2020-2021学年重庆市彭水县八年级下学期期末数学试卷

合集下载

2020-2021学年八年级数学下学期期末考试卷

2020-2021学年八年级数学下学期期末考试卷

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:湘教版八下全册。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,既是中心对称图形,又是轴对称图形的是 A .B .C .D .2.已知10个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5~66.5这组的频率是 A .0.4B .0.5C .4D .53.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分成A .9组B .10组C .11组D .12组4.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-x +b 上,则y 1,y 2,y 3的值的大小关系是A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 25.如图,在方格纸上摆出了六枚棋子,如果用(2,-1)表示棋子A ,用(6,-2)表示棋子B ,那么(5,3)表示的是 A .棋子EB .棋子DC .棋子CD .棋子F第5题图 第7题图6.一次函数y =2x +b -2(b 为常数)的图象一定经过 A .第一、二象限 B .第一、三象限C .第二、四象限D .第二、三象限7.如图,将点A (-1,2)关于x 轴作轴对称变换,则变换后点的坐标是 A .(1,2)B .(1,-2)C .(-1,-2)D .(-2,-1)8.胜利中学在一次健康知识竞赛活动中,抽取了一部分学生的测试成绩(成绩均为整数),整理后绘制成如图所示的频数直方图,根据图示信息,下列描述不正确的是 A .抽查了50名学生B .成绩在60.5~70.5分范围的频数为2……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…C.成绩在70.5~80.5分范围的频数比成绩在60.5~70.5分范围的频数多1 D.成绩在70.5~80.5分范围的频率为0.8第8题图第9题图9.如图,A,B的坐标为(20),,(01),,若将线段AB平移至11A B,则a b+的值为A.2 B.3 C.4 D.510.直线l 1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是A.B.C.D.11.如图,在ABC△中,CF AB⊥于F,BE AC⊥于E,M为BC的中点,5EF=,EFM△的周长为13,则BC的长是A.6 B.8 C.10 D.12第11题图第12题图12.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S △ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是A.2 B.3 C.4 D.5第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若正多边形的一个外角为30°,则这个多边形为正__________边形.14.一次函数y=kx+6的图象与两坐标围成的三角形面积为9,那么这个一次函数的表达式为__________.15.已知一次函数y=mx+n与x轴的交点为(-3,0),则方程mx+n=0的解是__________.16.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为__________.第16题图第17题图第18题图17.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为__________.18.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是__________.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,已知Rt △ABC 中,∠ACB =90°,CA =CB ,D 是AC 上一点,E 在BC 的延长线上,且AE =BD ,BD 的延长线与AE 交于点F .试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性.20.(本小题满分6分)如图,∠DAE =∠ADE =15°,DE ∥AB ,DF ⊥AB ,若AE =8,求线段DF 的长度.21.(本小题满分8分)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60≤x <100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.分数段 频数 频率 60≤x <70 18 0.3670≤x <80 17c80≤x <90a0.2490≤x <100 b0.06 合计1根据以上信息解答下列问题:(1)统计表中c 的值为__________;样本成绩的中位数落在分数段__________中;(2)补全频数直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少.22.(本小题满分8分)如图,分别以矩形ABCD 的两条对称轴为x 轴和y 轴建立平面直角坐标系,若点A 的坐标为(4,3). (1)写出矩形的另外三个顶点B ,C ,D 的坐标; (2)求该矩形的面积.23.(本小题满分9分)如图所示,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由;……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…(2)若AB=3,BC=4,求四边形OCED的周长.24.(本小题满分9分)如图,直线y=kx+4(k≠0)与x轴、y轴分别交于点B,A,直线y=-2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD 的面积是32.(1)求直线AB 的表达式;(2)设点E在直线AB上,当△ACE是直角三角形时,求出点E的坐标.25.(本小题满分10分)周末,小芳骑自行车从家出发到野外郊游.从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地.小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地.如图是她们距乙地的路程y(km)与小芳离家x(h)的函数图象.(1)小芳骑车的速度为__________km/h,点H的坐标为__________.(2)小芳从家出发多少小时后被妈妈追上?此时距家的的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?26.(本小题满分10分)如图所示,在Rt△ABC中,∠B=90°,AC=100 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.。

2020-2021重庆市初二数学下期末试题及答案

2020-2021重庆市初二数学下期末试题及答案

2020-2021重庆市初二数学下期末试题及答案一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.5 2.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形3.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C4.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形6.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形C .直角三角形D .锐角三角形7.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .10.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤11.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.812.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD 的周长为18,ECF 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .48二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.已知13y x =-+,234y x =-,当x 时,12y y <.15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

彭水初二数学考试题及答案

彭水初二数学考试题及答案

彭水初二数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √3B. -√3C. 3√D. √-3答案:A2. 如果一个角是直角三角形的一个角,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:D3. 计算下列表达式的值:(3x - 2) + (2x + 1) =A. 5x - 1B. 5x + 1C. 3x - 1D. 3x + 1答案:B4. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A7. 下列哪个选项是不等式?A. 3x + 2 > 5B. 3x + 2 = 5C. 3x + 2D. 3x + 2 ≤ 5答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D9. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. -2D. -1/2答案:A10. 计算下列表达式的值:(2x^2 - 3x + 1) - (x^2 - 2x + 3) =A. x^2 - 5x - 2B. x^2 - x - 2C. x^2 + 5x + 2D. x^2 + x - 2 答案:A二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______。

答案:±52. 如果一个数的立方是-27,那么这个数是______。

答案:-33. 一个数的绝对值是10,那么这个数可能是______。

答案:10或-104. 一个数的相反数是3,那么这个数是______。

答案:-35. 一个数的倒数是2,那么这个数是______。

答案:1/26. 如果一个角是等腰三角形的顶角,且底角为40°,那么顶角的度数是______。

彭水初二数学考试题及答案

彭水初二数学考试题及答案

彭水初二数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次方程的解?A. x = 2B. x = -3C. x = 5D. x = 1答案:D2. 计算下列表达式的结果:(3x^2 - 2x + 1) + (x^2 + 4x - 3)A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 4x^2 + 6x - 2D. 4x^2 + 6x + 2答案:C3. 以下哪个图形是轴对称图形?A. 矩形B. 平行四边形C. 不规则多边形D. 圆答案:D4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 计算下列概率问题:在一个装有5个红球和3个蓝球的袋子里,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/5C. 3/5D. 5/8答案:C6. 一个等腰三角形的底边长为6厘米,两腰相等,且每条腰的长度是底边的2倍,那么这个三角形的周长是多少?A. 18厘米B. 24厘米C. 30厘米D. 36厘米答案:B7. 计算下列代数式:(2x - 3)(x + 1) = ?A. 2x^2 - x - 3B. 2x^2 + x - 3C. 2x^2 - x + 3D. 2x^2 + x + 3答案:A8. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B9. 下列哪个选项是不等式的解?2x - 3 < 7A. x < 5B. x > 5C. x < 10D. x > 10答案:A10. 计算下列几何体的体积:一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,那么它的体积是多少立方厘米?A. 24B. 32C. 48D. 64答案:A二、填空题(每题3分,共15分)1. 一个数的立方等于8,这个数是______。

答案:22. 一个等差数列的前三项分别是2、5、8,那么它的第五项是______。

2020-2021学年___八年级(下)期末数学试卷(附答案详解)

2020-2021学年___八年级(下)期末数学试卷(附答案详解)

2020-2021学年___八年级(下)期末数学试卷(附答案详解)2020-2021学年___八年级(下)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列二次根式是最简二次根式的是()A.√3B.√24C.√15D.√33.下列各式是分式的是()A.(a+b)/2B.9/(a^2bc)___xD.π/x4.下列说法正确的是()A.打开电视正在播出“奔跑吧,兄弟”是必然事件B.已知投掷一枚硬币正面向上的概率为0.5,投十次一定有5次正面向上C.检测重庆市某品牌矿泉水质量,采用抽样调查法D.抽样调查选取样本时,所选样本可按自己的喜好选取5.四边形ABCD中,要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠DD.∠B=∠D6.反比例函数y=x/(x+2)与正比例函数y=2x一个交点为(1,2),则另一个交点是()A.(−1,−2)B.(−2,−1)C.(1,2)D.(2,1)7.如图所示,在菱形ABCD中,AC、BD相交于点O。

E为AB中点,若OE=3,则菱形ABCD的周长是()A.12B.18C.24D.308.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,则该反比例函数的解析式为()A.y=xB.y=−xC.y=x/(x-1)D.y=−x/(x-1)二、填空题(本大题共10小题,共30.0分)9.若二次根式√a−2在实数范围内有意义,则a的取值范围为a≥4.10.若函数a=aa−2是y关于x的反比例函数,则m的值为m=−1.11.反比例函数a=a−2/a的图象在第一、三象限,则m的取值范围为m>2或m<0.12.计算:9√3−√48=3.13.“一个有理数的绝对值为负数”,这一事件是不可能事件.14.在函数a=−a/(2−a^2)的图象上有三个点(−2,y1),(−1,y2),(k,y3),函数值y1<y2<y3.B.选项B不符合题意,因为投十次硬币正面向上的次数可能小于或等于10的任意整数次,不一定是5次;C.选项C符合题意,因为采用抽样调查法可以检测重庆市某品牌矿泉水的质量;D.选项D不符合题意,因为抽样调查时不能按照自己的喜好选取样本;因此,答案为C。

重庆市年八年级(下)期末数学试卷(1)

重庆市年八年级(下)期末数学试卷(1)

重庆市 2021-2021 学年度八年级(下)期末数学试卷(满分:150 分.120 分钟完卷)一、选择题(本大题12 个小题,每小题4 发,共48 分。

)1.下列式子中,属于最简二次根式的是()A.C.D.2.下列根式中,不能合并的是()A.B.C.D.3.下列函数x﹣2,其中一次函数的个数有()A.0 个B.1 个C.2 个D.3 个4.2022 年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4 名同学短道速滑选拔赛成绩的平均与方差s2:队员 1 队员 2 队员 3 队员 4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员2 B.队员1 C.队员4 D.队员35.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3 图象上的两个点,且x1<x2,则y1 与y2 的大小关系是()A.y1>y2 B.y1>y2>0 C.y1<y2 D.y1=y26.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5 C.5,12,13 D.2,2,37.实数k、b 满足kb﹥0,不等式kx<b 的解集那么函数y=kx+b 的图象可能是( )A. B. C. D.8.下列条件中,能判定四边为平行四边形的是( )A. ∥,B. ,C. ,D. ,9.如图,在直角△ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,则线段AN 的长A. 6B. 5C. 4D. 310.2016 年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10 户家庭的月用水量,结果统计如图,则关于这10 户家庭的月用水量,下列说法错误的是()A.众数是6 B.中位数是6 C.平均数是6 D.方差是411.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min 时容器内的水量为()A.20 L B.25 L C.27L D.30 L12.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB,CD 交于点E,F,连接BF 交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD 是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题6 个小题,每小题4 分,共24 分。

重庆市2020-2021学年八年级下学期期末数学试题

重庆市2020-2021学年八年级下学期期末数学试题

重庆市2020-2021学年八年级下学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 下列各式中,为最简二次根式的是()A.B.C.D.2. 已知函数y=x+k﹣3是正比例函数,则常数k的值为()A.3 B.﹣3 C.0 D.±33. 下列四组线段,能构成直角三角形的是()A.1,1,2 B.,2,C.5,6,7 D.6,8,104. 如图,在矩形ABCD中,AD=2AB,E为AD边中点,连接BE,CE,则∠BEC=()A.45°B.60°C.90°D.100°5. 在期末体育测试中,某校初二1班、2班、3班、4班四个班级学生成绩的平均分相等,方差分别为s1班2=6.2,s2班2=5.8,s3班2=12.6,s4班2=9.8,则这四个班级中学生体育成绩最整齐的是()A.1班B.2班C.3班D.4班6. 估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7. 根据以下程序,当输入x=﹣7时,输出的y值为()A.B.4C.﹣2 D.58. 下列命题为假命题的是()A.平行四边形不是轴对称图形B.有一组邻边相等的四边形是菱形C.四个角都相等的四边形是矩形D.正方形的对角线相等,且互相垂直平分9. 已知一次函数y=kx+b(k≠0)的图象与函数y=2x+5的图象平行,且与y 轴的交点在y轴的负半轴,则一次函数y=kx+b(k≠0)的大致图象为()A.B.C.D.10. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中第①个图形中一共有10个平行四边形,第②个图形中一共有14个平行四边形,第③个图形中一共有19个平行四边形,……按此规律排列下去,则第⑥个图形中平行四边形的个数为()A.39 B.40 C.41 D.4211. 《九章算术》是我国古代数学的经典著作,它的出现标志着中国古代数学形成了完整的体系,其“勾股”章中记载了一个数学问题:“今有户高多于广六尺,两隅相去适一丈,问户高、广各几何?”译文为:“已知有一扇矩形门的高比宽多6尺,门的对角线长为1丈(1丈=10尺),那么门的高和宽各是多少?”如果设门的宽为x尺,则可列方程为()A.x2+(x+6)2=102B.x2+(x+6)2=12C.x2+(x﹣6)2=102D.x2+(x﹣6)2=1212. 如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=()A.4+4 B.6+4C.12 D.8+4二、填空题13. 若二次根式有意义,则x的取值范围是____.14. 如图,在?ABCD中,对角线AC,BD交于点O,若AO=3,则AC=___.15. 已知点(﹣2,y1),(8,y2)均在一次函数y=3x+m的图象上则y1___y2(填“>”“<”或“=”).16. 数学兴趣小组的成员小明记录了“五一”小长假期间当地每日的最高气温(单位:℃),并绘制成图示折线统计图,则这五日最高气温的平均数为____℃.17. 在平面直角坐标系中,直线l:y=﹣4x+8与x轴、y轴分别交于点A,B,则△AOB的面积为____.18. 一条笔直的公路上依次分布A,B,C三地,甲车从A地、乙车从C地同时出发,相向而行.甲车行驶到C地后立即调头以原速驶向B地,到达B地后停止行驶;乙车到达A地后停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的关系如图所示(甲车调头的时间忽略不计),则B,C两地之间的距离为____千米.三、解答题19. 计算:(1);(2).20. 如图,在△ABC中,AD⊥BC,垂足为D,E,F分别为边AC,BC的中点,连接DE,EF.(1)若∠B=40°,∠C=55°,求∠DEF的度数;(2)若AD=6,BD=8,CD=4,求△DEF的周长.21. 乌江是长江上游的支流,发源于贵州省境内威宁县,横贯贵州中部及东北部,至洪渡向北进入四川省境内,再至重庆市汇入长江.为践行“绿水青山就是金山银山”的绿色发展理念,积极配合推广“保护母亲河”活动,进一步增进大众对乌江的了解,增强对乌江生态环境保护意识,某中学八年级甲、乙两个调查小组,各随机调查了500名行人,填写了相关问卷(问卷得分均为整数,满分10分,6分及以上为合格).问卷收回后,分别又从两组的问卷中各随机抽取了20份进行整理分析,相关数据统计、整理如下:甲组抽取的问卷得分:3,4,4,4,5,5,6,6,6,6,7,7,7,7,7,8,8,8,9,10两组抽取的问卷得分统计表甲组乙组平均数6.35 6.35中位数a b众数c 6根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据分析,你认为哪一组调查的问卷得分情况更好,并说明理由(写出一条理由即可);(3)请用甲组的抽样调查结果,估计本次甲组调查的500名行人中得分合格的人数是多少?22. 如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,满足AE =CF,且BE∥DF.(1)求证:四边形ABCD为平行四边形;(2)若AB=AC=BE,∠ABE=20°,求∠BAD的度数.23. 在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数性质及其应用的部分过程,请按要求完成下列各小题.(1)如表是部分x,y的对应值:x……﹣6 ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 ……y……0 n﹣2 ﹣3 ﹣4 ﹣1 2 5 8 ……根据表中的数据可以求得m=,n=;(2)请在给出的平面直角坐标系中,描出以如表中各组对应值为坐标的点,再根据描出的点画出该函数的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若一次函数y=kx+b(k≠0)的图象经过点(﹣4,﹣2)和点(1,5),结合你所画的函数图象,直接写出不等式kx+b<|2x+4|+x+m的解集.24. 定义:对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以5413是“加油数”,则F(5413)=5+4+1+3=13;9734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断8624是否为“加油数”,并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.25. 如图,在平面直角坐标系中,直线l1:y=﹣x+5与y轴交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)和点C,且与直线l1交于点D(2,m).(1)求直线l2的解析式;(2)若点E为线段BC上一个动点,过点E作EF⊥x轴,垂足为F,且与直线l1交于点G,当EG=6时,求点G的坐标;(3)若在平面上存在点H,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点H的坐标.26. 已知在菱形ABCD中,连接对角线AC,∠ACB=60°.(1)如图1,E为AD边上一点,F为DC边延长线上一点,且AE=CF,连接AF,BE交于点G.①求证:△ABE≌△CAF;②过点C作CH⊥BE,垂足为H,求证:CH=BG;(2)如图2,已知AB=2,将△ACD沿射线AC平移,得到△A′C′D′,连接BA′,BD′,请直接写出BA′+BD′的最小值.。

2020-2021学年重庆市第八中学八年级下学期期末考试数学试卷含答案

2020-2021学年重庆市第八中学八年级下学期期末考试数学试卷含答案

2020-2021学年重庆八中八年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.下列各式是分式的是()A.B.C.D.2.下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a)B.x2﹣2x=(x2﹣x)﹣xC.x+2=x(1+)D.y(y﹣2)=y2﹣2y3.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD4.下列各式从左到右的变形正确的是()A.B.C.D.5.如图所示,△ABC~△DEF,则∠D的度数为()A.35°B.45°C.65°D.80°6.根据下列表格中的对应值判断关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x 的取值范围是()x 3.86 3.87 3.88ax2+bx+c=0(a﹣0.11﹣0.050.02≠0)A.x<3.86B.3.86<x<3.87C.3.87<x<3.88D.x>3.887.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是()A.6m2B.7m2C.8m2D.10m28.如图,在菱形ABCD中,对角线BD、AC交于点O,AC=6,BD=4,∠CBE是菱形ABCD 的外角,点G是∠BCE的角平分线BF上任意一点,连接AG、CG,则△AGC的面积等于()A.6B.9C.12D.无法确定9.在等腰△ABC中,AB=AC=5,BC=6,D、E分别为AB、BC边上的中点,连接DE并延长DE到F,使得EF=2ED,连接AE、CF,则CF长为()A.4B.2C.5D.310.(多选)为了推动“成渝地区双城经济圈”的建设,某工厂为了推进产业协作“一条链”,自2021年1月开始科学整改,其月利润y(万元)与月份x之间的变化如图所示,整改前是反比例函数图象的一部分,整改后是一次函数图象的一部分,下列选项正确的有()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题(本大题5个小题,每小题4分,共20分)11.若分式的值为零,则x的值为.12.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中的1角硬币.如图所示,则该硬币边缘铁刻的正九边形的内角和度数为.13.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为.14.如图,四边形ABCD与四边形A′B′C′D′位似,点O为位似中心.已知OA:AA′=1:2,则四边形ABCD与四边形A′B′C′D′的面积比为.15.如图所示,在平行四边形ABCD中,E为边AD上一点,将△DEC沿CE翻折得到△FEC,点F在AC上,且满足AF=EF.若∠D=48°,则∠BCE=.二、解答题(本大题共6个小题,16题8分,17题8分,18题6分,19题8分,20题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上16.因式分解(1)a3b2+3a2b;(2)16mx2﹣4my2.17.解方程(1)2x2+4x﹣3=0;(2).18.先化简,再求值:,其中x是一元二次方程x2+4x﹣1=0的解.19.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.20.某大型文具超市销售的A型画笔和B型画笔都很受消费者的欢迎,其中A型画笔售价24元/支,B型画笔售价16元/支.第一周A型画笔的销量比B型画笔多200支,且这两种画笔的总销售额为12800元.(1)第一周A型画笔、B型画笔的销量为多少支?(2)由于第一周B型画笔销量较低,该文具超市第二周对B型画笔进行降价促销,经调查发现,若B型画笔每支降价1元,销量可增加40支,在保证B型画笔销量最大的情况下,当B型画笔每支降价多少元时,B型画笔销售额可达到4400元?四、选择题(本大题2个小题,每小题4分,共8分)请将正确答案的代号填入答题卡中对应的方框涂黑21.(多选)若数a使关于x的一元二次方程x2﹣2x﹣6+a=0有两个不相等的实数解,且使关于y的分式方程=2的解为非负整数,则满足条件的a的值为()A.1B.3C.5D.722.如图,在平面直角坐标系中,四边形OABC满足∠OAB=∠B=90°,点A在x轴上,反比例函数y=(x<0)图象经过点C,交AB于点D,连接OD、CD,若,S△ODC=4,则k的值为()A.﹣2B.﹣C.﹣D.﹣3五、填空题(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上23.现有三张分别标有数字﹣2、﹣1、1的卡片,它们除了数不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;放回后从卡片中再任意抽取一张,将上面的数字记为b,则一次函数y=ax+b的图象经过第一象限的概率为.24.每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A、B、C三种水稻,为了获得最大利润,批发商需要统计数据,更好地货.7月份某粮食批发商统计销量后发现,A、B、C三种水稻销量之比为3:4:5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C种水稻增加的销量占总增加的销量的,则C种水稻销量将达到8月份总销量的,为使A、B两种水稻8月份的销量相等,则8月份B种水稻还需要增加的销量与8月份总销量之比为.25.如图,在菱形ABCD中,∠A=60°,且菱形周长为4+4,点E、F分别在边CD、BC上,将△EFC沿EF折叠得到△EFG,点G恰好落在AD上,若EG⊥BD,则BF长为.六、解答题:(本大题共3个小题,每小题10分,共3分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上26.材料一:一个三位正整数满足个位数字小于十位数字,百位数字小于十位数字,且个位数字与百位数字之和等于十位数字,则称这个数为“凸和数”,例如:对于三位正整数352,满足2<5,3<5且3+2=5,则352是“凸和数”;对于三位正整数274,满足4<7,2<7,但2+4≠7,则274不是“凸和数”;材料二:对于一个凸和数m=100a+10b+c(1≤a,b,c≤9且a,b,c为整数),交换其百位数字和个位数字得m=100c+10b+a,规定f(m)=.△=693,则f(m)==3.例如m=396,m△(1)判断483和594是不是“凸和数”,并说明理由;(2)若m、n都是“凸和数”,其中m=500+10x+y,n=100s+80+t(1≤x,y,s,t≤9且x,y,s,t为整数),若f(m)=f(n)时,求m的值.27.如图所示:直线l1:y=与x轴,y轴分别交于A,B两点,C为l1上一点,且横坐标为1,过点C作直线l2⊥l1,l2与x轴,y轴分别交于D,E两点.(1)如图1:在线段CE有一动点F,过F点作F∥x轴,交l1于点H,连接AF,当S△AFH=时,求点F的坐标;(2)如图2,将l1沿某一方向平移后经过点D,记平移后的直线为l3,M为l3上一点,N为l2上一点,直接写出所有使得A、D、M、N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.28.如图,在正方形ABCD中,AB=6,E、F分别为边AB、BC上的动点,连接AC、BD 交于点O,连接AF交BD于点G.(1)如图1,若BC=3CF,求△AOG的面积;(2)如图2,若BE=BF,作EH⊥AF交AF于点H,交AC于点I.猜想CI与BG存在的数量关系,并证明你的猜想;(3)如图3,若BE+BF=AB,连接EF,并将EF绕点E逆时针旋转135°至EP,连接CP,直接写出CP的最小值.。

2020-2021初二数学下期末试卷含答案(3)

2020-2021初二数学下期末试卷含答案(3)

2020-2021初二数学下期末试卷含答案(3)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =04.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形5.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5 B .2 C .2.5D .-6 6.如图,菱形中,分别是的中点,连接,则的周长为( )A .B .C .D .7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差8.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .89.()23- ) A .﹣3B .3或﹣3C .9D .310.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定11.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .512.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.1445与最简二次根式21a -是同类二次根式,则a =_____. 15.已知函数y =2x +m -1是正比例函数,则m =___________. 16.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 17.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.20.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.三、解答题21.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙6 3.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.22.计算:(.23.甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).24.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?25.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=, (43)(43)1=, (54)(54)1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (221324310099++++(318171918【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,2(2)a -(a-2), |a-1|=a-1,2(2)a -(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.3.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.4.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.6.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2020-2021学年下学期期末考试八年级数学试卷(解析版)

2020-2021学年下学期期末考试八年级数学试卷(解析版)

八年级数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 用配方法解方程2470--=时,原方程应变形为x xA. 2x+=(2)11(2)11x-= B. 2C. 2(4)23x+=x-= D. 2(4)23考点:解一元二次方程-配方法..专题:计算题.分析:方程常数项移到右边,两边加上4变形得到结果即可.解答:解:方程x2﹣4x﹣7=0,变形得:x2﹣4x=7,配方得:x2﹣4x+4=11,即(x﹣2)2=11,故选A点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键2. 下列各曲线中,不表示y是x的函数的是A B C D考点:函数的概念..分析:根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.解答:解:A、x取一个值,y有唯一值对应,正确;B、x取一个值,y有唯一值对应,正确;C、很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,错误;D、x取一个值,y有唯一值对应,正确.故选:C.点评:此题主要考查了函数的定义,题目比较典型,是中考中热点问题.3. 对于函数21x=时,对应的函数值是y x=-,当自变量 2.5A. 2B. 2-C. 2±D. 4考点:函数值..分析:把自变量x的值代入函数关系式进行计算即可得解.解答:解:x=2.5时,y===2.故选A.点评:本题考查了函数值的求解,算术平方根的定义,准确计算是解题的关键.4. 在社会实践活动中,某小组对甲、乙、丙、丁四个地区三到六月的黄瓜价格进行调查。

四个地区四个月黄瓜价格的平均数均为3.60元,方差分别为218.1S=甲,217.2S=乙,220.1S=丙,212.8S=丁。

三到六月份黄瓜的价格最稳定的地区是A. 甲B. 乙C. 丙D. 丁考点:方差..分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=18.1,S2乙=17.2,=20.1,=12.8,∴>>S2乙>,∴三到六月份黄瓜的价格最稳定的地区是丁.故选D.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5. 关于x的方程230x x c-+=有实数根,则整数c的最大值为A. 3B. 2C. 1D. 0根的判别式.. 分析:若一元二次方程有实数根,则根的判别式△=b2﹣4ac >0,建立关于c 的不等式,求出c 的取值范围,进而得到整数c 的最大值. 解答:解:∵关于x 的方程x2﹣3x+c=0有实数根, ∴△=9﹣4c >0, 解得c <2,故整数c 的最大值为2, 故选B . 点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6. 如图1,在矩形ABCD 中,有以下结论:①△AOB 是等腰三角形;②ABO ADO S S ∆∆=;③AC BD =;④AC BD ⊥;⑤当∠45ABD =︒时,矩形ABCD 会变成正方形。

2020-2021学年度八年级数学第二学期期末试卷含答案

2020-2021学年度八年级数学第二学期期末试卷含答案

八年级数学注意事项:1.本试卷共3大题,28小题,满分100分,考试用时100分钟.2.答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.函数11y x =-的自变量x 的取值范围是 A .x ≠0 B .x ≠1 C .x ≥1D . x ≤12.下列各式计算中正确的是A .()()()()163616364624-⨯-=-⨯-=-⨯-= B .6393a a = C .221512*********-=+⨯-= D .22787815+=+= 3.已知a c b d=,那么下列各式中一定成立的是 A .a d c b = B .c ac b bd = C .22a b c d b d ++= D .11a c b d++= 4.△ABC 中,∠C =90°,AC =8,BC =6,则cosA 的值是A .45B .35C .43D .345.图中的两个三角形是位似图形,它们的位似中心是A .点PB .点DC .点MD .点N6.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为13,那么袋中共有球A .6个B .7个C .9个D . 12个7.双曲线4y x =与2y x =在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为A .1B .2C .3D .48.某市为治理污水,需要辅设一段全长为300 m 的污水排放管道,铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务,如果设原计划每天铺设xm 管道,那么根据题煮,可得方程A .120300302x x +=B .120180302x x +=C .120300301.2x x +=D .120180301.2x x+= 9.已知下列命题:①若a>0,b>0,则a +b>0;②若a2≠b2,则a≠b :③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是A .①③④B .①②④C .③④⑤D .②③⑤10.如图,已知□ABCD 中,AB =4,AD =2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE =x ,DE 的延长线交CB 的延长线于点F ,设CF =y ,则下列图象能正确反映y与x 的函数关系的是二、填空题(本大题共8小题,每小题2分,共16分,把答案填在答题卡相应横线上)11. 3-22的相反数是 ▲ .12.如果分式282x x -+的值为零,那么x 的值为 ▲ .13.已知l<x ≤2,则()212x x -+- ▲ .14.如图,某河堤的横断面是梯形ABCD ,BC ∥AD ,已知背水坡CD 的坡度i =1:2.4,CD 长为13米,则河堤的高BE 为 ▲ 米.15.已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数52y x=-的图象上,则y1,y2,y3由小到大的顺序为 ▲ .16.如图,在AABC 中,DE ∥BC ,若AD =1,BD =3,若S △ADE =a ,则S 四边形DBCE = ▲ .17.表1给出了正比例函数y1=kx 的图象上部分点的坐标,表2给出了反比例函数2m y x = 的图象上部分点的坐标,则当y1=y2时,x 的值为 ▲ .18.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE :EB =4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于 ▲ .三、解答题(本大题共10小题,共64分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题8分)计算:(1)()101tan 6032cos302π-⎛⎫︒-+--︒ ⎪⎝⎭(2)()33336821+-+- 20.(本题4分)化简求值:9352422a a a a -⎛⎫÷+- ⎪--⎝⎭,其中a =3-3.21.(本题4分)解方程:1233x x x=+--. 22.(本题6分)在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放同盒子摇匀后,再由小华随机取山一个小球,记下数字为y .(1)写出(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数4y x=的图象上的概率. 23.(本题6分)已知梯形ABCD 中,AD ∥BC ,∠A =90°,点E 为AB 上一点,且CE ⊥DE ,CB 、DE 的延长线交于点F .(1)求证:AD AE BE BC=; (2)已知EF =5,FB =3,求BC 的长.24.(本题6分)某市今年1月份起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6 m3,求该市今年居民用水的价格.25.(本题7分)如图,函数ky=(x>0,k为常数)的图象经过xA(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数k=图象的上方.yx26.(本题7分)现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,测得∠a=32°.(1)求矩形图案的面积:(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多一共能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)27.(本题7分)如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线my=的一个交点,过点C作xCD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式与直线AB的解析式:(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.28.(本题9分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q 作QR∥BA交AC于R,当点Q 与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR是以PQ为一腰的等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。

重庆市2020-2021学年八年级(下)期末数学试卷及答案解析

重庆市2020-2021学年八年级(下)期末数学试卷及答案解析

2020-2021学年重庆市八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4分)分式有意义,则x的取值范围是()A.x>2B.x=2C.x≠2D.x<22.(4分)平面直角坐标系中,点A(2,﹣1)关于x轴的对称点的坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,1)D.(2,﹣1)3.(4分)下列分式是最简分式的是()A.B.C.D.4.(4分)下列命题正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线相等且互相垂直的四边形是正方形5.(4分)甲、乙两人进行射击测试,每人10次射击成绩平均数均是9环,两人射击成绩的折线统计图如图所示,方差分别为S甲2=a,S乙2=b,则下列判断正确的是()A.a>b B.a<b C.a=b D.a≥b6.(4分)如图,△AOB与△AOD周长之差为5,且AB:AD=2:1,则平行四边形ABCD 的周长是()A.15B.20C.30D.407.(4分)如图,在平面直角坐标系中,四边形OABC是矩形,过AC中点D作DE⊥AC交AB于点E,连结EC,若点C的坐标为(8,0),EC=5,则点E的坐标是()A.(4,3)B.(5,3)C.(5,4)D.(3,5)8.(4分)已知等腰三角形的周长是16cm,腰长y(cm)是底边长x(cm)的函数,下列函数关系式及自变量的取值范围正确的是()A.y=﹣2x+16(4<x<8)B.y=﹣2x+16(0<x<8)C.y=﹣x+8(4<x<8)D.y=﹣x+8(0<x<8)9.(4分)如图,以边长为4的正方形ABCD的中心O为端点,引两条互相垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值是()A.B.2C.D.410.(4分)一天,小亮从家出发匀速步行去图书馆借书.几分钟后,在家休假的爸爸发现小亮忘带借书卡,于是爸爸骑自行车去追小亮,爸爸追上小亮后以原速的一半回家.小亮拿到卡后以原速继续赶往图书馆,并在从家出发后32分钟到达图书馆(小亮与爸爸交接时间忽略不计).两人相距的距离y(米)与小亮步行所用时间x(分钟)之间的函数关系如图所示,则下列说法错误的是()A.小亮的步行速度是40米/分B.小亮爸爸回家的速度80米/分C.小亮出发了10分后爸爸才出发D.当爸爸回到家时,小亮离图书馆的距离320米11.(4分)若关于x的一次函数y=(m+5)x+m+2的图象不经过第四象限,且关于x的分式方程有非负整数解,则符合条件的所有整数m的和是()A.8B.10C.12D.1612.(4分)如图,反比例函数y=(k>0,x>0)的图象经过矩形OABC对角线交点M,分别与AB、BC相交于点D、E,若四边形ODBE的面积为12,则k的值是()A.2B.4C.6D.12二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:=.14.(4分)已知正比例函数y=kx,当x=3时,y=6,则当x=﹣2时,y=.15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,BE=BC,∠DEC=72°,则∠ABC=.16.(4分)如图,菱形ABCD中,DB为对角线,AB=5,DB=6,点E为边AB上一点,则阴影部分的面积为.17.(4分)如图,将矩形纸片ABCD对折,使AD与BC重合,得到折痕EF,将纸片展平,再一次折叠,使点A落在EF上点H处,若EH=3,则CD的长为.18.(4分)为积极响应党和国家精准扶贫战略计划,某公司在农村租用了720亩土地种植了枇杷、李子和沃柑三种果树.为达到最佳种植收益,要求种植枇杷树的面积是李子树面积的2倍,沃柑树的面积不超过枇杷树面积的倍,且枇杷树的面积不超过270亩.到水果采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩枇杷,或者采摘0.5亩李子,或者采摘0.6亩沃柑.若该公司聘请一批农民依次采摘完三种水果恰好用了20天,则种植沃柑的面积是亩.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡对应的位置上。

(重庆市专用)2020-2021学年八年级数学下学期期末必刷卷(人教版)(解析版)

(重庆市专用)2020-2021学年八年级数学下学期期末必刷卷(人教版)(解析版)

重庆市2020-2021八年级(下)数学期末必刷卷参考答案1.D【解析】解:12+22=5=(5)2,A能构成直角三角形;32+42=25=52,B能构成直角三角形;12+(3)2=4=22,C能构成直角三角形;62+82=100≠122,D不能构成直角三角形;故选:D.2.D【解析】解:由题意可得k<0,且3ykx-=,A、x=2,y=4,所以k=43122-=>,不合题意;B、23152055x y k-=-===>-,,,不合题意;C、3313601x y k--=-=-==>-,,,不合题意;D、13451055x y k--==-==-<,,,符合题意,故选D .3.B【解析】解:由888,868,688,886,868,668可知众数为:868将888,868,688,886,868,668进行排序668,688,868,868,886,888,可知中位数是:868+868=8682平均数为:888+868+688+886+868+6688116=故答案为:868,868,811故选:B4.C【解析】A选项:和不是同类项,不能合并,故本选项错误;B选项:233318⨯=,故本选项是错误的;C选项:=计算正确,故本选项是正确的;D选项:5和2不是同类项,不能合并,故本选项错误;故选C.5.A【解析】如图所示∵四边形ABCD 是平行四边形∴∠B=∠D,∠A+∠B=180°∵∠B+∠D=260°∴∠B=∠D=130°,∴∠A 的度数是:50°故选A6.C【解析】解:A 、两组对边分别相等的四边形是平行四边形,正确; B 、一组对边平行且相等的四边形是平行四边形,正确;C 、一组对边平行,另一组对边相等不能判定是平行四边形,如等腰梯形,错误;D 、对角线互相平分的四边形是平行四边形,正确;故选:C .7.A【解析】∵52x +≥3,解得:x ≥-1 ,故答案为:A .8.C【解析】解:由输入的x 的值为5,-()155,22y ∴=-⨯-= 故选:.C9.C【解析】∵四边形ABCD 是平行四边形,∴OA =OC =4,OB =OD =7,BC =AD =10,∴△OBC 的周长=OB+OC+AD =4+7+10=21.故选:C .10.B【解析】如图:AB 表示木棒长,BC 表示油桶高,DE 表示油面高度,AD 表示棒上浸油部分长, ∴DE ∥BC∴△ADE ∽△ABC。

彭水三中初二期末试卷数学

彭水三中初二期末试卷数学

一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. 3.14B. -2C. √2D. 1/42. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 03. 已知一次函数y = kx + b的图象经过点(2,-3),则k和b的值分别是()A. k = 2, b = -7B. k = -2, b = -3C. k = -1, b = -5D. k = 1, b = -14. 在等腰三角形ABC中,AB = AC,若∠BAC = 60°,则∠ABC的度数是()A. 30°B. 45°C. 60°D. 90°5. 下列函数中,不是二次函数的是()A. y = x^2 - 4x + 4B. y = 2x^2 - 3x + 1C. y = 3x^2 - 5D. y = x^2 + 2x + 1二、填空题(每题5分,共25分)6. 2/3的倒数是______。

7. 已知a + b = 5,ab = 6,则a^2 + b^2的值为______。

8. 在直角坐标系中,点P(3,-2)关于y轴的对称点是______。

9. 若x^2 - 5x + 6 = 0,则x的值为______。

10. 在三角形ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是______。

三、解答题(共50分)11. (15分)解下列方程:(1)3x - 2 = 5x + 1(2)2(x - 3) - 3(x + 1) = 512. (15分)已知一次函数y = kx + b的图象经过点(-1,3)和(2,-1),求该一次函数的表达式。

13. (15分)在等边三角形ABC中,边长为6,求该三角形的面积。

14. (15分)已知函数y = x^2 - 4x + 3,求:(1)该函数的顶点坐标;(2)该函数的对称轴。

2020-2021初二数学下期末试卷含答案(5)

2020-2021初二数学下期末试卷含答案(5)

2020-2021初二数学下期末试卷含答案(5)一、选择题1.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .2.已知函数y =1x +,则自变量x 的取值范围是( ) A .﹣1<x <1B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠13.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形5.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元6.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个 B .3个C .2个D .1个7.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .48.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠9.下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2) C .函数图象经过第一、二、四象限 D .图象经过点(1,5)10.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =2,那么 AC 的长等于( )A .12B .16C .43D .8211.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米12.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.45与最简二次根式321a -是同类二次根式,则a =_____. 15.如果二次根式4x -有意义,那么x 的取值范围是__________.16.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).17.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.18.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 19.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.20.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题21.(127118312;(2) 32125222.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下: 甲:1,9,7,4,2,3,3,2,7,2 乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表: 班级 平均数 众数中位数 方差甲 43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.23.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.24.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.25.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.2.B解析:B 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解. 【详解】解:根据题意得:1010x x +≥⎧⎨-≠⎩,解得:x≥-1且x≠1. 故选B .点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.3.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】⨯+⨯+⨯+⨯=解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25(元),故选:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE , ∴AE=BF ,所以(1)正确; ∴∠ABF=∠EAD , 而∠EAD+∠EAB=90°, ∴∠ABF+∠EAB=90°, ∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确; 连结BE ,∵BE >BC , ∴BA≠BE , 而BO ⊥AE ,∴OA≠OE ,所以(3)错误; ∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF , ∴S △AOB =S 四边形DEOF ,所以(4)正确. 故选B . 【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7.B解析:B 【解析】由图象可得2535k k <⎧⎨>⎩ ,解得5532k << ,故符合的只有2;故选B. 8.B解析:B 【解析】 【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.9.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意;C 、由k =﹣3<0,b =2>0,利用一次函数图象与系数的关系可得出:一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意;D 、利用一次函数图象上点的坐标特征,可得出:一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.此题得解. 【详解】解:A 、∵k =﹣3<0,∴当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意; B 、当x =0时,y =﹣3x +2=2,∴函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意; C 、∵k =﹣3<0,b =2>0,∴一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意; D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意. 故选:D . 【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度. 【详解】 解:如下图所示,在AC 上截取4CG AB ==,连接OG , ∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒, ∴点B 、A 、O 、C 四点共圆, ∴ABO ACO ∠=∠, 在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=, ∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠, ∵90BOC COG BOG ∠=∠+∠=︒, ∴90AOG AOB BOG ∠=∠+∠=︒, ∴△AOG 是等腰直角三角形, ∴()()22626212AG =+=,∴12416AC =+=. 故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.11.D解析:D 【解析】 【分析】 【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm 考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念12.A解析:A 【解析】 【分析】先分析题意,把各个时间段内y 与x 之间的关系分析清楚,本题是分段函数,分为三段. 【详解】解:根据题意可知:火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大, 火车完全进入后一段时间内y 不变, 当火车开始出来时y 逐渐变小, 反映到图象上应选A . 故选:A .本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可. 【详解】=与最简二次根式∴215a -=,解得:3a = 故答案为:3 【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.15.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x −4⩾0解得x ⩾4故答案为x ⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4 【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可. 详解:由题意得,x−4⩾0, 解得,x ⩾4, 故答案为x ⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.16.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于 【解析】 【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小. 【详解】∵一次函数y =−2x +1中k =−2<0, ∴y 随x 的增大而减小, ∵x 1<x 2, ∴y 1>y 2. 故答案为>. 【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k<0时,y随x的增大而减小.17.(324800)【解析】【分析】根据题意可以得到关于t的方程从而可以求得点P的坐标本题得以解决【详解】由题意可得150t=240(t﹣12)解得t=32则150t=150×32=4800∴点P的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.【详解】由题意可得,150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t=240(t﹣12)是解决问题的关键.18.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差19.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数解析:﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,解得:n =﹣1, 故答案为:﹣1. 【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx (k≠0),是解题关键.20.y=-3x+5【解析】【分析】平移时k 的值不变只有b 发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5 【解析】 【分析】平移时k 的值不变,只有b 发生变化. 【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5. 故答案为y=-3x+5. 【点睛】求直线平移后的解析式时要注意平移时k 和b 的值的变化,掌握这点很重要.三、解答题21.(1 (2【解析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=13⨯ ;(2)原式=11245⨯⨯⨯=110 【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键. 22.统计图补全见解析 (1)12 (2)乙班,理由见解析 【解析】 【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解; (2)根据方差的性质进行判断即可.甲组的众数是2,乙组中位数是454.52+= 乙组的平均数:()2663165254104+++++++++÷= 甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学. 【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.23.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元. 【解析】 【分析】(1)根据利润y=(A 售价﹣A 进价)x+(B 售价﹣B 进价)×(100﹣x )列式整理即可; (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x 的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可. 【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000. 由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50) (2)令y≥12600,即140x+6000≥12600, 解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.24.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF 平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵BE=FE,∴四边形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×25.3cm.【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.【点睛】本题考查翻折变换(折叠问题);矩形的性质;勾股定理;方程思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年重庆市彭水县八年级下学期期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若分式 有意义,则a的取值范围是()
A.a=0B.a="1"C.a≠﹣1D.a≠0
2.分式方程 的解为()
A.x=1B.x=2C.x=3D.x=4
三、解答题
19.计算:(﹣1)2013+ ﹣|﹣2|+(2013﹣π)0﹣ ﹣ .
20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.
21.先化简,再求值 .其中x=2.
22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 ,结果提前4天完成任务,原计划每天种多少棵树?
(3)在(2)的条件下,你对落聘者有何建议?
24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)
25.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).
A.15,15B.15,15.5C.15,16D.16,15
11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()
A.16.5B.18C.23D.26
12.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC
3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为( )
A.24cmB.6cmC.4cmD.3cm
4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()
5.如图,反比例函数 的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()
A.y>1B.0<y<lC.y>2D.0<y<2
试题分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S= |k|.由此可得S△AOB= |k|=3,又因反比例函数的图象位于第一象限,k>0,所以k=6.
A.1个B.2个C.3个D.4个
9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数 (x>0)的图象经过点A,则k的值为()
A.2B.1C.﹣1D.﹣2
10.某中学足球队的18名队员的年龄情况如下表:
年龄(单位:岁)
14
15
16
17
18
人数
3
6
4
4
1
则这些队员年龄的众数和中位数分别是( )
考点:反比例函数的应用;反比例函数的图象.
5.D.
【解析】
试题分析:已知反比例函数 的图象经过点A(﹣1,﹣2),可求得 ,把x=1代入可得y=2,结合反比例函数的图象即可得当x>1时,函数值y的取值范围是0<y<2.故答案选D.
考点:反比例函数的图象;反比例函数图象上点的坐标特征.
6.C.
【解析】
15.若函数 是反比例函数,且图象在第二、四象限内,则m的值是.
16.一个平行四边形的一边长是3,两条对角线的长分别是4和 ,则此平行四边形的面积为.
17.已知一个样本-1,0,2,x,3,它们的平均数是2,则这个样本的方差S2=▲.
18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.
考点:分式方程的解法.
3.B
【解析】
试题分析:三角形的中位线平行于第三边并且等于第三边的一半,已知△ABC的周长是12cm,根据三角形的中位线定理可得△ABC三条中位线围成的三角形的周长= ×12=6cm.故答案选B.
考点:三角形的中位线定理.
4.C.
【解析】
试题分析:由矩形的面积可得16=xy,由此可知它的长y与宽x之间的函数关系式为y= (x>0),是反比例函数图象,且其图象在第一象限.故答案选C.
23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分பைடு நூலகம்最后的打分制成条形统计图(如图).
(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?
(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?
6.已知如图,A是反比例函数 的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()
A.3B.﹣3C.6D.﹣6
7.下面是四位同学解方程 过程中去分母的一步,其中正确的是()
A.2+x=x﹣1B.2﹣x=1
C.2+x=1﹣xD.2﹣x=x﹣1
8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()
(1)求当t为多少时,四边形PQAB为平行四边形?
(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;
(3)直接写出在(2)的情况下,直线PQ的函数关系式.
参考答案
1.C
【解析】
分式分母不为0的条件,要使 在实数范围内有意义,必须 .故选C
2.C.
【解析】
试题分析:方程两边同时乘以最简公分母2x(x﹣1)去分母得3x﹣3=2x,解得x=3,经检验x=3是原分式方程的解,故答案选C.
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A.3 B.4
C.5 D.6
二、填空题
13.若分式 的值为0,则x=.
14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.
相关文档
最新文档