遥感图像分类.PPT
合集下载
第七章遥感数字图像计算机解译ppt课件
➢采用距离衡量相似度 时,距离越小相似度 越大。 ➢采用相关系数衡量相 似度时,相关程度越 大,相似度越大。
2
二、分类方法
非监督分类( Unsupervised classification ): 是在没有先验类别(训练场地)作为样本的条件 下,即事先不知道类别特征,主要根据像元间相 似度的大小进行归类合并(即相似度的像元归为 一类85%,模板需要要重建。
35
三、图像分类中的有关问题
1、未充分利用遥感图像提供的多种信息 只考虑多光谱特征,没有利用到地物空间关系、
图像中提供的形状和空间位置特征等方面的信 息。 统计模式识别以像素为识别的基本单元,未能利 用图像中提供的形状和空间位置特征,其本质是 地物光谱特征分类
(3)多级切割分类法 (4)特征曲线窗口分类法
监督分类的一般步骤
采集训练样本 建立模板 评价模板 初步分类 检验分类
分类后处理 分类特征统计
训练样本选择:
取决于用户对研究区及类别的了解程度。
1)矢量多边形:使用矢量图层;自定义AOI多边形; 2)标志种子象素:利用AOI工具,用十字光标标出 一个象元作为种子象素(seed pixel)代表训练样本, 其相邻象素根据用户指定参数进行比较,直到没有 相邻象元满足要求,这些相似元素通过栅矢转换成 为感兴趣区域。
46
小波分析
小波理论起源于信号处理。由于探测精度的限
制.一般的信号都是离散的,通过分析认为信号是由多
个小波组成的,这些小波代表着不同的频率持征。小波
函数平移、组合形成了小波函数库,通过小波函数库中
区间的变化可以对某些感兴趣的频率特征局部放大,因
此.小波函数被称为数学显微镜。
47
小波分析
小波分析方法的基本思想就是将图像进行多分辨率 分解.分解成不同空间、不同频率的子图像、然后再对子 图像进行系数编码。基于小波分析的图像压缩实质上是对 分解系数进行量化的压缩。
2
二、分类方法
非监督分类( Unsupervised classification ): 是在没有先验类别(训练场地)作为样本的条件 下,即事先不知道类别特征,主要根据像元间相 似度的大小进行归类合并(即相似度的像元归为 一类85%,模板需要要重建。
35
三、图像分类中的有关问题
1、未充分利用遥感图像提供的多种信息 只考虑多光谱特征,没有利用到地物空间关系、
图像中提供的形状和空间位置特征等方面的信 息。 统计模式识别以像素为识别的基本单元,未能利 用图像中提供的形状和空间位置特征,其本质是 地物光谱特征分类
(3)多级切割分类法 (4)特征曲线窗口分类法
监督分类的一般步骤
采集训练样本 建立模板 评价模板 初步分类 检验分类
分类后处理 分类特征统计
训练样本选择:
取决于用户对研究区及类别的了解程度。
1)矢量多边形:使用矢量图层;自定义AOI多边形; 2)标志种子象素:利用AOI工具,用十字光标标出 一个象元作为种子象素(seed pixel)代表训练样本, 其相邻象素根据用户指定参数进行比较,直到没有 相邻象元满足要求,这些相似元素通过栅矢转换成 为感兴趣区域。
46
小波分析
小波理论起源于信号处理。由于探测精度的限
制.一般的信号都是离散的,通过分析认为信号是由多
个小波组成的,这些小波代表着不同的频率持征。小波
函数平移、组合形成了小波函数库,通过小波函数库中
区间的变化可以对某些感兴趣的频率特征局部放大,因
此.小波函数被称为数学显微镜。
47
小波分析
小波分析方法的基本思想就是将图像进行多分辨率 分解.分解成不同空间、不同频率的子图像、然后再对子 图像进行系数编码。基于小波分析的图像压缩实质上是对 分解系数进行量化的压缩。
遥感图像自动分类
2)类间散布矩阵:
类间散布矩阵表示了不同类别间相互散布的程度
3)总体散布矩阵:
类间散布矩阵表示了不同类别间相互散布的程度
8.3、监督分类
自动识别分类
监督分类法
非监督分类法
监督分类法是选择有代表性的试验区
来训练计算机,再按一定的统计判别规则 对未知地区进行自动分类的方法。
监督分类的思想:
1)确定每个类别的样区 2)学习或训练 3)确定判别函数和相应的判别准则 4)计算未知类别的样本观测值函数值 5)按规则进行像元的所属判别
4 比值变换
– 比值变换图像用作分类有许多优点,它可以增强土 壤,植被,水之间的辐射差别,压抑地形坡度和方 向引起的辐射量变化。由于地形的影响,一般情况 下各种地物光谱反射率ρi乘上一个相近的因子α ,当 使用比值变换时,
– R12 = x1/x2 = αρ1/αρ2 = ρ1/ρ2
5 生物量指标变换 NDVI (NIR R) (NIR R)
距离判别函数是设法计 算未知矢量X到有关类别集 群之间的距离,哪类距离它 最近,该未知矢量就属于那 类。
距离判别函数不象概率
判别函数那样偏重于集群分 布的统计性质,而是偏重于 几何位置。
距离判别规则是按最小 距离判别的原则。
最小距离法中常使用的三种距离判别函数
➢ 马氏(Mahalanobis)距离 ➢ 欧氏(Euclidean)距离 ➢ 计程(Taxi)距离
虽然每一种图像数据都可能包含了一些可用 于自动分类的信息,但是就某些指定的地物 分类而言,并不是全部获得的图像数据都有 用,如果不加区别地将大量原始图像直接用 来分类,不仅数据量太大,计算复杂,而且 分类的效果也不一定好
8.2 特征变换及特征选择
(1)特征变换,是将原有的m测量值集合 并通过某种变换,产生n个新的特征。n<=m ➢特征变换将原始图像通过一定的数字变换 生成一组新的特征图像,这一组新图像信息 集中在少数几个特征图像上,这样,数据量 有所减少。 (2)特征选择,是从原有的m个测量值集 合中,按某一准则选择出n个特征。 ➢特征选择就是在原始图像或特征影像中, 选择一组最佳的特征影像进行分类。
类间散布矩阵表示了不同类别间相互散布的程度
3)总体散布矩阵:
类间散布矩阵表示了不同类别间相互散布的程度
8.3、监督分类
自动识别分类
监督分类法
非监督分类法
监督分类法是选择有代表性的试验区
来训练计算机,再按一定的统计判别规则 对未知地区进行自动分类的方法。
监督分类的思想:
1)确定每个类别的样区 2)学习或训练 3)确定判别函数和相应的判别准则 4)计算未知类别的样本观测值函数值 5)按规则进行像元的所属判别
4 比值变换
– 比值变换图像用作分类有许多优点,它可以增强土 壤,植被,水之间的辐射差别,压抑地形坡度和方 向引起的辐射量变化。由于地形的影响,一般情况 下各种地物光谱反射率ρi乘上一个相近的因子α ,当 使用比值变换时,
– R12 = x1/x2 = αρ1/αρ2 = ρ1/ρ2
5 生物量指标变换 NDVI (NIR R) (NIR R)
距离判别函数是设法计 算未知矢量X到有关类别集 群之间的距离,哪类距离它 最近,该未知矢量就属于那 类。
距离判别函数不象概率
判别函数那样偏重于集群分 布的统计性质,而是偏重于 几何位置。
距离判别规则是按最小 距离判别的原则。
最小距离法中常使用的三种距离判别函数
➢ 马氏(Mahalanobis)距离 ➢ 欧氏(Euclidean)距离 ➢ 计程(Taxi)距离
虽然每一种图像数据都可能包含了一些可用 于自动分类的信息,但是就某些指定的地物 分类而言,并不是全部获得的图像数据都有 用,如果不加区别地将大量原始图像直接用 来分类,不仅数据量太大,计算复杂,而且 分类的效果也不一定好
8.2 特征变换及特征选择
(1)特征变换,是将原有的m测量值集合 并通过某种变换,产生n个新的特征。n<=m ➢特征变换将原始图像通过一定的数字变换 生成一组新的特征图像,这一组新图像信息 集中在少数几个特征图像上,这样,数据量 有所减少。 (2)特征选择,是从原有的m个测量值集 合中,按某一准则选择出n个特征。 ➢特征选择就是在原始图像或特征影像中, 选择一组最佳的特征影像进行分类。
遥感影像分类ppt课件
(2)摄影像片的解译标志
解译标志又称判读标志,指能够反映和表 现目标地物信息的遥感影像各种特征,这 些特征能够帮助判读者识别遥感图像上目 标地物或现象。
编辑课件
39
• 直接判读标志
• 形状:人造地物具有规则的几何外形和清晰的边界,自然地物具有不 规则的外形和规则的边界。
• 大小:不知道比例尺时,可以比较两个物体的相对大小;已知比例尺, 可直接算出地物的实际大小和分布规模。
✓ 阴影:目标地物与背景之间的辐射差异造成
阴影
编辑课件
42
编辑课件
43
2.遥感扫描影像的判读
• 1、常见遥感扫描影像的主要特点及其应用
✓ MSS影象:
✓ 不同卫星上的波段对比; ✓ MSS各波段应用范围(重点)。
✓ TM影象:
✓ TM影象与MSS影象的对比 ✓ 波段设置 ✓ 主要应用
✓ SPOT影象:
植物含水量的影响,吸收
率大增,反射率大大下降,
绿叶的反射率
特别是在水的吸收带形成
低谷。
编辑课件
11
• 植物波谱具有上述的基本特征,但仍有细 部差别,这种差别与植物种类、季节、病 虫害影响、含水量多少等有关系。为了区 分植被种类,需要对植被波谱进行研究。
编辑课件
12
9月20日玉米、大豆
• 5月20日小麦、油菜
• 本质的区别 :电磁波在真空中也能传播 ; 机械波必须在弹性媒质中才能传播
• 两者在运动形式上都是波动。
• 基本的波动形式有两种:
横波:质点的振动方向与波的传播方向垂直。 如水波、电磁波。
纵波:质点的振动方向与波的传播方向相同。 如声波。
• 电磁波一定是横波,机械波却可以是横波
解译标志又称判读标志,指能够反映和表 现目标地物信息的遥感影像各种特征,这 些特征能够帮助判读者识别遥感图像上目 标地物或现象。
编辑课件
39
• 直接判读标志
• 形状:人造地物具有规则的几何外形和清晰的边界,自然地物具有不 规则的外形和规则的边界。
• 大小:不知道比例尺时,可以比较两个物体的相对大小;已知比例尺, 可直接算出地物的实际大小和分布规模。
✓ 阴影:目标地物与背景之间的辐射差异造成
阴影
编辑课件
42
编辑课件
43
2.遥感扫描影像的判读
• 1、常见遥感扫描影像的主要特点及其应用
✓ MSS影象:
✓ 不同卫星上的波段对比; ✓ MSS各波段应用范围(重点)。
✓ TM影象:
✓ TM影象与MSS影象的对比 ✓ 波段设置 ✓ 主要应用
✓ SPOT影象:
植物含水量的影响,吸收
率大增,反射率大大下降,
绿叶的反射率
特别是在水的吸收带形成
低谷。
编辑课件
11
• 植物波谱具有上述的基本特征,但仍有细 部差别,这种差别与植物种类、季节、病 虫害影响、含水量多少等有关系。为了区 分植被种类,需要对植被波谱进行研究。
编辑课件
12
9月20日玉米、大豆
• 5月20日小麦、油菜
• 本质的区别 :电磁波在真空中也能传播 ; 机械波必须在弹性媒质中才能传播
• 两者在运动形式上都是波动。
• 基本的波动形式有两种:
横波:质点的振动方向与波的传播方向垂直。 如水波、电磁波。
纵波:质点的振动方向与波的传播方向相同。 如声波。
• 电磁波一定是横波,机械波却可以是横波
《遥感图像分类》课件
特征变换
将原始特征进行变换,生成新的特征,以更好地 反映地物类别之间的差异。
分类器设计
监督分类
利用已知样本的训练集设计分类器,对未知样本进行分类。
非监督分类
对未知样本进行聚类分析,将相似的样本归为同一类。
混合分类
结合监督分类和非监督分类的优势,提高分类精度和稳定性。
分类结果评价
精度评价
通过比较分类结果与实际地物类别, 计算分类精度、混淆矩阵等指标。
THANKS
感谢观看
分类器。
多源遥感数据融合问题
多源遥感数据融合可以提高分类精度和可靠性,但同时也带 来了数据匹配、融合算法选择等问题。
解决多源遥感数据融合问题的策略包括使用先进的融合算法 ,如基于深度学习的融合方法,以及优化数据匹配方法。
遥感图像分类技术的发展趋势
01
遥感图像分类技术正朝着高精度、高效率和自动化的方向发展 。
可靠性评价
评估分类结果的稳定性、可靠性以及 抗干扰能力。
应用价值评价
根据分类结果在实际应用中的价值, 如土地利用、资源调查、环境监测等
,对分类方法进行综合评价。
04
CATALOGUE
遥感图像分类的挑战与展望
数据质量问题
遥感图像常常受到噪声、失真和 模糊等影响,导致数据质量下降
。
数据质量问题还表现在不同传感 器获取的图像之间的差异,以及 不同时间获取的图像之间的变化
遥感图像分类的应用
遥感图像分类在多个领域有广泛应用,如环境保护、城市规划、资源调查、军事 侦察等。
通过遥感图像分类,可以快速获取大范围的地物信息,为相关领域的决策提供科 学依据。
02
CATALOGUE
遥感图像分类的方法
将原始特征进行变换,生成新的特征,以更好地 反映地物类别之间的差异。
分类器设计
监督分类
利用已知样本的训练集设计分类器,对未知样本进行分类。
非监督分类
对未知样本进行聚类分析,将相似的样本归为同一类。
混合分类
结合监督分类和非监督分类的优势,提高分类精度和稳定性。
分类结果评价
精度评价
通过比较分类结果与实际地物类别, 计算分类精度、混淆矩阵等指标。
THANKS
感谢观看
分类器。
多源遥感数据融合问题
多源遥感数据融合可以提高分类精度和可靠性,但同时也带 来了数据匹配、融合算法选择等问题。
解决多源遥感数据融合问题的策略包括使用先进的融合算法 ,如基于深度学习的融合方法,以及优化数据匹配方法。
遥感图像分类技术的发展趋势
01
遥感图像分类技术正朝着高精度、高效率和自动化的方向发展 。
可靠性评价
评估分类结果的稳定性、可靠性以及 抗干扰能力。
应用价值评价
根据分类结果在实际应用中的价值, 如土地利用、资源调查、环境监测等
,对分类方法进行综合评价。
04
CATALOGUE
遥感图像分类的挑战与展望
数据质量问题
遥感图像常常受到噪声、失真和 模糊等影响,导致数据质量下降
。
数据质量问题还表现在不同传感 器获取的图像之间的差异,以及 不同时间获取的图像之间的变化
遥感图像分类的应用
遥感图像分类在多个领域有广泛应用,如环境保护、城市规划、资源调查、军事 侦察等。
通过遥感图像分类,可以快速获取大范围的地物信息,为相关领域的决策提供科 学依据。
02
CATALOGUE
遥感图像分类的方法
遥感概论第12章 遥感图像的分类 122.12 第12章 遥感图像的分类
影像分类是遥感、影像分析和模式识别的重要组成部分
• 影像分类可以作为影像分析的直接目标:如土地利用分类、 农作物种类识别、湿地类型识别等,以分类影像作为成果
• 影像分类也可以作为影像分析的中间环节:如研究森林情 况,需要先提取出森林的范围;研究草地或农业情况,需 要先提取出草地和耕地的范围等
在影像分类过程中,需要用到分类器:即按照一定方法进 行影像分类的计算机程序
• 此时,需要采用距离量算法确定该点究竟属于哪个点集群
• 如果像元A、C间的距离大于B、C间的距离,则像元C属于B ,否则属于A
因此,距离的量算是非监督分类的核心
(3)距离量算的方法
殴几里得距离测量
n
Dab [ (ai bi)2 ]1/ 2 i 1
• i表示波段,a和b表示像元值,Dab表示两像元之间的距离
概念:非监督分类是指在多光谱影像中搜寻和定义自然光 谱集群组的过程,也叫聚类分析或点群分析
• 计算机按照一定的规则自动地根据像元光谱或空间特征进 行像元分类,不需要人工选择训练样本,仅需极少的人工 输入参数
目前,非监督分类已经发展了近百种分类算法,但所有的 算法都是基于像元亮度的相似度
• 相似度一般用距离或相关系数来衡量,距离越小或相关系 数越大,则相似度越大,相似度大的像元归并为一类
• 分类器的种类很多,但还没有一种分类器能够适用于所有 的任务
• 研究人员,只需根据当前的实际需要,选择一种分类器即 可,也可针对自己的需要,设计自己的分类器
• 简单的点分类器 简单、高效,但错误多
• 邻域分类器 设计复杂,但能结合空间
纹理信息,提高了精度
2 信息类别和光谱类别
信息类别是用户使用的对地面事物的信息分类 • 如湿地的不同类型、农田的类型、土地利用的不同类型等 • 这些信息类别可提供给规划者、管理者、研究者参考使用 • 影像不直接记录信息类别,只记录亮度值,分析人员只能
遥感图像分类ppt课件
– 假设遥感图像有K个波段,则(i,j)位置的像素在
每个波段上的灰度值可以构成表示为X=(x1,
T
5
8.1 概述
• 8.1.2 分类方法
– 根据是否需要分类人员事先提供已知类别及其 训练样本,对分类器进行训练和监督,可将遥 感图像分类方法划分为监督分类和非监督分类。
– 事先己经知道类别的部分信息(即类别的先验知 识),对未知类别的样本进行分类的方法称之为 监督分类(Supervised Classification)。事先没 有类别的先验知识,对未知类别的样本进行分 类的方法称之为非监督分类(Unsupervised Classification)
14
8.4 非监督分类
• 非监督分类,是指人们事先对分类过程不
施加任何的先验知识,仅凭据遥感影像地 物的光谱特征的分布规律,随其自然地进 行盲目的分类。其分类的结果,只是对不 同类别进行了区分,并不确定类别的属性, 其属性是通过事后对各类的光谱响应曲线 进行分析,以及与实地调查相比较后确定 的。
• 非监督分类的理论依据:遥感图像上的同
4
8.1 概述
• 8.1.1 基本原理
– 同类地物在相同的条件下(光照、地形等)应该 具有相同或相似的光谱信息和空间信息特征。 不同类的地物之间具有差异根据这种差异,将 图像中的所有像素按其性质分为若干个类别 (Class)的过程,称为图像的分类。
– 遥感图像分类以每个像素的光谱数据为基础进 行。
9
8.2 相似性度量
3.马氏(Mahalanobis)距离
马氏距离是一种加权的欧氏距离,它通 过协方差矩阵来考虑变量的相关性。这 是由于在实际中,各点群的形状是大小 和方向各不相同的椭球体,如图所示, 尽管K点距MA的距离DA比距MB的距离 DB小,即DA<DB ,但由于B点群比A点 群离散得多,因而把K点划入B类更合 理。加权可以这样理解,计算的距离与 各点群的方差有关。方差愈大,计算的 距离就愈短。如果各个点群具有相同的 方差,则马氏距离是欧氏距离的平方。
遥感数字图像处理第九章 遥感图像分类
gi ( x) p(wi | x) p(wi x) p(wi | x) p( x) p( x | wi ) p(wi ) gi ( x) p(wi | x) p( x | wi ) p(wi ) / p( x)
对于同一个像素来说,p(x)是相同的,因此可以约掉
最大似然方法
训练区:已知类别的区域,用于训练分类算法
样本区域类别的确定:实地观测,航片解译、 地图分析、个人经验等
监督分类的步骤
(1)提取样本区的光谱特性 (2)确定判别准则(最小距离?),生成判别函数 (3)将类型未知的样本值代入到判别函数中,根 据函数值对样本进行分类
样本区的选择
样本区类型:点、线、面 样本区的选择: 具有代表性(典型性) 时间或空间上的一致性 像元要足够多
A.图像预处理
确定工作范围 多源图像的几何配准 噪声处理 辐射校正 几何精校正 多图像融和(高空间分辨率和高光谱分辨率的图像)
C.特征选择和提取
特征:用于测量的属性 特征选择:变量:数据
波段数据、波段代数运算后的数据 图像变换之后的数据 非遥感图像数据
特征提取:地物光谱与图像亮度的先验关系
可分性、可靠性、独立性、数量少
XY ( X ) (Y )
2 2
p
பைடு நூலகம்
p
分类方法
(1)监督分类 (2)非监督分类 (3)其它的综合性分类方法:
模糊聚类、神经网络、决策树、专家系统分类、面 向对象的分类
工作流程
A.图像预处理 B.选择分类方法 C.特征选择和提取 D.选择合适的分类参数进行分类 E.分类后处理 F.成果输出
平行管道方法(盒式分类器,平行六面体分类器)
分类原理:每个训练区的样本的特征向量生成一个盒子,盒子 的中心为均值向量,边界为标准差的倍数(1、2、1.73等)。未 分类的向量落到哪个盒子就属于哪个类,即
遥感图像分类
简单集群分类方法
K-均值法(K-means Algorithm) Cluster分类法 迭代自组织数据分析技术方法(Iterative
Self-Organization Data Analysis Techniques, ISODATA)
通过自然的聚类,把它分成8类
K-均值算法的聚类准则是使每一聚类中,像元到 该类别中心的距离的平方和最小
在不同层次可以更换分 类方法,也可以更换分 类特征,以提高这类别 的可分性
城市
非建筑物 建筑物
裸地
植被
树木
草地
将原有的GIS数据和各种土地利用类型变化的先验 性知识综合集成用于新的遥感图像的分类中,不仅 可以促进GIS数据更新的自动化,而且还可以得到 比常 规最大 似然法 高的分 类精度
遥感影像经分类后形成的专题图,用 编号、字符、图符或颜色表示各种类 别
A. 按照某个原则选择一些初始聚类中心 B. 计算像元与初始类别中心的距离,把像素分配
到最近的类别中
C. 计算并改正重新组合的类别中心 D. 过程重复直到满足迭代结束的条件
仅凭遥感影像地物的光谱特征的分布 规律,即自然聚类的特性,进行“盲 目”的分类
其分类的结果只是对不同类别达到了 区分,但并不能确定类别的属性;其 类别的属性是通过分类结束后目视判 读或实地调查确定的
可对复杂的多波段数据及其相互关系进行 有效分析
光谱特征空间:以各波段图像的亮度 分布为坐标轴组成的空间
同类地物在特征空间形成一个相对聚 集的点集群
不同类地物的点集群在特征空间内一 般是相互分离的
SPOT影像
1-2
1-3
1-4
2-3
2-4
3-4
“物以类聚”,而图像分类的依据通 常是像元之间的相似性。相似性通常 又采用“距离”来度量。
第72章高光谱遥感图像分类ppt课件
28
初始类别参数的选定
初始类别参数是指:基准类别集群中心(数学期 望)以及集群分布的协方差矩阵。因为无论采用 何种判别函数,都要预先确定其初始类别的参量。 以下为几种常用的方法:
29
1、像素光谱特征的比较法
首先,在遥感图像中定义一个抽样集,它可以是整幅 图像的所有像素,但通常是按一定间隔抽样的像素;
15
欧几里德距离就是两点之间的直线距离。这是我们用的最多因 而也是最为熟悉的一种距离。与我们习惯用的距离一致。欧氏 距离的表达式为:
2. 欧几里德距离
n
2
di x k
x kj M ij
j1
欧氏距离中各特征参数也是等权的。 以上两种距离都称为明可夫斯基(Minkowski)距离(以下 简称明氏距离),使用明氏距离应该注意以下问题:
式中:Pwi 为先验概率,也就是在被分类的图像中类别wi出现的 概率。PX wi 为似然概率,它表示在 wi这一类中出现像元X的
概率。只要有一个已知的训练区域,用这些已知类别的像元做
统计就可以求出平均值及方差、协方差等特征参数,从而可以
求出总体的先验概率。在不知道的情况下,也可以认为所有的Pwi
为相同。Pwi X 为后验概率。PX 表示不管什么类别出现的概率:
31
初始类别参数的选定
19
3、最大似然监督分类
最大似然法是经典的分类方法,已在宽波段遥感图像分类
中普遍采用。它主要根据相似的光谱性质和属于某类的概率最
大的假设来指定每个像元的类别。MLC法最大优点是能快速指定
被分类像元到若干类之中的一类中去 。
从概率统计分析,要想判别某位置的向量属于哪一个类别,
判别函数要从条件概率 Pwi X i 1 , 2 , 3 , 来, m决定,
初始类别参数的选定
初始类别参数是指:基准类别集群中心(数学期 望)以及集群分布的协方差矩阵。因为无论采用 何种判别函数,都要预先确定其初始类别的参量。 以下为几种常用的方法:
29
1、像素光谱特征的比较法
首先,在遥感图像中定义一个抽样集,它可以是整幅 图像的所有像素,但通常是按一定间隔抽样的像素;
15
欧几里德距离就是两点之间的直线距离。这是我们用的最多因 而也是最为熟悉的一种距离。与我们习惯用的距离一致。欧氏 距离的表达式为:
2. 欧几里德距离
n
2
di x k
x kj M ij
j1
欧氏距离中各特征参数也是等权的。 以上两种距离都称为明可夫斯基(Minkowski)距离(以下 简称明氏距离),使用明氏距离应该注意以下问题:
式中:Pwi 为先验概率,也就是在被分类的图像中类别wi出现的 概率。PX wi 为似然概率,它表示在 wi这一类中出现像元X的
概率。只要有一个已知的训练区域,用这些已知类别的像元做
统计就可以求出平均值及方差、协方差等特征参数,从而可以
求出总体的先验概率。在不知道的情况下,也可以认为所有的Pwi
为相同。Pwi X 为后验概率。PX 表示不管什么类别出现的概率:
31
初始类别参数的选定
19
3、最大似然监督分类
最大似然法是经典的分类方法,已在宽波段遥感图像分类
中普遍采用。它主要根据相似的光谱性质和属于某类的概率最
大的假设来指定每个像元的类别。MLC法最大优点是能快速指定
被分类像元到若干类之中的一类中去 。
从概率统计分析,要想判别某位置的向量属于哪一个类别,
判别函数要从条件概率 Pwi X i 1 , 2 , 3 , 来, m决定,