >对(1,e)恒成立,所以()F x 在[1,e]上单调递增,其最小值为(1)0F =………………9分e ≥时,即2e m ≥时,'()0F x <对(1,e)成立,所以()F x 在[1,e]上单调递减, 其最小值为211(e)e 22F m =--………………11分当1e <,即21e m <<时,'()0F x <对成立,'()0F x >对成立所以()F x 在单调递减,在上单调递增其最小值为1111ln 22222mF m m m m =--=--………13分 综上,当1m ≤时, ()F x 在[1,e]上的最小值为(1)0F =当21e m <<时,()F x 在[1,e]上的最小值为11ln 222mF m m =-- 当2e m ≥时, ()F x 在[1,e]上的最小值为211(e)e 22F m =--.19.(本小题满分14分)解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y +=………………3分(Ⅱ)因为直线的倾斜角为45,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-=………………5分 所以121288288,,77x x x x ∆=+=-=所以1224|||7CD x x =-=………………7分 (Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,A B DA B C ∆∆面积相等,12||0S S -=………………8分 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-= 显然0∆>,方程有根,且221212228412,3434k k x x x x k k-+=-=++………………10分 此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k=++=+………………12分 因为0k ≠,上式1234||||k k =≤==+,(k =所以12||S S -………………14分20.(本小题满分13分)解:(I )由题2()f x ax axy ax a x x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数, 所以0a >………………3分(Ⅱ)因为()f x 是“一阶比增函数”,即()f x x在(0,)+∞上是增函数, 又12,(0,)x x ∀∈+∞,有112x x x <+,212x x x <+所以112112()()f x f x x x x x +<+, 212212()()f x f x x x x x +<+………………5分 所以112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x x f x x f x f x f x x x x x x +++<+=+++所以1212()()()f x f x f x x +<+………………8分 (Ⅲ)设0()0f x =,其中00x >.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >= 法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013n n f t m >⋅>,所以()2013f x > 一定有解 ………………13分法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t= 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立 只要 2013x k>,则有()2013f x kx >>, 所以()2013f x > 一定有解 ………………13分。
2015-2016学年北京市海淀区高二第一学期期末数学(文科)
2015-2016学年北京市海淀区高二第一学期期末数学(文科)一、选择题(共9小题;共45分)1. 已知圆,则其圆心和半径分别为A. ,B. ,C. ,D. ,2. 抛物线的焦点到其准线的距离是A. B. C. D.3. 双曲线的离心率为A. B. C. D.4. 圆与圆的位置关系是A. 相离B. 外切C. 相交D. 内切5. 已知直线的方程为,则直线A. 恒过点且不垂直轴B. 恒过点且不垂直轴C. 恒过点且不垂直轴D. 恒过点且不垂直轴6. 已知直线和直线互相平行,则的取值是A. B. C. D.7. 已知为坐标原点,直线与交于两点,,则A. B. C. D.8. 已知两平面,,两直线,,下列命题中正确的是A. 若,,则B. 若,,且,,则C. 若,,,则D. 若,=,则9. 如图,在正方体中,为的中点,点在正方体表面上移动,且满足,则点和点构成的图形是A. 三角形B. 四边形C. 曲变形D. 五边形二、填空题(共6小题;共30分)10. 已知命题:“”,则:.11. 已知:,:,命题:“若,则”的逆否命题是______,原命题为______ 命题.(填“真”或“假”).12. 双曲线的实轴长为,渐近线的方程为 .13. 已知,为椭圆:的两个焦点,若在椭圆上,且满足,则椭圆的方程为 ______.14. 已知点,若抛物线上的点到直线的距离与到点的距离相等,则 ______ .15. 已知四棱锥的三视图(如图所示),则该四棱锥的体积为______,在该四棱锥的四个侧面中,面积最小的侧面面积是______ .三、解答题(共3小题;共39分)16. 已知圆:过点,.(1)求,的值;(2)若圆截直线所得弦的弦长为,求的值.17. 如图,在三棱柱中,,且,底面,为中点.(1)求证:;(2)求证: 平面;(3)若,,且,写出的值(不需写过程).18. 已知直线:与椭圆:交于两点,.(1)若椭圆的焦点在轴上,求的取值范围;(2)若在椭圆上,且以为直径的圆过点,求直线的方程.四、选择题(共1小题;共5分)19. 已知直线,和平面,且,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案第一部分1. D2. B3. A4. C5. D6. A7. D8. C9. B第二部分10.11. 若,则与不垂直;真12. ;13.14.15. ;第三部分16. (1)由已知可得解得,.(2)由(1)结论可知圆的方程为.圆心到直线的距离为,所以所以或.17. (1)因为底面,所以.因为,,所以平面.所以.(2)连接与交于点,连接,是平行四边形,所以点是的中点.因为为中点,所以在中.因为平面,平面,所以 平面.(3).18. (1)由椭圆:可得,由椭圆的焦点在轴上,可得解得,所以的取值范围是.(2)因为在椭圆:上,所以,所以或(舍),所以椭圆:.设,,由消并化简整理得,,,因为以为直径的圆过点,所以,所以.因为所以或.经检验,或都满足,所以所求直线的方程为或.第四部分19. B。
北京海淀高三文科数学第一学期期末试题及答案
海淀区高三年级第一学期期末练习数 学 (文)参考答案及评分标准2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为 21()cos cos 2f x x x x -+12cos22x x =- πsin(2)6x =-………………6分又π()sin(2)16f A A =-=,(0,)A π∈, ………………7分所以ππ7π2(,)666A -∈-, πππ2,623A A -==………………9分(Ⅱ)由余弦定理2222cos a b c bc A =+-得到2π492525cos 3c c =+-⨯,所以25240c c --=………………11分解得3c =-(舍)或 8c =………………13分 所以8c =16. (本小题满分13分)解:(I )由数据的离散程度可以看出,B 型车在本星期内出租天数的方差较大………………3分(Ⅱ)这辆汽车是A 类型车的概率约为3A 333A,B 10313==+出租天数为天的型车辆数出租天数为天的型车辆数总和这辆汽车是A 类型车的概率为313………………7分 (Ⅲ)50辆A 类型车出租的天数的平均数为3343051567754.6250A x ⨯+⨯+⨯+⨯+⨯==………………9分50辆B 类型车出租的天数的平均数为310410515610754.850B x ⨯+⨯+⨯+⨯+⨯==………………11分答案一:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为4.8,选择B 类型的出租车的利润较大,应该购买B 型车………………13分答案二:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为 4.8,而B 型车出租天数的方差较大,所以选择A 型车 ………………13分17. (本小题满分14分)解:(I) 连接A C 1交AC 1于点O ,连接EO 因为1ACC A 1为正方形,所以O 为A C 1中点 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B ………………3分 又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC ………………6分(Ⅱ)因为AB AC =,又E 为CB 中点,所以AE BC ⊥………………8分 又因为在直三棱柱111ABC A B C -中,1BB ⊥底面ABC , 又AE ⊂底面ABC , 所以1AE BB ⊥, 又因为1BB BC B =,所以AE ⊥平面11BCC B ,又1B C ⊂平面11BCC B ,所以AE ⊥1B C ………………10分在矩形11BCC B 中, 111tan tan CB C EC C ∠=∠=,所以111CB C EC C ∠=∠, 所以11190CB C EC B ∠+∠=,即11B C EC ⊥………………12分 又1AEEC E =,所以1B C ⊥平面11BCC B ………………14分18. (本小题满分13分)解:(I )因为(1)(1)0,f g ==所以(1,0)在函数(),()f x g x 的图象上又'(),'()af x xg x x==,所以'(1)1,'(1)f g a == 所以1a =………………3分 (Ⅱ)因为211()ln 22F x x m x =--,其定义域为{|0}x x > 2'()m x mF x x x x-=-=………………5分当0m <时,2'()0m x mF x x x x-=-=>, 所以()F x 在(0,)+∞上单调递增,所以()F x 在[1,e]上最小值为(1)0F =………………7分当0m >时,令2'()0m x mF x x x x-=-==,得到120,0x x = (舍)1≤时,即01m <≤时,'()0F x >对(1,e)恒成立,所以()F x 在[1,e]上单调递增,其最小值为(1)0F =………………9分e ≥时,即2e m ≥时, '()0F x <对(1,e)成立,所以()F x 在[1,e]上单调递减, 其最小值为211(e)e 22F m =--………………11分当1e <<,即21e m <<时,'()0F x <对成立,'()0F x >对成立 所以()F x在单调递减,在上单调递增其最小值为1111ln 22222mF m m m m =--=--………13分 综上,当1m ≤时, ()F x 在[1,e]上的最小值为(1)0F =当21e m <<时,()F x 在[1,e]上的最小值为11ln 222mF m m =-- 当2e m ≥时, ()F x 在[1,e]上的最小值为211(e)e 22F m =--.19. (本小题满分14分)解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y +=………………3分(Ⅱ)因为直线的倾斜角为45,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-=………………5分所以121288288,,77x x x x ∆=+=-=所以1224|||7CD x x =-=………………7分 (Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,ABD ABC ∆∆面积相等,12||0S S -=………………8分 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-= 显然0∆>,方程有根,且221212228412,3434k k x x x x k k -+=-=++………………10分此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k =++=+………………12分因为0k ≠,上式1234||||k k =≤==+,(k =时等号成立)所以12||S S -14分20.(本小题满分13分)解:(I )由题2()f x ax axy ax a x x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数, 所以0a >………………3分(Ⅱ)因为()f x 是“一阶比增函数”,即()f x x在(0,)+∞上是增函数, 又12,(0,)x x ∀∈+∞,有112x x x <+,212x x x <+ 所以112112()()f x f x x x x x +<+, 212212()()f x f x x x x x +<+………………5分所以112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x x f x x f x f x f x x x x x x +++<+=+++所以1212()()()f x f x f x x +<+………………8分 (Ⅲ)设0()0f x =,其中00x >.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >= 法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013n n f t m >⋅>,所以()2013f x > 一定有解 ………………13分法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t= 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立 只要 2013x k>,则有()2013f x kx >>, 所以()2013f x > 一定有解 ………………13分。
北京市海淀区2015届高三期末练习(二模)数学文试题及答案
海淀区高三年级第二学期期末练习数学(文)答案及评分参考 2015.5一、选择题(共8小题,每小题5分,共40分)(1)B (2)D (3)A (4)C(5)D (6)C (7)B (8)C二、填空题(共6小题,每小题5分,共30分。
有两空的小题,第一空2分,第二空3分)(9)24y x =- (10)1 (11)12π- (12),2.4αβπ⎧=⎪⎪⎨π⎪=-⎪⎩ (13)3-,327e y -=-(14)假,由①②③可知只使用一种网络浏览器的人数是212+374=586,这与④矛盾三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)πππ113()4sincos 4663222f =-=⨯-=. ………………4分 (Ⅱ)因为 ()4sin cos 2f x x x =- 24sin (12sin )x x =-- ………………6分22sin 4sin 1x x =+-22(sin 1)3x =+-. ………………8分因为 1sin 1x -≤≤,所以 当sin 1x =-,即2,2x k k π=π-∈Z 时,()f x 取得最小值3-. ………………13分(16)(共13分)解.(Ⅰ) 20名女生掷实心球得分如下:5,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,9,10,10.所以中位数为8,众数为9. ………………4分(Ⅱ) 由题意可知,掷距离低于7.0米的男生的得分如下:4,4,4,6,6,6.这6名男生分别记为123123,,,,,A A A B B B .从这6名男生中随机抽取2名男生,所有可能的结果有15种,它们是:121311121323212223(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A A A B A B A B A A A B A B A B ,313233121323(,),(,),(,),(,),(,),(,)A B A B A B B B B B B B . ………………6分用C 表示“抽取的2名男生得分均为4分”这一事件,则C 中的结果有3个,它们是:121323(,),(,),(,)A A A A A A . ………………8分 所以,所求得概率31()155P C ==. ………………9分 (Ⅲ)略. ………………13分评分建议:从平均数、方差、极差、中位数、众数等角度对整个年级学生掷实心球项目的情况进行合理的说明即可;也可以对整个年级男、女生该项目情况进行对比;或根据目前情况对学生今后在该项目的训练提出合理建议.(17)(共14分)(Ⅰ)解:四棱准P ABCD -的正视图如图所示.………………3分(Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以 PD AD ⊥. ………………5分因为 AD DC ⊥,PD CD D =,PD ⊂平面PCD ,CD ⊂平面PCD ,所以AD ⊥平面PCD . ………………7分因为 AD ⊂平面PAD ,所以 平面PAD ⊥平面PCD . ………………8分(Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得12PE EB =.下证//AE 平面PCD .………………10分因为 //AD BC ,3BC AD =,所以13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB=. 所以 //AE OP . ………………12分因为OP ⊂平面PCD ,AE ⊄平面PCD , 所以 //AE 平面PCD . ………………14分(18)(共13分)解:(Ⅰ)因为数列{}n a 是首项为2,公比为2的等比数列,所以 1222n n n a -=⨯=. ………………2分所以 222log 2log 22n n n b a n ===. ………………3分所以 2(22)24+22n n n S n n n +=++==+. ………………6分 (Ⅱ)令2(1)22n n n n n S n n n n c a ++===. 则11111(1)(2)(1)(1)(2)222n n n n n n n n n S S n n n n n n c c a a +++++++++--=-=-=. ………………9分 所以 当1n =时,12c c <;当2n =时,32c c =;当3n ≥时,10n n c c +-<,即345c c c >>>. 所以 数列{}n c 中最大项为2c 和3c .所以 存在2k =或3,使得对任意的正整数n ,都有k n k n S S a a ≥. ………………13分 (19)(共13分)解:(Ⅰ)'()1,0.a a x f x x x x-=-=> ………………2分 当0a <时,对(0,)x ∀∈+∞,'()0f x <,所以 ()f x 的单调递减区间为(0,)+∞;………………4分O E D C B A P当0a >时,令'()0f x =,得x a =.因为 (0,)x a ∈时,'()0f x >;(,)x a ∈+∞时,'()0f x <.所以 ()f x 的单调递增区间为(0,)a ,单调递减区间为(,)a +∞. ………………6分(Ⅱ)用max min (),()f x f x 分别表示函数()f x 在[1,e]上的最大值,最小值.当1a ≤,且0a ≠时,由(Ⅰ)知:在[1,e]上,()f x 是减函数.所以 max ()(1)1f x f ==.因为 对任意的1[1,e]x ∈,2[1,e]x ∈, 12()()2(1)24f x f x f +≤=<,所以对任意的1[1,e]x ∈,不存在2[1,e]x ∈,使得12()()4f x f x +=. ………………8分当1e a <<时,由(Ⅰ)知:在[1,]a 上,()f x 是增函数,在[,e]a 上,()f x 是减函数.所以 max ()()ln 2f x f a a a a ==-+.因为 对11x =,2[1,e]x ∀∈,2(1)()(1)()1ln 2(ln 1)33f f x f f a a a a a a +≤+=+-+=-+<,所以 对11[1,e]x =∈,不存在2[1,e]x ∈,使得12()()4f x f x +=. ………………10分当e a ≥时,令()4()([1,e])g x f x x =-∈.由(Ⅰ)知:在[1,e]上,()f x 是增函数,进而知()g x 是减函数.所以 min ()(1)1f x f ==,max ()(e)e 2f x f a ==-+,max ()(1)4(1)g x g f ==-,min ()(e)4(e)g x g f ==-.因为 对任意的1[1,e]x ∈,总存在2[1,e]x ∈,使得12()()4f x f x +=,即12()()f x g x =,所以 (1)(e),(e)(1),f g f g ≥⎧⎨≤⎩即(1)(e)4,(e)(1) 4.f f f f +≥⎧⎨+≤⎩所以 (1)(e)e 34f f a +=-+=,解得e 1a =+. ………………13分综上所述,实数a 的值为e 1+.(20)(共14分)(Ⅰ)解:点10M (,)是椭圆C 的“1分点”,理由如下: ………………1分当直线l 的方程为1x =时,由2114y +=可得33(1,),(1,)22A B -.(不妨假设点A 在x 轴的上方) 所以 13=13=22AOB S ∆⨯⨯,133=2=222AOD S ∆⨯⨯. 所以AOB AOD S S ∆∆=,即点10M (,)是椭圆C 的“1分点”. ………………4分(Ⅱ)证明:假设点M 为椭圆C 的“2分点”,则存在过点M 的直线l 与椭圆C 交于,A B 两点,使得2AOB AOD S S ∆∆=.显然直线l 不与y 轴垂直,设:1l x my =+,1122(,),(,)A x y B x y . 由221,41x y x my ⎧+=⎪⎨⎪=+⎩得 22(4)230m y my ++-=.所以 12224m y y m -+=+, ① 12234y y m -=+. ② ………………6分 因为 2AOB AOD S S ∆∆=,所以 12111(||||)22||22y y y +=⋅⋅,即21||3||y y =. ………………8分 由②可知120y y <,所以213y y =-. ③将③代入①中得 124m y m =+, ④ 将③代入②中得21214y m =+, ⑤ 将④代入⑤中得 2214m m =+,无解. 所以 点10M (,)不是椭圆C 的“2分点”. ………………10分(Ⅲ)0x 的取值范围为(2,1)(1,2)--. ………………14分。
2015年高三期末海淀文解析
三、 解答题
QUN 函数 f HxI ] 」ッウ Hπx K ϕI P < ϕ < π R 的部分图象如图所示.
(Q)写出 ϕ 及图中 x0 的值; Q Q (R)求 f HxI 在区间 − , R S 解析:
ï ò
上的最大值和最小值.
பைடு நூலகம்
(Q)由图可知, f HPI ] 又∵ P < ϕ < ∴ϕ] π . S π , R
(R)记 S 名男同学为 A1 , A2 , A3 , R 名女同学为 B1 , B2 . 从 U 人中随机选出 R 名同学,所有可
Å ã Å ã2
QPPPH − P ] −QPH P − QPP
Ç
√ å S ,所以 t ] QPP Q − ≈ S
XN 在正方体 ABCD − A1 B1 C1 D1 中,点 E 为底面 ABCD 上的动点.若三棱锥 B − D1 EC 的表面积 最大,则 E 点位于( aN 点 A 处 cN 线段 AB 的中点处 答案:a 解析: ) bN 线段 AD 的中点处 dN 点 D 处
T
三棱锥 B − D1 EC 的表面积是四个三角形的面积和,其中 面的面积.
BCD1 的面积为定值,考虑剩下三个
因为棱 BC 、 CD1 、 BD1 的长都是定值,先考虑底面 ABCD 上到这三条棱的距离各自最大的 点. 到 棱 BC 的 距 离 最 大 的 点 构 成 棱 AD , 到 棱 CD1 的 距 离 最 大 的 点 为 A , 而 点 A 、 D 、 C 到 棱 BD1 的距离相等,同时为最大; 综上知,点 A 到三条棱的距离同时都为最大值,所以 E 点位于点 A 处.
值是 答案:
R R 解析:不等式组表示的平面区域 D 如图中阴影部分所示:
20152016学年第一学期海淀期中高三数学(文)试题及答案
海淀区高三年级第一学期期中练习数 学(文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{}2|0P x x x =-≤,{}0,1,3,4M =,则集合P M 中元素的个数为C. 3 2. 下列函数中为偶函数的是A.y =B. lg y x = C. ()21y x =- D.2x y =3. 在ABC ∆中,60A ∠=︒, 2,1AB AC ==, 则AB AC ⋅的值为A. 1B. 1-C.12 D.12- 4. 数列{}n a 的前n 项和为n S ,若121n n S S n --=-(2n ≥),且23S =,则1a 的值为 A. 0 B. 1 C. 3 5. 已知函数22()cos sin f x x x =-,下列结论中错误..的是 A. ()cos2f x x = B. ()f x 的最小正周期为πC. ()f x 的图象关于直线0x =对称D. ()f x 的值域为[6. “0x =”是“sin x x =-”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 如图,点O 为坐标原点,点(1,1)A . 若函数x y a =(0a >,且1a ≠)及log b y x =(0b >,且1b ≠)的图象与线段OA 分别交于点M ,N ,且 M ,N 恰好是线段OA 的两个三等分点,则,a b 满足 A. 1a b << B . 1b a << C. 1b a >> D. 1a b >>8. 已知函数1, 1(), 111, 1x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,函数21()4g x ax =+. 若函数()()y f x g x =-恰有2个不同零点,则实数a 的取值范围是 A.(0,)+∞ B.(,0)(2+)-∞∞, C.1(,)(1,+)2-∞-∞ D. (,0)(0,1)-∞二、填空题共6小题,每小题5分,共30分。
2015年高三期末海淀文试卷
(R)求证: B1 C ⊥ AC1 ; (S)设点 E , F , H , G 分别是 B1 C , AA1 , A1 B1 , B1 C1 的中点,试判断 E , F , H , G 四点是否共面,并说明理由. QXN 已知椭圆 M Z x2 K Ry 2 ] R . (Q)求 M 的离心率及长轴长; (R)设过椭圆 M 的上顶点 A 的直线 l 与椭圆 M 的另一个交点为 B ,线段 AB 的垂直平分线交 椭圆 M 于 C , D 两点. 问:是否存在直线 l 使得 C , O , D 三点共线( O 为坐标原点) ?若 存在,求出所有满足条件的直线 l 的方程;若不存在,说明理由. QYN 已知函数 f HxI ] ・x . x (Q)若曲线 y ] f HxI 在点 Hx0 , f Hx0 II 处的切线方程为 ax − y ] P ,求 x0 的值;
三、 解答题
QUN 函数 f HxI ] 」ッ示.
(Q)写出 ϕ 及图中 x0 的值;
T Q Q (R)求 f HxI 在区间 − , R S
ï ò
上的最大值和最小值.
QVN 某中学在高二年级开设大学选修课程《线性代数》 ,共有 UP 名同学选修,其中男同学 SP 名,女同 学 RP 名. 为了对这门课程的教学效果进行评估,学校按性别采用分层抽样的方法抽取 U 人进行考 核. (Q)求抽取的 U 人中男、 女同学的人数; (R)考核前,评估小组打算从选出的 U 人中随机选出 R 名同学进行访谈,求选出的两名同学中恰 有一名女同学的概率; (S)考核分答辩和笔试两项. U 位同学的笔试成绩分别为 QQU , QRR , QPU , QQQ , QPY ;结 合答辩情况,他们的考核成绩分别为 QRU , QSR , QQU , QRQ , QQY . 这 U 位同学笔试成绩与考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京海淀高三上学期期末文科数学试题及答案海淀区高三年级2015~2016学年第一学期期末练习数学 (文科) 2016.1一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 复数(1i)(1i)+-=A.2B.1C. 1-D.2-2. 已知数列{}n a 是公比为2的等比数列,且满足4320a a a -=,则4a 的值为 A.2 B.4C.8D.163. 如图, 正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+, 则λμ+的值为 A.12B. 12- C. 1 D.1- 4 .如图,在边长为3的正方形内有区域A (阴影部分所示),张明同学用随 机模拟的方法求区域A 的面积. 若每次在正方形内每次随机产生10000个点, 并记录落在区域A 内的点的个数. 经过多次试验,计算出落在区域A 内点的个 数平均值为6600个,则区域A 的面积约为 A.5B.6C. 7 D.85.某程序框图如图所示,执行该程序,如输入的a 值为1,则输出的a 值为A.1B.2C.3D.56.若点(2,3)-不在..不等式组0,20,10x y x y ax y -≥⎧⎪+-≤⎨⎪--≤⎩表示的平面区域内,则实数a 的取值 范围是A.(,0)-∞B. (1,)-+∞C. (0,)+∞D.(,1)-∞-EA BCD输出输入开始结束是否7. 已知函数, 1,()πsin , 1,2x x f x x x ≤⎧⎪=⎨>⎪⎩则下列结论正确的是 A .000,()()x f x f x ∃∈-≠-R B .,()()x f x f x ∀∈-≠R C .函数()f x 在ππ[,]22-上单调递增D .函数()f x 的值域是[1,1]-8.已知点(5,0)A ,抛物线2:4C y x =的焦点为F ,点P 在抛物线C 上,若点F 恰好在PA 的 垂直平分线上,则PA 的长度为 A.2B. C. 3 D.4二、填空题共6小题,每小题5分,共30分。
9. 若lg lg 1a b +=,则___.ab =10. 已知双曲线2221(0)y x b b-=>的一条渐近线通过点(1,2),则___,b =其离心率为__.11. 某三棱柱的三视图如图所示,则该三棱柱的体积为___.12. 直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45,则___.t =13.已知圆22()4x a y -+=截直线4y x =-所得的弦的长度为__.a = 14.已知ABC ∆,若存在111A B C ∆,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C ∆是ABC ∆的一个“友好”三角形.(i) 在满足下述条件的三角形中,存在“友好”三角形的是____:(请写出符合要求的条件的序号)①90,60,30A B C === ;②75,60,45A B C ===; ③75,75,30A B C ===.(ii) 若ABC ∆存在“友好”三角形,且70A =,则另外两个角的度数分别为___.俯视图左视图主视图三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
15. (本小题满分13分)等差数列{}n a 的首项11a =,其前n 项和为n S ,且3547a a a +=+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求满足不等式32n n S a <-的n 的值.16.(本小题满分13分)已知函数()2cos (sin cos )1f x x x x =+-. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间ππ[, ]612--上的最大值与最小值的和.17.(本小题满分13分)为了研究某种农作物在特定温度下(要求最高温度t 满足:27c 30c t ≤≤)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验. 现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:c )的记录如下:(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为12,D D ,估计12,D D 的大小?(直接写出结论即可).(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都.在 [27,30]之间的概率.18.(本小题满分14分)如图,四边形ABCD 是菱形,PD ⊥平面ABCD ,PD BE ,22AD PD BE ===,60DAB ∠=,点F 为PA 的中点.(Ⅰ)求证:EF平面ABCD ;(Ⅱ)求证:平面PAE ⊥平面PAD ;FE BAPDC温度的体积. (Ⅲ)求三棱锥P ADE19.(本小题满分13分)已知函数1()ln ,0.f x k x k x=+≠ (Ⅰ)当1k =时,求函数()f x 单调区间和极值;(Ⅱ)若关于x 的方程()f x k =有解,求实数k 的取值范围.20.(本小题满分14分)如图,椭圆2222:1(0)x y W a b a b+=>>,其左顶点A 在圆22:16O x y +=上. (Ⅰ)求椭圆W 的方程;(Ⅱ)直线AP 与椭圆W 的另一个交点为P ,与圆O 的另一个交点为Q . (i)当||5AP =时,求直线AP 的斜率; (ii )是否存在直线AP ,使得||3||PQ AP =? 若存在,求出直线AP 的斜率;若不存在, 说明理由.yxOBA海淀区高三年级2015~2016学年第一学期期末练习数学 (文科)参考答案 2016.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.说明: 第13题少写一个减3分,错的则不得分第14题第一空3分,第二空2分,第二问少或错写的都不得分三、解答题: 本大题共6小题,共80分. 15.解:(Ⅰ)设数列{}n a 的公差为d . …………………………….1分 因为3547a a a +=+,所以112637a d a d +=++. …………………………….3分 因为11a =,所以36d =,即2d =, …………………………….5分 所以1(1)21n a a n d n =+-=-.…………………………….7分(Ⅱ)因为11a =,21n a n =-,所以212nn a a S n n +==, …………………………….9分 所以23(21)2n n <--,所以2650n n -+<, …………………………….11分解得15n <<,所以n 的值为2,3,4.…………………………….13分16.解:(Ⅰ)因为()2cos (sin cos )1f x x x x =+- sin2cos2x x =+…………………………….4分π)4x =+…………………………….6分 所以函数()f x 的最小正周期2ππ||T ω==. …………………………….8分 (Ⅱ)因为ππ[,]612x ∈--, 所以ππ2[,]36x ∈--,所以πππ(2)[]41212x +∈-,, …………………………….9分根据函数()sin f x x =的性质,当ππ2412x +=-时,函数()f x π)12-,…………………………….10分当ππ2412x +=时,函数()f x π12. …………………………….11分ππ))01212-=,所以函数()f x 在区间ππ[,]612x ∈--上的最大值与最小值的和为0. …………………………….13分17.解:(Ⅰ)农学家观察试验的起始日期为7日或8日. …………………………….3分 (少写一个扣1分)(Ⅱ)最高温度的方差大. …………………………….6分 (Ⅲ)设“连续三天平均最高温度值都在[27,30]之间”为事件A ,…………………………….7分 则基本事件空间可以设为{(1,2,3),(2,3,4),(3,4,5),...,(29,20,31)}Ω=,共计29个基本事件 …………………………….9分由图表可以看出,事件A 中包含10个基本事件,…………………………….11分 所以10()29P A =,…………………………….13分 所选3天每天日平均最高温度值都在[27,30]之间的概率为1029.18.解:(Ⅰ)取AD 中点G ,连接,FG BG 因为点F 为PA 的中点,所以FG PD 且12FG PD = …………………………….1分又BE PD ,且12BE PD = ,所以,,BE FG BE FG =所以四边形BGFE 为平行四边形. …………………………….2分 所以,EF BG又EF ⊄平面ABCD ,BG ⊂平面ABCD , …………………………….3分所以EF平面ABCD . …………………………….4分(Ⅱ)连接BD .因为四边形ABCD 为菱形,=60DAB ∠,所以ABD ∆为等边三角形. 因为G 为AD 中点,所以BG AD ⊥,…………………………….6分又因为PD ⊥平面ABCD ,BG ⊂平面ABCD ,所以PD BG ⊥,…………………………….7分 又PD AD D =,,PD AD ⊂平面PAD ,…………………………….8分所以BG ⊥平面PAD . …………………………….9分又,EF BG 所以EF ⊥平面PAD , 又EF ⊂平面PAE ,所以平面PAE ⊥平面PAD . …………………………….10分法二:因为四边形ABCD 为菱形,=60DAB ∠,所以ABD ∆为等边三角形. 因为G 为AD 中点,所以BG AD ⊥,…………………………….6分 又因为PD ⊥平面ABCD ,PD ⊂平面PAD , 所以平面PAD ⊥平面ABCD ,…………………………….7分 又平面PAD ABCD AD =平面,BG ⊂平面ABCD , …………………………….8分GFE BAPDC所以BG ⊥平面PAD . …………………………….9分又,EF BG 所以EF ⊥平面PAD , 又EF ⊂平面PAE ,所以平面PAE ⊥平面PAD . …………………………….10分(Ⅲ)因为122PAD S PD AD ∆=⋅=,…………………………….12分EF BG ==,所以13P ADE PAD V S EF -∆=⋅=. …………………………….14分 19.解:(Ⅰ)函数1()ln f x k x x=+的定义域为(0)+∞,. ………………………….1分 21'()kf x x x=-+. …………………………….3分当1k =时,22111'()x f x x x x-=-+=,令'()0f x =,得1x =,…………………………….4分 所以'(),()f x f x 随x 的变化情况如下表:…………………………….6分所以()f x 在1x =处取得极小值(1)1f =, 无极大值.…………………………….7分()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. ……………………….8分(Ⅱ)因为关于x 的方程()f x k =有解,令()()g x f x k =-,则问题等价于函数()g x 存在零点, ……………………….9分所以2211'()k kx g x x x x-=-+=. ……………………….10分 令'()0g x =,得1x k=.当0k <时,'()0g x <对(0,)+∞成立,函数()g x 在(0,)+∞上单调递减,而(1)10g k =->,1111111111()(1)110e ee kk kg ek k k ---=+--=-<-<,所以函数()g x 存在零点.…………………………….11分 当0k >时,'(),()g x g x 随x 的变化情况如下表:所以()lnln g k k k k k kk=-+=-为函数()g x 的最小值, 当1()0g k >时,即01k <<时,函数()g x 没有零点,当1()0g k≤时,即1k ≥时,注意到1()0g k k =+->e e , 所以函数()g x 存在零点.综上,当0k <或1k ≥时,关于x 的方程()f x k =有解.…………………………….13分 法二:因为关于x 的方程()f x k =有解,所以问题等价于方程1(ln 1)0kx x +-=有解,…………………………….9分 令g()(ln 1)1x kx x =-+,所以'()ln g x k x =,…………………………….10分 令'()0g x =,得1x =当0k <时,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最大值,而g(1)(1)10k =-+>.1111111(e)1e(11)1e 0kkkg k k---=+--=-<,所以函数()g x 存在零点.…………………………….11分 当0k >时,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最小值,而g(1)(1)11k k =-+=-. 当g(1)(1)110k k =-+=->时,即01k <<时,函数()g x 不存在零点. 当g(1)(1)110k k =-+=-≤,即1k ≥时,g(e)e(lne 1)110k =-+=> 所以函数()g x 存在零点.…………………………….13分 综上,当0k <或1k ≥时,关于x 的方程()f x k =有解. 法三:因为关于x 的方程()f x k =有解, 所以问题等价于方程1(1ln )x x k=-有解,…………………………….9分 设函数()(1ln )g x x x =-,所以'()ln g x x =-. …………………………….10分 令'()0g x =,得1x =,'(),()g x g x 随x 的变化情况如下表:所以函数g()x 在1x =处取得最大值,而g(1)1=,…………………………….11分 又当1x >时,1ln 0x -<, 所以(1ln )1ln x x x -<-,所以函数g()x 的值域为(,1]-∞, …………………………….12分 所以当1(,1]k∈-∞时,关于x 的方程()f x k =有解,所以(,0)[1,)k ∈-∞+∞. ………………….13分20. 解:(Ⅰ)因为椭圆W 的左顶点A 在圆22:16O x y +=上,所以4a =.…………………………….1分又离心率为2,所以e 2c a ==,所以c =, …………………………….2分所以2224b a c =-=,…………………………….3分所以W 的方程为221164x y +=.…………………………….4分(Ⅱ)(i )法一:设点1122(,),(,)P x y Q x y ,显然直线AP 存在斜率, 设直线AP 的方程为(4)y k x =+,…………………………….5分与椭圆方程联立得22(4)1164y k x x y =+⎧⎪⎨+=⎪⎩, 化简得到2222(14)3264160k x k x k +++-=,…………………………….6分因为4-为上面方程的一个根,所以21232(4)14k x k -+-=+,所以21241614k x k -=+.…………………………….7分由1||(4)|AP x =--=…………………………….8分代入得到||5AP ==,解得1k =±, …………………………….9分所以直线AP 的斜率为1,1-. (ii )因为圆心到直线AP的距离为d =,…………………………….10分所以||AQ = ………………….11分 因为||||||||1||||||PQ AQ AP AQ AP AP AP -==-,…………………………….12分 代入得到22222||1433113||111PQ k k AP k k k +=-=-==-+++. …………………………….13分 显然23331k-≠+,所以不存在直线AP ,使得||3||PQ AP =. …………………………….14分 法二:(i )设点1122(,),(,)P x y Q x y ,显然直线AP 存在斜率且不为0, 设直线AP 的方程为4x my =-,…………………………….5分与椭圆方程联立得2241164x my x y =-⎧⎪⎨+=⎪⎩, 化简得到22(4)80m y my +-=, …………………………….6分显然4-上面方程的一个根,所以另一个根,即1284my m =+, …………………………….7分由1||0|5AP y =-=,…………………………….8分代入得到||5AP ==,解得1m =±. …………………………….9分所以直线AP 的斜率为1,1-(ii )因为圆心到直线AP的距离为d =,…………………………….10分所以||AQ ==. ………………….11分 因为||||||||1||||||PQ AQ AP AQ AP AP AP -==-,…………………………….12分 代入得到222||4311||11PQ m AP m m +==-=++. ………………………….13分若2331m =+,则0m =,与直线AP 存在斜率矛盾, 所以不存在直线AP ,使得||3||PQ AP =. …………………………….14分。