最新5土力学与基础工程第四章-土的压缩性与地基沉降计算
土力学土的压缩性和地基沉降计算课件
![土力学土的压缩性和地基沉降计算课件](https://img.taocdn.com/s3/m/1f9008a2988fcc22bcd126fff705cc1755275fab.png)
土压缩性的定义 01 02
土压缩性的重要性
01
02
地基沉降
地下工程
03 水利工程
土压缩性的影响因素
含水量
颗粒组成
孔隙比
压力
含水量越高,土的压缩 性越大。
颗粒越细,土的压缩性 越大。
孔隙比越大,土的压缩 性越大。
压力越大,土的压缩性 越大。
土的孔隙与孔隙水压力
土是由固体颗粒、水和空气组成的复杂体系,其中孔隙是土中未被固体颗粒占据的 空间,孔隙水压力是孔隙中的水受到的压力。
土的压缩性是指土在压力作用下体积减小的性质,这一过程伴随着孔隙水压力的变化。
孔隙水压力的变化会影响土的压缩性,例如在排水条件下,孔隙水压力减小,土的 压缩性增强。
详细描述
水库大坝的地基沉降分析需要考虑大坝的重量、地基土的物理性质、地下水位等 因素。通过精确的计算和分析,可以预测大坝的沉降量,并采取相应的措施进行 控制,确保大坝的安全和稳定运行。
地基处理方法
01
02
03
04
换填法
预压法
强夯法
桩基法
施工监控与检测
沉降观测
。
土压力监测
地下水位监测 质量检测
预防与应急措施
制定应急预案
储备应急物资
加强巡查 与专业机构合作
土的压缩性指标
土的压缩性可以通过压缩试验进行测定,常用的压缩性指标包括压缩系 数、压缩模量、泊松比等。
压缩系数是描述土压缩性随压力变化的关系曲线,该曲线呈非线性;压 缩模量是在一定压力范围内,土的应力与应变之比;泊松比是横向应变
土力学 第4章 土的压缩性与地基沉降计算
![土力学 第4章 土的压缩性与地基沉降计算](https://img.taocdn.com/s3/m/0aca9127c281e53a5802ffd3.png)
变形测量 固结容器
百分表
加压上盖
透水石
环刀 压缩
容器
加
压
试样
护环
支架
设 备
《土力学》 第4章 土的压缩性与地基沉降计算
(2)利用受压前后土粒体积不变和土样截面面积不变两个
条件,可求土样压缩稳定后孔隙比ei
受压前
:VS
(1
e 0
)
H
0
A
受压后:VS (1 e1) H1A
Vs
H 0
A
《土力学》 第4章 土的压缩性与地基沉降计算
土的固结状态对土的压缩性的影响:
在压力p作用下的地基沉降值si: 正常固结土为s1; 超固结土为s2; 欠固结土为s3。
则有:s2<s1<s3
《土力学》 第4章 土的压缩性与地基沉降计算
pc卡萨格兰德法
① 在e–lgp坐标上绘出试样
的室内压缩曲线; ② 找出压缩曲线上曲率最
Cc
lg
e1 p2
e2 lg
p1
e1 e2 lg p2
p1
一般认为:
cc<0.2时, 为低压缩性土; cc=0.2~0.4时,属中压缩性土; cc>0.4时, 属高压缩性土。
图5-6 由e-lgp曲线确定压缩系数cc
《土力学》
第4章 土的压缩性与ຫໍສະໝຸດ 基沉降计算(5)土的回弹与再压缩曲线
H1
A
1e 1e
0
1
受压前后Vs,A不变
H0 H1 H0 s1 1 e0 1 e1 1 e1
e1
e0
s1 H0
1
e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
土力学-第四章地基的沉降计算3
![土力学-第四章地基的沉降计算3](https://img.taocdn.com/s3/m/9c0c9d85680203d8ce2f24f2.png)
z k p0
II. 荷载不是瞬时施加。 因此,不同的附加应力条件下,其固结度的公式也不同。
那么,怎么求解其他应力条件下的固结度呢?
叠加原理
U F U a Fa U b Fb
任意随深度而变的应力图形可以分解为若干个图形,则 总应力图形的固结度乘上其总应力面积,等于各分力应 力图形的固结度乘上各应力面积之和。
1 U (t ) 1 2 Hp
udz
0
并代入u的表达式
U (t ) 1 2
1 exp( M 2Tv ) U (Tv ) (U与Tv为一一对应关系) 2 m0 M
近似式
U (Tv ) 1
8
exp( 2
2
4
Tv ) (U (t ) 30%)
U(t)是Tv的单值 函数,Tv可反映 固结的程度
(2)有效应力逐渐增大,最终与总应力相等。 (3)变形随固结过程逐渐增大,最终达到稳定。
11
2、Terzaghi一维渗透固结数学模型
基本假定: 1. 土层是均质且完全饱和
2. 3. 4. 5. 6. 土颗粒与水不可压缩 水的渗出和土层压缩只沿竖向发生 渗流符合达西定律且渗透系数k保持不变 压缩系数av是常数 荷载均布,瞬时施加,总应力不随时间变化
de av du
dV
故孔隙体积变化与孔隙水压的关系为
1 ∂e dz 1 e ∂t
av u u dV dz mv dz 1 e t t
16
(3)由dQ=dV 建立固结方程
k 2u dQ dz 2 w z
由此得到固结方程
u dV mv dz t
∂ 2u ∂ u Cv 2 ∂z ∂t
土力学第四章(压缩)讲解
![土力学第四章(压缩)讲解](https://img.taocdn.com/s3/m/26b26ee2f121dd36a32d82f1.png)
第四章:土的压缩及沉降计算名词解释1、压缩系数:土体在侧限条件下孔隙比减少量与竖向压应力增量的比值。
2、压缩指数:在压力较大部分,e-lgp关系接近直线,其斜率称为土的压缩指数。
3、压缩模量:土在侧限条件下竖向压应力与竖向总应变的比值,或称为侧限模量。
4、变形模量:土在无侧限条件下竖向压应力与竖向总应变的比值。
5、体积压缩系数:在单位压应力作用下单位体积的变化量。
6、超固结比:先期固结压力pc与现时的土压力p0的比值。
7、前期固结压力:指土层在历史上曾经受过的最大有效固结压力。
8、最终沉降量:地基变形稳定后基础底面的沉降量。
9、固结:土体在压力作用下,压缩量随时间增长的过程。
10、固结度:在某一固结压力作用下,经过一定时间土体发生固结的程度。
简答1、为什么可以用孔隙比的变化来表示土的压缩性?答:土体压缩的实质是孔隙体积减小的结果,土粒体积保持不变;而孔隙比反映了孔隙的体积和土粒的体积比,因此可以用孔隙比的变化来表示土的压缩性。
2、地基土变形的两个最显著的特征是什么?答:体积变形是由于正应力引起的,只能使土体产生压密,孔隙体积减小,但不会使土体产生破坏;形状变形是由剪应力引起的,在剪应力作用下土颗粒间产生移动,使土体产生剪切破坏。
3、工程中常用的压缩系数和模量是什么?如何判定土的压缩性?答:压缩系数和压缩模量都是变量,为比较土的压缩性高低,工程中常用的压缩系数和压缩模量是压力在100-200kPa下的值。
a v<0.1MPa-1低压缩性土,0.1MPa-1≤a v<0.5MPa-1中压缩性土,a v≥0.5MPa-1高压缩性土;Es<4MPa高压缩性土,4MPa≤Es<15MPa中压缩性土,Es≥15MPa低压缩性土;4、自重应力在任何情况下都不会引起地基沉降吗?为什么?答:对于正常固结土和超固结土来说,自重应力不会引起地基沉降了,但对于欠固结土(新沉积的土或刚填筑的土)来说,由于现有的固结应力大于先期固结应力,自重应力也会引起地基沉降。
土的压缩性与地基沉降计算
![土的压缩性与地基沉降计算](https://img.taocdn.com/s3/m/f6ab7a5653ea551810a6f524ccbff121dc36c55c.png)
地基瞬时沉降Sd的计算
饱和粘性土的瞬时沉降,可近似按弹性力学公式 计算:
Sd=·(1- 2)·P·B/E
地基的最终沉降量
概述 1)定义:地基的最终沉降量是指地基土层在附
甲:被影响建筑物 乙:影响建筑物 第1步:用角点法计算P0范围(2 abed)的荷载在O点下
任意深度引起的附加应力σz
划分网格:I区: oabc II区: odec
(σz )O= 2 (cI- CII) P0 第2步:用分层法或规范法计算σz
在甲地基中查生的沉降即为所求。
地基沉降与时间的关系
前面讲述的是地基的最终沉降量计算,有时对于饱和软粘土地 基尚需研究地基的沉降过程或在某一个时间点的沉降大小。所 以要研究地基沉降与时间的关系。
详细过程请参照黑板.
2、推荐公式
3、参数释义
σi :基底中心O点以下深度Z i 范围的平均附加应力,kpa σi-1:基底中心O点以下深度Z i-1 范围的平均附加应力,kpa i :基底中心O点以下深度Z i 范围的平均附加应力系数 i-1 :基底中心O点以下深度Z i-1 范围的平均附加应力系数 Z i :自基础底面至第i层土底面的垂直距离,m,cm. Zi-1 :自基础底面至第i-1层土底面的垂直距离,m,cm. Esi:第i层土的侧限压缩模量,Mpa S’:未作修正时按理论计算的地基沉降量大小.m,cm. n:地基压缩层范围内按天然土层界面划分的土层数 S:修正后地基的最终沉降量. s:沉降计算经验系数,由Es 、 P0查表5.3,可以内插.
瞬时沉降; 主固结沉降
土力学4.土的压缩性和地基沉降计算
![土力学4.土的压缩性和地基沉降计算](https://img.taocdn.com/s3/m/85ab5c630b1c59eef8c7b482.png)
一、基本概念 土在压力作用下,体积缩小的现象称为土的压缩性。 土体产生体积缩小的原因: (1)固体颗粒的压缩; (2)孔隙水和孔隙气体的压缩,孔隙气体的溶解; (3)孔隙水和孔隙气体的排出。 孔隙中水和气体向外排出要有一个时间过程。因此 土的压缩亦要经过一段时间才能完成。我们把这一与时间 有关的压缩过程称为固结。
(2): elogp曲线。 (3): elnp曲线。
压缩试验曲线特征 压缩试验条件下土体体积变化特征: (1)卸荷时,试样不是沿初始压缩曲线,而是沿曲线bc回弹,可见土体的变形是由可 恢复的弹性变形和不可恢复的塑性变形两部份组成。 (2)回弹曲线和再压线曲线构成一迴滞环,土体不是完全弹性体的又一表征; (3)回弹和再压缩曲线比压缩曲线平缓得多。 (4)当再加荷时的压力超过b点,再压缩曲线就趋于初始压缩曲线的延长线。
若pc> p1 ,则试样是超固结的。由于超固结土由 前期固结压力pc减至现有有效应力p1期间曾在原位经历 了回弹。因此,当超固结土后来受到外荷引起的附加 应力p时,它开始将沿着原始再压缩曲线压缩。如果 p较大,超过(pc- p1 ),它才会沿原始压缩曲线压缩 。 超固结土原始压缩曲线推求: (1) 先作b1点,其横、纵坐标分别为试样的现场自 重压力p1 和现场孔隙比 e0; (2) 过b1点作一直线, 其斜率等于室内回弹曲线与再压缩曲线的平均斜率, 该直线与通过B点垂线(其横坐标相应于先期固结压力 值)交于b1 点, b1 b就作为原始再压缩曲线。其斜率为回 弹指数Ce; (3) 作c点,由室内压缩曲线上孔隙比 等0.42 e0处确定; (4) 连接bc直线,即得原始压缩 曲线的直线段,取其斜率作为压缩指标Cc。 若pc < p1,则试样是欠固结的,由于自重作用下的压缩尚 未稳定,实质上属于正常固结土一类,它的现场压缩 曲线的推求方法完全与正常固结土一样。
土力学 第四章 土的压缩与固结
![土力学 第四章 土的压缩与固结](https://img.taocdn.com/s3/m/529b38db3169a4517623a3b1.png)
4.2土的压缩特性 (土的压缩试验与压缩性指标)
一.室内压缩试验(1)
一、室内压缩试验 土的室内压缩试验亦
称固结试验,是研究土压 缩性的最基本的方法。室 内压缩试验采用的试验装 置为压缩仪。
整理课件
试验一时.将室切内有土压样缩的环试刀验置于(刚2性护)环中,由于金属
环刀及刚性护环的限制,使得土样在竖向压力作用下只能 发生竖向变形,而无侧向变形。在土样上下放置的透水石 是土样受压后排出孔隙水的两个界面。压缩过程中竖向压 力通过刚性板施加给土样,土样产生的压缩量可通过百分 表量测。常规压缩试验通过逐级加荷进行试验,常用的分 级加荷量p为:50、100、200、300、400kPa。
2.地基土按固结分类
前期固结应力pc:土在历史上曾受到过的最大的、垂直的
有效应力 四. 土的应力历史(4)
超固结比OCR :前期固结应力与现有有效应力之比,即
OCR= pc/p1
正常固结土: OCR=1 pc=p1
超固结土: OCR>1,OCR愈大,土受到的超固结作用愈强,
在其他条件相同的情况下,其压缩性愈低。 pc> p1
作用下再压缩稳定后的孔隙比,相应地可绘制出再压
缩曲线,如图4-6(a)中cdf曲线所示。可以发现其中df
段像是ab段的延续,犹如其间没有经过卸载和再压的
过程一样。
整理课件
二. 压缩性指标(10)
(a)e-p曲线;
(b)e-lgp曲线
图 4-3 土的回弹—在压缩曲线 整理课件
三、 现场载荷试验及变形模量(1)
2.由于孔隙水的排出而引起的压缩对于饱和粘性土来说是
需要时间的,土的压缩随时间增长的过程称为土的固结。
这是由于粘性土的透水性很差,土中水沿着孔隙排出速度
同济大学土力学第4章课后答案
![同济大学土力学第4章课后答案](https://img.taocdn.com/s3/m/9dbcc63a0912a216147929d9.png)
z 6.0m 处 z 11.19 0.2 c 0.2 70.26 14.05kPa
所以压缩层深度为基底以下 6.0m。 ( 6) 计算各分层压缩量 由式 si
e1i e2i H i 计算各分层的压缩量列于表中。 1 e1i
( 7) 计算基础平均最终沉降量
s si 35.45 27.25 16.86 10.38 6.77 4.70 101.41mm
3
分层总和法计算地基最终沉降
分 层 点 深 自 重 度 应力 zi 附 加 应力 层 号 层 厚 自重应力 平均值 附加应力 平均值 均
表 (二 )
总应力平 受 压 值 前 孔 隙比 受 压 后 孔 隙比 分层压 缩 量
s i e1i e 2i Hi 1 e1i
c
z
H i c (i 1) ci 2 m (即 p1i )
第 4 章 土的压缩性与地基沉降计算 作业
【4-1】 一饱和黏土试样在固结仪中进行压缩试验,该试样原始高度为 20mm,面积为 30cm2, 土样与环刀总质量为 175.6g, 环刀质量 58.6g。 当荷载由 p1=100kPa 增加至 p2=200kPa 时,在 24h 内土样的高度由 19.31mm 减少至 18.76mm。该试样的土粒比重为 2.74,试验结 束后烘干土样,称得干土重 0.910N。 (1)计算与 p1 及 p2 对应的孔隙比 e1 及 e2; (2)求 a12 及 Es(1-2),并判断该土的压缩性。 解: ( 1)孔隙比的计算
(1.756 0.586) 103 19.5kN/m3 2 30 106 1.756 0.586 0.910 含水率: w 100% 28.6% 0.910 d (1 w) 2.74 10 (1 28.6%) 初始孔隙比: e0 s w 1 1 0.807 19.5 1 e0 1 0.807 p 1 对应的孔隙比: e1 H1 1 19.31 1 0.745 H0 20 1 e0 1 0.807 H2 1 18.76 1 0.695 p 2 对应的孔隙比: e2 H0 20
土的压缩性与地基沉降计算
![土的压缩性与地基沉降计算](https://img.taocdn.com/s3/m/58ac5f86a0c7aa00b52acfc789eb172dec63994d.png)
灌浆加固
通过灌浆技术将浆液注 入土体中,提高土体的
强度和稳定性。
土体置换
对于软弱土体,可采用 优质土进行置换,提高 土体的承载力和稳定性
。
地基沉降控制案例分析
某高层建筑地基沉降控制
某桥梁墩台基础沉降控制
通过采用复合地基和分层处理方法, 有效控制了高层建筑的地基沉降。
通过采用桩基和扩大基础等措施,有 效控制了桥梁墩台的基础沉降。
80%
室内试验
通过室内试验测定土的压缩系数 、压缩模量等参数,进而预测地 基沉降量。
100%
数值模拟
利用数值模拟软件对土体进行模 拟分析,预测地基沉降量。
80%
经验公式
根据工程实践经验,总结出一些 经验公式来预测地基沉降量。
04
地基沉降控制措施
地基沉降控制原则
预防为主
在设计和施工过程中,应采取 有效的预防措施,减少地基沉 降的可能性。
缺点
计算量大,对计算机资源要求较高,且建模和参 数设置需专业人员操作。
极限分析法
基本原理
基于土体的极限平衡状态,通 过分析土体的极限承载力和稳
定性来进行地基沉降计算。
应用范围
适用于大变形和应力状态的极 限分析,如滑坡、沉陷等。
优点
能够考虑土体的极限承载力和 稳定性,适用于大变形和应力 状态的工程问题。
缺点
忽略土体的非线性、剪切变形 和孔隙水压力等因素,可能的地基土体离散为有限个单元,根据力的 平衡条件和变形协调条件进行计算。
优点
能够模拟复杂的地形、地质条件和施工过程,计 算精度高。
应用范围
适用于各种复杂的地质条件和边界条件,能够考 虑土体的非线性、剪切变形和孔隙水压力等因素 。
土力学 第五章 土压缩性与地基沉降计算
![土力学 第五章 土压缩性与地基沉降计算](https://img.taocdn.com/s3/m/18cfda8ed4d8d15abe234ede.png)
土的压缩性的有关概念
为了保证建筑物的安全和正常使用,地基的最大
沉降量和沉降差都必须控制在一定的范围之内。
建筑物地基沉降的研究内容:
绝对沉降量的大小
沉降与时间的关系
第一节 土的压缩性试验 及压缩性指标
一、室内压缩试验及压缩模量
室内侧限压缩试验(固结试验)
百分表 压缩容器
支架
加 压 设 备
pc OCR p0
土的固结状态的划分
正常固结土:
土层的自重应力等于前期固结压力,OCR = 1;
超固结土:
土层的自重应力小于前期固结压力,OCR > 1;
欠固结土:
土层的自重应力大于前期固结压力,OCR < 1。
二、现场载荷试验及变形模量
载荷试验装置
堆重平台反力法
地锚反力架法
室内压缩试验与现场载荷试验的比较
地基是均质的、各向同性的线弹性半无限连续体;
基础整个底面和地基土体一直保持接触。
集中荷载作用下地表沉降
Q 1
2 2 2
s
2
E x y
Q 1
Er
完全柔性基础沉降
均布荷载作用下矩形完全柔性基础下任意点沉降:
1 so obp0 E
2
中点沉降影响系数, l/b的函数,表5-3
高压缩性土 Cc > 0.4
土的回弹曲线和再压缩曲线
回弹曲线与初始压
缩曲线并不重合; 土样中有残留的塑 性变形(残余变 形),但也有恢复 的弹性变形;
超过卸载点后,再
压力完全卸除以后,
压缩曲线就像是初 始压缩曲线的延长 线。
e~p 曲线
土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)
![土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)](https://img.taocdn.com/s3/m/19729e4eeef9aef8941ea76e58fafab069dc44dc.png)
1 5
Ai-16
2
C i-1σz0
△z
(2)计算原理
利用附加应力面积A的等代值计算地基任意 土层的沉降量,因此第i层沉降量为
si
Ai
Ai1 Esi
z(0)
Esi
( zi Ci
zi1Ci1)
根据分层总和法基本原理可得 地基沉降量的基本公式
s
n i1
si
n i1
(z 0) Esi
(
ziCi
△z
zi
zi-1
第i层 第n层
b C i-1
Ci
平均附加应力 系数曲线
s
ms
n
si
i 1
ms
n
i 1
z(0)
Esi
( zi Ci
zi1Ci1 )
2.地基总沉降量的计算
(2)计算原理
厚度为z均质地基土,在侧限条件下,压缩模量Es 不随深度变化,土层的压缩量为
分层总和法
si
zi
Esi
hi
按铁路桥涵地基和基础设计规范 计算地基沉降量-案例1
按《铁路桥涵地基和基础设计规范》计算地基沉降量-案例1
矩形基础长3.6m,宽2m,地面以上荷载重量F=900KN, 地基为均质黏土,重度γ=18KN/m3,e0=1.0;a=0.4MPa-1。 试按《铁路桥涵地基和基础设计规范》计算地基沉降量 (确定修正系数时,按σz0=σ0 确定)
分层总和法简介-作业1
1.分层总和法:将地基压缩层范围以内的土层划 分成若干薄层,分别计算每一薄层土的变形量, 最后总和起来,即得基础的沉降量。 2.地基最终沉降量:地基变形完全稳定时,地基 表面的最大竖向变形量。
分层总和法简介-作业1
《土力学》教案——第四章-土的压缩性和地基沉降计算
![《土力学》教案——第四章-土的压缩性和地基沉降计算](https://img.taocdn.com/s3/m/3c086fffab00b52acfc789eb172ded630a1c9851.png)
教学内容设计及安排第一节土的压缩性【基本内容】 【工程实例】土体压缩性——土在压力(附加应力或自重应力)作用下体积缩小的特性。
地基土压缩-→地基的沉降 沉降值的大小取决于⎩⎨⎧性、各土层厚度及其压缩地基土层的类型、分布布建筑物荷载的大小和分地基土的压缩实质 减少。
会被压缩,也会被排出部分);)不变;但会被排出(孔隙水体积(不变;土粒体积(v as V V V V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ω)土的固结——土体在压力作用下其压缩量随时间增长的过程。
【讨论】土体固结时间长短与哪些因素有关?一、侧限压缩试验及e -p 曲线1.侧限压缩试验(固结试验)侧限——限制土样侧向变形,通过金属环刀来实现。
试验目的——研究测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的各项压缩指标。
试验设备——固结仪。
2.e -p 曲线要绘制e -p 曲线,就必须求出各级压力作用下的孔隙比——e 。
如何求e ?看示意图:设试样截面积为A ,压缩前孔隙体积为V v0,土粒体积为V S0,土样高度为H 0,孔隙比为e 0(已测出)。
压缩稳定后的孔隙体积为V v ,土粒体积为V S ,土样高度为H 1,孔隙比为e ,S 为某级压力下样式高度变化(用测力计测出),cm 。
依侧限压缩试验原理可知:土样压缩前后试样截面积A 不变,V S0=V S1,则有:)1(000e H Se e +-= 利用上式计算各级荷载P 作用下达到的稳定孔隙比e ,可绘制如图3-2所示的e -p 曲线,该曲线亦被称为压缩曲线。
常规试验中,一般按P =50kPa 、100 kPa 、200 kPa 、400 kPa 四级加荷,测定各级压力下的稳定变形量S ,然后由式(3-2)计算相应的孔隙比e 。
压缩曲线⎪⎩⎪⎨⎧—压缩性低。
—平缓著。
土的孔隙比减少得愈显量作用下,—说明在相同的压力增—越陡二、压缩性指标1.压缩系数 dpde-=α α——压缩系数,MP a -1,负号表e 随P 的增长而减小。
土力学-第四章-土的压缩性和地基沉降计算习题课2 张丙印
![土力学-第四章-土的压缩性和地基沉降计算习题课2 张丙印](https://img.taocdn.com/s3/m/87c9a5a387c24028915fc3e3.png)
14
概念及ห้องสมุดไป่ตู้点
什么是欠固结土?
智者乐水 仁者乐山
不透水岩层
新淤积(或填筑)土层 在原有土层固结完 成之前,取样作试 验会得到什么结果?
15
概念及难点
智者乐水 仁者乐山
说明粘性土压缩性的主要特点,并讨论分层
总和法计算粘性土地基的沉降时,可以模拟 哪些特点,不能模拟哪些。进一步分析计算 的误差及改进措施。
有效应力 = - u总= 50+185-122.7 =17.3kPa 9
方法及讨论 – 固结度计算
智者乐水 仁者乐山
课堂讨论题2:固结计算
在如图所示的厚10m的饱和黏土层表面瞬时大面积均匀堆载p0, 若干年后用测压管分别测得土层中的孔隙水压力uA=51.6kPa、 uB=94.2kPa、uC=133.8kPa、uD=170.4kPa,uE=198.0kPa
+90.4+98/2) =598
S初始超静孔压 =1500
静水压
超静孔压 Ut=1-598/1500=0.601
11
方法及讨论 – 固结度计算
2)固结年限计算: 思路:Ut Tv t
智者乐水 仁者乐山
Ut=0.601
查表Tv=0.29
Cv
k(1 aγw
e)
kEs γw
5.14 10-8 550 2.83 103cm2 / s 0.01
地下
水位
p0=150kPa
A
2m
Es=5.5MPa
B
k=5.1410-8cm/s C
2m 2m
2m D
2m E
不透水岩层
10m
1)试估算此时黏土层的 固结度,并计算此黏土 层已固结了几年? 2) 再经过5年,则该黏土 层的固结度将达到多少? 黏土层在该5年内产生了 多大的压缩量?
《高等土力学》第四章-沉降分析
![《高等土力学》第四章-沉降分析](https://img.taocdn.com/s3/m/01c96ef00c22590102029df8.png)
f
a
b
§4.2 地基中的应力§4.2.3 附加应力
(d)O点在荷载面的角点外侧
荷载面(abcd)= 面积Ⅰ(ohce)- 面积Ⅱ(ohbf)
- 面积Ⅲ(ogde)+ 面积Ⅳ(ogaf)
则
z (K z K z K z K zV ) p
必须注意: 在角点法中,查附加应力系数 时所用的L和B均指划分后的矩形(如ohbf、 ohce等)的长和宽。
§4.2 地基中的应力
§4.2.1 引言
地基中自重应力的计算问题即属于一维问题。
§4.2 地基中的应力
§4.2.2 自重应力
自重应力——土本身自重引起。在建筑物建造前即存在,故又称为初
始应力。 只有有效应力,才能使土粒彼此挤紧,从而引起土体变形。而自重应
力作用下的土体变形一般均已完成(欠固结土除外),故自重应力通常
——谢康和
§4 沉降分析Settlement Analysis
§4.1 概述 §4.2 地基中的应力 §4.3 土的压缩性 §4.4 沉降组成分析 §4.5 沉降计算方法
§4.1 概述
变形
竖向变形
沉降(下沉) Settlement 隆起(上抬) Heave
水平向变形(侧向) Lateral displacement
w
P
4 G
z2 R3
2(1 R
)
§4.2 地基中的应力§4.2.3 附加应力
2.明德林(R.D. Mindlin,1936)解(集中力作用于地基内)
地基内作用一竖向集中力时地基中应力计算
§4.2 地基中的应力§4.2.3 附加应力
当一集中力作用于地基内时,地基中附加应力计算可采用弹性理 论中半无限弹性体内作用一竖向集中应力时的明德林(R.D. Mindlin,1936)解。如上图设置坐标系,距表面距离c处作用一 个集中力P,地基中附加应力表示式为
土的压缩性与地基沉降计算—土的压缩性(土力学课件)
![土的压缩性与地基沉降计算—土的压缩性(土力学课件)](https://img.taocdn.com/s3/m/272119a2e109581b6bd97f19227916888486b9fe.png)
荷载试验与变形模量-作业2
1.荷载试验的试坑宽度不应小于承压板宽度或直径的3倍。 2.荷载试验施加的第一级荷载是土层原始状态所受的自重应力, 整个加载过程加载等级至少为8级 3.荷载试验满足连续两个小时内,每小时沉降量小于0.1mm可 以施加下一级荷载
荷载试验与变形模量-作业2
4.荷载试验终止加载标准: ① 荷载板周围土体有明显隆起(砂类土)或出现裂纹(黏性土); ② 荷载增加很小,但沉降量却急骤增大,即 P—S曲线出现 陡降现象; ③ 在荷载不变的情况下,24h内沉降速率无减小的趋势; ④ 总沉降量已达0.3~0.4倍荷载板宽度(或直径)。
1.荷载试验
(7)终止加载标准:
③ 在荷载不变的 情况下,24h内 沉降速率无减小
的趋势;
④ 总沉降量已 达0.3~0.4倍荷 载板宽度(或直
径)。
1.荷载试验
(8)根据整理的资料绘制P-S曲线
P-S曲线的三个变形阶段 0
第一阶段 直线变形阶段(压密阶段)
pa
pK p
a
b
p<pa
s
c
1.荷载试验
解:根据压缩试验资料计算土体压缩量
s
e1 e2 1 e1
h1
=
0.980-0.845 1+0.980
2000=136
(mm)
土体压缩量的计算 -作业2
土体压缩量的计算-作业2
计算题
已知一土样厚为30mm,原始孔隙比e0= 0.765,当荷 载p1=0.1MPa时, e1=0.707,在0.1~0.2MPa荷载段内 的压缩系数 a0.1-0.2 =0.24MPa-1,求: (1)土样的无侧向膨胀压缩模量 ; (2)当荷载为0.2MPa时,土样的总变形量
土力学 5.土的压缩性和地基沉降计算
![土力学 5.土的压缩性和地基沉降计算](https://img.taocdn.com/s3/m/656ff4c605087632311212e5.png)
土结构性的压缩——与土形成的应力历史有关,(p>pc时,影响大)
压 缩
说明:正常固结土的压缩认为只是由于孔隙体积减小的结果 无粘性土 粘性土
透水性好,水易于排出 透水性差,水不易排出
压缩稳定很快完成 压缩稳定需要很长一段时间
土的固结:土体在压力作用下,压缩量随时间增长的过程
5.2.2 压缩试验和压缩性指标
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
相同p时,一般OCR越大,土 越密实,压缩性越小
先期固结压力pc的确定:A.Casagrande 法
A
1.在e-lgp压缩试验曲线上, 找曲率最大点m
2.作水平线m1 3.作m点切线m2 4.作m1,m2 的角分线m3 5.m3与试验曲线的直线段 交于点B 6.B点对应于先期固结压力pc
到的相应孔隙比
3.计算步骤
d 地基沉降计算深度
1.绘制基础中心点下地基中自重 应力和附加应力分布曲线
σc线 σz线
2.确定基础沉降计算深度
一般土层:σz=0.2σc 软粘土层:σz=0.1σc, 存在基岩:计算至基岩表面
3.确定地基分层
土层的分界面 地下水位面 每层厚度hi ≤0.4b
e1i-e2 i s i hi 1 e1i
e C m
B
m1 m3 m2
土力学 第4章 土的变形性质及地基沉降计算
![土力学 第4章 土的变形性质及地基沉降计算](https://img.taocdn.com/s3/m/c5ca426aba1aa8114431d983.png)
土的压缩特性及地 基沉降计算
4.1 土的压缩性
◆土是一种由土粒和孔隙组成的散粒体沉积物,具有较高 的压缩性。地基土在建筑荷载的作用下将会发生变形,建 筑的基础也会随之沉降。对于非均质地基或上部结构荷载 差异较大时,基础还会出现不均匀沉降。如果沉降或不均 匀沉降超过允许范围,就会导致建筑物的开裂或影响其正 常使用,甚至造成建筑物破坏。
n
s si i 1
(4-19)
式中:s—地基的最终沉降量(mm); △si—第i分层土的最终沉降量(mm); n—沉降计算深度范围内划分的总土层数。
1.基本假定
① 地基是均质、连续、各向同性的半无限线弹性变形体。
该假定表明,地基中的附加应力可按第3章中的方法确定。
② 地基在外荷载作用下像侧限压缩试验中的土样,只产生竖
(2)体积减小的原因
①土颗粒、孔隙中的水被压缩→可忽略不计(压缩过程中土粒体积不变) ②孔隙中气被压缩→导致孔隙体积减小 ③孔隙中的气溶于水→导致孔隙体积减小但可忽略不计 ④孔隙中的水和气被排除→导致孔隙体积减小
结论:土的压缩实质就是孔隙中的水和气被挤出、从而使孔隙 体积减小的过程。
对地基:产生均匀或不均匀沉降
2. 分层总和法
将地基沉降计算深度Zn内的土层划分为若干个水平薄 土层,计算出每一薄土层的压缩量(计算方法与无侧向变形 条件下的压缩量计算方法相同),然后求其和,即认为是压 缩层(即地基)的最终沉降量。
(1)确定沉降计算深度Zn
基础底面以下需要计算压缩变
P0
形所达到的深度。确定原则为:
① 一般取附加应力与自重应力的比值
在压缩曲线上两点连线的斜率表示压缩系数a。即
a tan e e1 e2
5土力学与基础工程第四章-土的压缩性与地基沉降计算
![5土力学与基础工程第四章-土的压缩性与地基沉降计算](https://img.taocdn.com/s3/m/ce4a17892e3f5727a4e96244.png)
(四)原位压缩e-lgp曲线及有关指标
• 上面得到的e-lgp曲线是由室内侧限压缩试验得到的, 但由于目前钻探采样的技术条件不够理想,土样取 出地面后应力的释放、室内试验时切土等人工扰动 等因素的影响,室内的压缩曲线已经不能代表地基 中原位土层承受建筑物荷载后的e-lgp关系。
第一节 概述
在建筑物基底附加应力的作用下,地基土要产生新的变形,这种 变形一般包括体积变形和形状变形。
土在外力作用下体积缩小的特性称为土的压缩性。
土的压缩性主要有两个特点:
(1) 土的压缩主要是由于孔隙体积减少而引起的。
饱和土是由固体颗粒和水组成,在工程上一般的压力(100~600kPa) 作用下,固体颗粒和水本身的体积压缩量非常微小,可不予考虑。
但由于土中水具有流动性,在外力作用下会沿着土中孔隙排出,从 而引起土体积减少而发生压缩。
❖ 压缩量的组成:
➢ 固体颗粒的压缩 ➢ 土中水的压缩
占总压缩量的1/400不到, 忽略不计。
➢ 空气的排出 ➢ 水的排出
压缩量主要组成部分。
(2) 由于孔隙水的排出而引起的压缩对于饱和粘性土来说是需 要时间的,土的压缩会随时间增长的过程就称为土的固结。这 是由于粘性土的透水性很差,土中水沿着孔隙排出速度很慢。
• 因此必须对室内侧限压缩试验得到的曲线进行修正, 以得到符合现场土实际压缩性的原位压缩曲线,才 能更好地用于地基沉降的计算。
(1)对于正常固结土,假定土样取出后体积保持不变,则 试比验,室由测于定是的正初常始固孔结隙土比,e所0就以代前表期取固土结深压度力处pc土就的等天于然取孔土隙深 度了处原土位的土自的重一应个力应p力0,-孔所隙以比图状4态-8(;a)中此E外位根(据e许0,多pc室)内点压反缩映 试验,若将土样加以不同程度的扰动,所得出的不同的室内 压缩e-lgp曲线的直线段,都大致交于e=0.42 e0点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据上述压缩试验可得到的 H~ p关系,可以
得到土样的孔隙比与加荷等级之间的 e~ p关系。
Vv=e0 Vs=1
H1
ΔH
p Vv=e Vs=1
土样在压缩前后 变形量为ΔH,整 个压缩过程中土 粒体积和截面积 不变,所以固体 颗粒高度不变。
(一) e-p曲线及有关指标
• 通常可将常规压缩试验所得的e-p 数据采用普 通直角坐标绘制成e-p 曲线 。
1、压缩系数a
• 土体在侧限条件下孔隙 比减少量与竖向压应力增 量的比值。
• 图中给出了两条典型的软粘土 和密实砂土的压缩曲线。
• 从图4-3 (a)可以看出,由于软 粘土的压缩性大,当发生压力 变化△p时,则相应的孔隙比 的变化△e也大,因而曲线就 比较陡;
• 在土样上下放置的透水石是土样受压后排出孔隙水的两个界 面;在水槽内注水,以使土样在试验过程中保持浸在水中, 因为室内压缩试验主要用于饱和土。
• 如需做不饱和土的侧限压缩试验, 就不能浸土样于水中,但需要用湿 棉纱或湿海绵覆盖于容器上,以免 土样内水分蒸发;
• 竖向的压力通过刚性板施加给土样; • 土样产生的压缩量可通过百分表量测。
• 因此,在运用到沉降计算中时,比较合理的做法是 根据实际竖向应力的大小在压缩曲线上取相应的孔 隙比计算这些指标。
• 反之,像密实砂土的压缩性小, 当发生相同压力变化△P时, 相应的孔隙比的变化△e就小, 因而曲线比较平缓。
• 因此,可用曲线的斜率来反映 土压缩性的大小。
• 设压力由p1增至p2,相应的 孔隙比由e1减小到e2,当压 力变化范围不大时,可将
M1M2一小段曲线用割线来代 替,用割线M1M2的斜率来表 示土在这一段压力范围的压
5土力学与基础工程第四章 -土的压缩性与地基沉降计
算
• 学习目标
在学习土的压缩性指标确定方法的基础上,掌 握地基最终沉降量计算原理和地基固结问题的分 析计算方法。
• 学习基本要求
1.掌握土的压缩性与压缩性指标确定方法 2.掌握地基最终沉降量计算方法 3.熟悉不同应力历史条件的沉降计算方法 4.掌握有效应力原理 5.掌握太沙基一维固结理论 6.掌握地基沉降随时间变化规律
的条件,H可用相应的孔隙比的变化 ee1e2来表示:
H 1 H2 H 1H 1e1 1e2 1e2
H
He1 1 ee12H 11 e e1H 1
E s H p H 1 e 1 p e 11 a e 1
• 说明: • 压缩模量也不是常数,而是随着压力大小而变化。
• 土a愈的小压,缩土模的量压E缩s与性土愈的低的。压缩系数a成反比, Es愈大,
➢ 0.1MPa-1≤a1-2<0.5MPa-1 中压缩性土
➢
a1-2≥0.5MPa-1 高压缩性土
0.1
a12/MP1a
0.5
低压缩性
中压缩性
高压缩性
2. 压缩模量Es
土在完全侧限条件下竖向应力增量Δp与相应的应变增量
Δε的比值,称为侧限压缩模量,简称压缩模量,用Es表示。
p p
无侧向变形,即横E 截s 面积不变H,H1根据土粒所占高度不变
但由于土中水具有流动性,在外力作用下会沿着土中孔隙排出,从 而引起土体积减少而发生压缩。
❖ 压缩量的组成:
➢ 固体颗粒的压缩 ➢ 土中水的压缩
占总ቤተ መጻሕፍቲ ባይዱ缩量的1/400不到, 忽略不计。
➢ 空气的排出 ➢ 水的排出
压缩量主要组成部分。
(2) 由于孔隙水的排出而引起的压缩对于饱和粘性土来说是需 要时间的,土的压缩会随时间增长的过程就称为土的固结。这 是由于粘性土的透水性很差,土中水沿着孔隙排出速度很慢。
缩性,即:
式中a 为压缩系数,MPa-1;
图4-4(a)由e-p曲线确定压缩系数a
压缩系数愈大,土的压缩性愈高。•从图中还可以看出,压缩系数a
值与土所受的荷载大小有关。
• 工程中一般采用100~200 kPa压力区间内对应的压缩系数 a1-2来评价土的压缩性。即 :
➢
a1-2<0.1MPa-1 低压缩性土
H1/(1+e)
H0 H0/(1+e0)
H1H0H
土粒高度在受 压前后不变
H0 H1 1e0 1e
整理
e0 s(10w0)1
ee0 H H 0 (1e0)
得到各级荷载p所对应的e,可绘出e~p曲线及e~lg p曲线等。
s w 0 0 分别为土粒密度、土样的初始含水量及初始密度,它们
可根据室内试验测定。
第一节 概述
在建筑物基底附加应力的作用下,地基土要产生新的变形,这种 变形一般包括体积变形和形状变形。
土在外力作用下体积缩小的特性称为土的压缩性。
土的压缩性主要有两个特点:
(1) 土的压缩主要是由于孔隙体积减少而引起的。
饱和土是由固体颗粒和水组成,在工程上一般的压力(100~600kPa) 作用下,固体颗粒和水本身的体积压缩量非常微小,可不予考虑。
第二节 研究土压缩性的试验及指标
一、室内侧限压缩试验及压缩模量
室内侧限压缩试验亦称固结试验。
试验装置:压缩仪
用金属环刀切取土样。
环 刀 内径 通 常 有 6.18cm和 8cm 两 种 , 相 应 的 截 面 积 为 30cm2和50cm2,高度为2cm。
• 切有土样的环刀置于刚性护环中,由于金属环刀及刚性护环 的限制,使得土样在竖向压力作用下只能发生竖向变形,而 无侧向变形;
无粘性土
透水性好,水易于排出
压缩稳定很快完成
粘性土 透水性差,水不易排出 压缩稳定需要很长一段时间
❖ 沉降:在建筑物荷载作用下,地基土主要由于压 缩而引起的竖直方向的位移。
由于土压缩性的两个特点,因此研究建筑物地基沉降包含 两方面的内容:
(1) 绝对沉降量的大小(最终沉降); (2) 沉降与时间的关系。
压 缩 仪 详 图
试验时用环刀切取钻探取得的保持天然结构的原状土 样,由于地基沉降主要与土竖直方向的压缩性有关,且土 是各向异性的,所以切土方向还应与土天然状态时的垂直 方向一致。
压缩试验加荷:
常规加荷等级p为:50、100、200、300、400kPa。
每一级荷载要求恒压24小时或当在1小时内的压缩量不超过 0.005mm时,认为变形已经稳定,并测定稳定时的总压缩 量 H,这称为慢速压缩试验法。