勾股定理复习精品PPT教学课件

合集下载

精选幻灯片-勾股定理复习23页PPT

精选幻灯片-勾股定理复习23页PPT

精选幻灯片-勾股定理复习
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
ቤተ መጻሕፍቲ ባይዱ
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

勾股定理单元复习课件

勾股定理单元复习课件

综合练习题
01
题目5: 在直角三角形中,斜边上的高为6,斜边长为10,求直角三 角形的面积。
02
答案5: 30
03
题目6: 若三角形三边长分别为a、b、c,满足a^2+b^2=c^2,且 a+b=10,求三角形的面积。
04
答案6: 25/2
05
总结与展望
勾股定理的重要性和意义
勾股定理是几何学中的基础定理之一,它揭示了直角三角形三边之间的数量关系, 对于解决几何问题具有重要意义。
一。
应用价值
勾股定理在几何学、三角学、物 理学等领域都有广泛的应用,是 解决实际问题的重要工具之一。
03
勾股定理的实际应用
勾股定理在建筑学中的应用
建筑设计
结构工程
勾股定理在建筑设计中被广泛应用, 如确定建筑物的垂直角度、计算建筑 物的斜率等。
勾股定理在结构工程中用于计算结构 的稳定性、强度和刚度等。
勾股定理单元复习课件
目录
• 勾股定理的回顾 • 勾股定理的变种和推广 • 勾股定理的实际应用 • 勾股定理的练习题和答案 • 总结与展望
01
勾股定理的回顾
勾股定理的定义
勾股定理定义
勾股定理是平面几何中一个基本 的定理,它指出直角三角形中, 直角边的平方和等于斜边的平方 。
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两个直角边,c是斜边。
答案1: AC=5
题目2: 若直角三角形两条直 角边的比为3:4,斜边长为10,
求两直角边的长度。
04
答案2: 6和8
进阶练习题
题目3: 在三角形ABC中,AB=AC=5,BC=8,求三角 形ABC的面积。

勾股定理期末复习(公开课)精品PPT课件

勾股定理期末复习(公开课)精品PPT课件
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB
为8cm, 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(
折痕为AE) (1)求BF的长; (2)求EC的长。
A
D
E
B
FC
变式:如图折叠长方形C=5,求折痕EF的长.
第一章 勾股定理
勾股定理
考点1:勾股定理的验证 考点2:求第三边 考点3:求斜边上的高
第一章 股股定理
勾股定理 逆定理
勾股数 逆定理
勾股定理应 用
折叠问题 最短路径问题
勾股定理:
如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2
变形:
c2 = a2 + b2 a2 = c2 — b2
例题:① 3,4, 5 ② 5,12, 13
8,15, 17
④ 7, 24, 25 ⑤ 0.5, 0.12, 0.13 ⑥ 1, 2 , 3
以上各组数中能作为直角三角形边长的有______________
例题:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
c a2 b2 a c2 b2
a
c
b2 = c2 — a2 b c2 a2
b
例题:如图在直角三角形中,a=2,c=4,求b
例题:如图3,分别以Rt △ABC三边为边向外作三个
正方形,其面积分别用S1、S2、S3表示,容易得出S1、

第十七章勾股定理全章复习ppt课件

第十七章勾股定理全章复习ppt课件

(x+1)米
C 5米
B
勾股定理在立体图形中的应用
B
有一个圆柱,它的高等 于12厘米,底面半径等于 3厘米,在圆柱下底面上 的A点有一只蚂蚁,它想 从点A爬到点B , 蚂蚁沿
着圆柱侧面爬行的最短 路程是多少? (π的值取3)
我怎 么走 会最 近呢?
A
B
9cm B
高 12cm
A
A 长18cm (π取3)
图①
图②
图1
图③
小红同学的做法是:

设新正方形的边长为x(x>0).依题意,割补前后图形的面积相等,
有x2=5,解得x= 5 . 由此可知新正方形的边长等于两个小正方形
组成得矩形对角线的长.于是,画出图②所示的分割线,拼出如图
③所示的新正方形.
本章知识结构
实际问题 (直角三角形边长计算)
实际问题 (判定直角三角形)
③若c=61,b=60,则a=__1__1______;
④若则aR∶t△b=A3B∶C4的,面c=积1为0,____2_4___.
解三角形:设未知数求长度
小明同学想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米, 当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他 算出来吗?
A
x米
平面展开问题
判断一个三角形是否为直角三角形
1. 直接给出三边长度,如3,4,5; 2.间接给出三边的长度或比例关系 (1).若一个三角形的周长12cm,一边长为3cm,其 他两边之差为1cm,则这个三角形是___________. (2).将直角三角形的三边扩大相同的倍数后, 得到的三角形是 ____________.

5

比8

勾股定理单元复习完整ppt课件

勾股定理单元复习完整ppt课件

.
7
基础知识
逆命题与逆定理
所有命题都有逆命题,但不是所有的定理都有逆定理 逆定理一定是逆命题,但是逆命题不一定是逆定理
.
8
基础知识
勾股数
满足a2 +b2=c2的三个正 整数 ,称为勾股数
常见的勾股数有
3、4、5 5、12、13 6、8、10
7、24、25
8、15、17
3n、4n、5n …… ……
3.若△ABC中 ,AB=5 ,BC=12 ,AC=13 ,则AC边
上的高长为
;
分类
思想
4.已知一个直角三角形的三边长分别为 6cm , 8 cm, X cm ,则 这个三角形的最大边长是
cm;
.
16
5.在三角形ABC中, ∠A ∠B ∠C 的对边分别 是a、b、c,下列说法错误的是( B )
A、如果 ∠C -- ∠B = ∠A,那么△ABC是直角三角形
D
转化 思想
13
A
12 3┐
B4 C
.
20
必会题型
如图,有一块田地的形状和尺寸如图所示, 试求它的面积。
A
转化 思想
4
13
5
B
3

C
12
D
.
21
必会题型
如图,四边形ABCD中,AB = BC, ∠ABC = ∠CDA = 90°,BE ⊥AD于点E,且四边形ABCD的面积是25, 求 BE的长
转化 思想
__________
勾股定理单元复习
.
1
知识框架
勾股定理
勾股定理逆定理
如果△是直角三角形
那么a2 + b2 = c2

勾股定理复习课件整理ppt

勾股定理复习课件整理ppt
• 知识点1:(已知两边求第三边) 1.在直角三角形中,若两直角边的长分别为1cm,
2cm ,则斜边长为___.斜边上的高为_____.
2.已知直角三角形的两边长为3、4,则另一条边长是 ________________.
3、三角形ABC中,AB=10,AC=17,BC边上的高线 AD=8,求BC的长?
变式练习: 公园里有一块形如四边形ABCD的草地,测得 BC=CD=10米,∠B=∠C=120°,∠A=45度. 请你求出这块草地的面积.
F
知识点4:利用方程思想解决有关问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
知识点5:勾股定理在立体图形中的应用(二)
(几何体内部最长线段问题)
如图,将一根长24cm的筷子,置于底面直径为 5cm,高为12cm的圆柱形水杯中,设筷子露在 杯子外面的长度是hcm,则h的取值范围是 _____________.
寻找规律性问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
满足 a2b2c2
称为勾股数。
的三个正整数

你能写出常用的勾股数吗?
3,4,5; 5,12,13;
6,8,10; 7,24,25;
8,15,17 ;9,40,41
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

(精选幻灯片)勾股定理ppt课件

(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边

《勾股定理》数学教学PPT课件(10篇)

《勾股定理》数学教学PPT课件(10篇)
= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小

利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.

勾股定理全章复习公开课PPT课件

勾股定理全章复习公开课PPT课件

?
么你 发 现 了 什
(6)a=5,b=_____1_2_,c=13
(7)a=____9_,b=40,c=41 (8)a=7,b=_2_4__c=25
Hale Waihona Puke 记一记:(同桌互背)常见的勾股数: 3、4、5; 5、12、13; 6、8、10; 8、15、17; 9、40、41; 7、24、25.
精选ppt课件2021
(2)求
的面积。
12
C
B
3
D
4 13
ADC
A
勾股定理的应用四:构建直角三角形
1.在一棵树的20米的B处有两只猴子,其中一只
猴子爬下树走到离树40米的A处,另一只爬到
树顶D后直接约向A处,且测得AD为50米,求BD
的长.
D
B
C
A
2.如图,小明和小方分别在C处同时出发,小明
以每小时40千米的速度向南走,小方以每小时
=__2_4___ ,斜边上的高=__4_._8__
2.一个直角三角形的面积54,且其中一条直角边
的长为9,则这个直角三角形的斜边长为__1_5__
3.如上图,直角三角形的面积为24,AC=6,则它的
周长为_____2_4__
勾股定理与逆定理的
综合运用
7.如图:AD⊥CD , AC⊥BC ,AB=13, CD=3 ,
bC
6
1.如图,字母A,B,C分别代表正方形的面积
(1)若B=225个单位面积,C=400个单位面积,
则A=__6_2_5__个单位面积.
(2)若A=225个单位面积,B=81个单位面积,
则C=__1_4_4__个单位面积.
第1题
2.已知直角三角形ABC中, ACB90

勾股定理全章复习课ppt课件

勾股定理全章复习课ppt课件

7.下列线段不能组成直角三角形的是( D )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a= ,b= ,c=
D.a:b:c=2:3:4
B
A.锐角三角形 C. 钝角三角形
B. 直角三角形 D. 等边三角形
9
9.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,
均收到已触礁搁浅的船C的求救信号, 6分钟后同时到达C地.已
y
E
F
D
C
根据勾股定理列出方程即可解决此
类型问题.
A
x B
13
小结
1、你学到哪些数学知识?
理解原命题、逆命题与逆定理的概念及关系 掌握勾股定理及其逆定理并能运用其解决实际问题
2、你学到哪些数学思想方法?
在运用定理解决问题中,体会分类、方程与转化的思想方法
14
课堂检测
1.已知直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,不能作为直角三角形边长的是( )
A
A
利用勾股定理解决 实际问题:先转化 成数学问题, 找到 直角三角形, 最后 利用勾股定理解决 问题。
7
6.如图,长方体的长为6,宽为4,高为8,点B离点C的距离为2,一只妈蚁 如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
展开(分类)
∴最短路径为10 8
知识运用
四、 勾股定理逆定理及其实际应用

5
3.已知一个直角三角形的两条边长是3cm和4cm,求第三条边的长.
答案: 5 cm或 cm.
4.已知在△ABC中, AB=15cm,AC=13cm,高AD=12cm,求BC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高与斜边的比为( D )
A、60∶13 B、5∶12 C、12∶13 D、60∶169
2020年10月2日
6
二、练习
5.如果Rt△的两直角边长分别为n2-1,2n(n>1)
那么它的斜边长是( ) D
A、2n B、n+1 C、n2-1 D、n2+1
6.已知Rt△ABC中,∠C=90°,若a+b=14cm,
在 Rt△ABC中,根据勾股定理,得 AC2+BC2=AB2
即:x2022+0年4120=月(2x日+2)2 ∴ x=3
C D EB
12
三、小结
本节课主要是应用勾股定理和它 的逆定理来解决实际问题,在应用定 理时,应注意:1、没有图的要按题 意画好图并标上字母;2、不要用错 定理。
2020年10月2日
提示: 先运用勾股定理证明中线AD⊥BC,再利用 等腰三角形的判定方法就可以说明了.
2020年10月2日
10
二、练习
3、已知,如图,在Rt△ABC中,∠C=90°, ∠1=∠2,CD=1.5, BD=2.5, 求AC的长.
提示:作辅助线DE⊥AB,利用平 分线的性质和勾股定理。
C D
1
2 A
B
2020年10月2日
13
随堂练习
1.如图所示,这是一块大家常用的一种橡皮, 如果AD=4厘米,CD=3厘米,BC=12厘米, 你能算出AB两点之间的距离吗?
A
B
2020年10月2日
D C
14
2、等腰三角形底边上的高为8,周长为32, 求这个三角形的面积
A
解:设这个三角形为ABC, 高为AD,设BD为X,则AB 为(16-X),
由勾股定理得:
8
X2+82=(16-X)2
B
C D
X
即X2+64=256-32X+X2
∴ X=6
∴ S∆ABC=BC•AD/2=2 •6 •8/2=48
2020年10月2日
15
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
2、直角三角形两直角边长分别为5和12,则它
斜边上的高为___6_0_/_1_3___。
2020年10月2日
4
二、练习
(二)、选择题
1.已知一个Rt△的两边长分别为3和4,则第三
边长的平方是( D )
A、25 B、14 C、7 D、7或25 2.下列各组数中,以a,b,c为边的三角形不是
Rt△的是( A )
BC2+BE2=CE2
15
又 DE=CE ∴ AD2+AE2= BC2+BE2
A xE
即:152+x2=102+(25-x)2
∴ x=10
答:E站应建在离A站10km处。
C 10
25-x B
2020年10月2日
9
二、练习
2、已知,△ABC中,AB=17cm,BC=16cm, BC边上的中线AD=15cm,试说明△ABC是等腰 三角形。
日期:
演讲者:蒝味的薇笑巨蟹
A、a=1.5,b=2,c=3 B、a=7,b=24,c=25 C、a=6,b=8,c=10 D、a=3,b=4,c=5
2020年10月2日
5
二、练习
3.若线段a,b,c组成Rt△,则它们的比为( C)
A、2∶3∶4
B、3∶4∶6
C、5∶12∶13
D、4∶6∶7
4.如果Rt△两直角边的比为5∶12,则斜边上的
c=10cm,则Rt△ABC的面积是( A )
A、24cm2 B、36cm2 C、48cm2 D、60cm2
7.等腰三角形底边上的高为8,周长为32,则三
角形的面积为( B )
A、56 B、48 C、40 D、32
2020年10月2日
7
二、练习
(三)、解答题
1、如图,铁路上A,B两点相距25km,C,D为
勾股定理复习课
2020年10月2日
1
一、知识要点
勾股定理
如果直角三角形两直角边分别为a,b,斜边为c, 那么
a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的平方.
2020年10月2日
2
勾股逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
勾股数
满足a2 +b2=c2的三个正整数,称为勾股数
2020年10月2日
3
二、练习
(一)、填空题
1、在Rt△ABC中,∠C=90°,
①若a=5,b=12,则c=____1_3______;
②若a=15,c=25,则b=___2_0_______;
③若c=61,b=60,则a=__1_1_______;
④若a∶b=3∶4,c=10则SRt△ABC=___2_4____。
11
解:
过D点做DE⊥AB
∵ ∠1=∠2, ∠C=90°
∴ DE=CD=1.5
在 Rt△DEB中,根据勾股定理,得
x
BE2=BD2-DE2=2.52-1.52=4 ∴ BE=2
在Rt△ACD和 Rt△AED中,
1
∵CD=DE , AD=AD
2

∴ Rt△ACD Rt△AED
∴ AC=AE 令AC=x,则AB=x+2
两村庄,DA⊥AB于A,CB⊥AB于B,已知
DA=15km,CB=10km,现在要在铁路AB上
建一个土特产品收购站E,使得C,D两村到
E站的距离相等,则E站应建在离A站多少km
处?
D
C
2020年10月2日
A
E
B
8
解:
设AE= x km,则 BE=(25-x)km
根据勾股定理,得
D
AD2+AE2=DE2
相关文档
最新文档