2014年江西省中考数学试卷及答案

合集下载

2014年江西省中考数学试卷答案与解析

2014年江西省中考数学试卷答案与解析

考 平移的性质. 点:
菁优网版权所有
分 根据平移性质,判定△A′B′C为等边三角形,然后求解. 析: 解 解:由题意,得BB′=2, 答: ∴B′C=BC﹣BB′=4. 由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,
∴A′B′=B′C,且∠A′B′C=60°, ∴△A′B′C为等边三角形, ∴△A′B′C的周长=3A′B′=12. 故答案为:12. 点 本题考查的是平移的性质,熟知图形平移后新图形与原图形的形 评: 状和大小完全相同是解答此题的关键. 12.(3分)(2014•江西)如图,△ABC内接于⊙O,AO=2,BC=2 ,则∠BAC的度数为 60° .
△ADF
解 解:如图所示:连接AC,BD交于点E,连接DF,FM,MN, 答: DN, ∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°, 270°后形成的图形,∠BAD=60°,AB=2, ∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2, AE=EC= , ∴∠AOE=45°,ED=1, ∴AE=EO= ,DO= ﹣1, ∴S正方形DNMF=2( ﹣1)×2( ﹣1)× =8﹣4
菁优网版权所有
分 根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形 析: 为(α+β)2﹣2αβ,将其整体代入即可求值. 解 解:∵α,β是方程x2﹣2x﹣3=0的两个实数根, 答: ∴α+β=2,αβ=﹣3, ∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10. 故答案是:10. 点 此题主要考查了根与系数的关系,将根与系数的关系与代数式变 评: 形相结合解题是一种经常使用的解题方法. 11.(3分)(2014•江西)如图,在△ABC中,AB=4,BC=6, ∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′, 连接A′C,则△A′B′C的周长为 12 .

江西中考数学解析版

江西中考数学解析版

江西省2014年中等学校招生考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .22.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25B .28,28C .25,28D .28,313.下列运算正确的是是( ).A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1 4.直线y =x +1与y=-2x+a 的交点在第一象限,则a 的取值可以是( ). A .-1B .0C .1D .25.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。

以下裁剪示意图中,正确的是( ).6.已知反比例函数ky x=的图像如右图所示,则二次函数2224y kx x k =-+的图像大致为( ).二、填空题(本大题共8小题,每小题3分,共24分) 7_______8.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务。

5.78万可用科学记数法表示为________。

9.不等式组2101(2)02x x ->-+<⎧⎪⎨⎪⎩的解集是________10.若,a b 是方程2230x x --=的两个实数根,则22a b +=_______。

11.如图,在△ABC 中,AB=4,BC=6,∠B=60°,将三角形ABC 沿着射线BC 的方向平移2个单位后,得到三角形△A′B′C′,连接A′C,则△A′B′C的周长为______。

2014年江西省中考数学试卷(样卷四)

2014年江西省中考数学试卷(样卷四)

2014年江西省中考数学试卷(样卷四)一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项1.的值为()A. B. C. D.2.如图所示,一个正方体和一个圆柱体紧靠在一起,则它们的主视图是()A. B.C. D.3.下列运算正确的是()A.B.C.D.4.如图,有一圆锥,其高与母线的夹角为,则其侧面展开图的圆心角为()A. B.C. D.5.已知一次函数的图象上任意一点的坐标均满足,则下列说法正确的是()A.,B.,C.,D.,6.如图,在平面直角坐标系中,矩形的边、分别与、轴重合,其中心为点,函数的图象过点,且分别交矩形的边、于点、,则与的大小关系是()A. B.C. D.与的值有关二、填空题(本大题共8小题,每小题3分,共24分)7.计算:________.8.方程的解是________.9.某校举行“中国梦•劳动美”知识竞赛,其评分规则如下:答对一题得分,答错一题得分,不作答得分.已知试题共道,满分分,凡优秀(得分分或以上)者才有资格参加决赛.小明同学在这次竞赛中有道题未答,但刚好获得决赛资格.设小明答对道题,答题道题,则可列出满足题意的方程组为________.10.化简:________.11.将二次函数的图象关于原点作对称变换,则对称后得到的二次函数的解析式为________.12.如图,是钝角的外接圆,连接.已知,,则与之间的函数关系式为________.13.如图,在边长为的正六边形中,点是其对角线上一动点,连接、,则的周长的最小值是________.14.有一三角形纸片,,点是边上一点,沿方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则的度数可以是________.三、(本大题共4小题,每小题6分,共24分)15.解不等式组,并把解集在数轴上表示出来.16.甲、乙两人玩猜数字游戏,先由甲在心里任想,,中的一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,若则称甲、乙“心有灵犀”.事件“ ”发生的概率为________.甲、乙“心有灵犀”的概率是多少?请列表格或画树形图加以分析.17.图中,弦,;图中,弦,.请仅用无刻度的直尺分别按下列要求画图.在图中,画出的圆心;在图中,画出的一条直径.18.为了了解九年级学生的体育成绩,某校进行完体育测试后,对这次体育测试成绩进行了抽样调查,结果统计如下,其中扇形统计图中组所在扇形的圆心角度数为.计算频数分布表中与的值;所抽取样本中体育测试成绩的中位数应落在________ 组;请估计该校九年级学生这次体育测试成绩的平均分.(结果取整数)四、(本大题共3小题,每小题8分,共24分)19.如图,在中,点、分别是边、的中点,将绕点旋转得到.求证:四边形是平行四边形.当满足什么条件时,四边形是正方形?请说明理由.20.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率(其中代表优惠金额,代表顾客购买商品的总金额)可以很好地进行衡量,优惠率越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为元时,优惠率分别为甲甲与乙乙,它们与的关系图象如图所示,其中其中甲与成反比例函数关系,乙保持定值.求出甲的值,并用含的代数式表示乙.当购买总金额(元)在的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是元,你认为选择哪家商场购买该商品花钱少些?请说明理由.21.如图某种三角形台历被放置在水平桌面上,其左视图如图,其中点是台历支架、的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心.现测得,,.求点到直线的距离;求张角的大小;现把某月的日历从台历支架正面翻到背面(即与重合),求点所经历的路径长.(参考数据:,,,,取,所有结果精确到,可使用科学计算器)五、(本大题共2小题,每小题9分,共18分)22.如图,边长为的正方形的顶点、分别在轴和轴上,点的坐标为,以点为圆心,的长为半径向正方形内部作一半圆,交线段于点,线段的延长线交轴于点,求证:是半圆的切线;求线段所在直线的解析式;求点的坐标.23.如图,在平面直角坐标系中,抛物线与轴交于点和点(点在点的左侧),与轴交于点.若线段、、的长满足,则这样的抛物线称为“黄金”抛物线.试判断抛物线是否是“黄金”抛物线,并说明理由;若抛物线(其中)是“黄金”抛物线,请求出的值;将中条件下的抛物线进行一定的平移后所得的抛物线仍为“黄金”抛物线,请直接写出平移后的抛物线解析式,及抛物线是“黄金”抛物线应满足的条件.六、(本大题共1小题,共12分)24.【数学思考】如图,、两地在一条河的两岸,现要在河上造一座桥.桥造在何处才能使从到的路径最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图,过点作,且等于河宽,连接交于点,作交于点,则就为桥所在的位置.【类比联想】如图,正方形中,点、、分别在、、上,且,求证:.如图,矩形中,,,点、、、分别在、、、上,且,设,试求与的函数关系式.【拓展延伸】如图,一架长米的梯子斜靠在竖直的墙面上,初始位置时米,由于地面较光滑,梯子的顶端下滑至点时,梯子的底端左滑至点,设此时米,米.当________ 米时,.当在什么范围内时,?请说明理由.答案1. 【答案】C【解析】根据有理数的减法运算法则进行计算即可得解.【解答】解:.故选.2. 【答案】C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,正方体从正面看是正方形,圆柱从正面看是长方形,所以一个正方体和一个圆柱体紧靠在一起,则它们的主视图是一个正方形和一个长方形紧靠在一起.故选.3. 【答案】D【解析】运用完全平方公式,平方差公式,负数的负整数幂和积的乘方法则计算.【解答】解:、,故本选项错误,、,故本选项错误,、,故本选项错误,、,故本选项正确,故选:.4. 【答案】A【解析】首先在直角三角形中用已知角表示出底面半径,从而表示出底面周长,根据底面周长等于圆锥的侧面展开扇形的弧长表示出圆心角的度数即可.【解答】解:如图,有,因此底面周长(即侧面展开图的弧长)为,又展开图的扇形半径为,设其圆心角为度,∴ ,得.故选.5. 【答案】D【解析】根据各象限内点的坐标特征和一次函数图象上点的坐标特征判断出函数图象只经过第二四象限,然后根据一次函数的性质解答即可.【解答】解:∵图象上任意一点的坐标均满足,∴函数图象只经过第二四象限,∴ ,.故选.6. 【答案】B【解析】设点坐标为,点坐标为,则的坐标可以利用、表示出来,利用待定系数法求得函数的解析式,则、的坐标可求得,进而求得,,、的长(利用、表示),即可作出比较.【解答】解:设点坐标为,点坐标为,则点坐标为,点坐标为,则双曲线的解析式为,∵直线与双曲线的交点的坐标为,直线与双曲线的交点的坐标为.∴ .故.故选:.7. 【答案】【解析】首先化简二次根式,进而合并,再利用二次根式除法法则求出即可.【解答】解:.故答案为:.8. 【答案】,【解析】首先移项,进而提取公因式,进而求出方程的根.【解答】解:∵ ,∴ ,∴ ,解得:,,故答案为:,.9. 【答案】【解析】根据题意可得等量关系:①答对题数+答错题数道;② 答对题数答错题数分,根据等量关系列出方程组即可.【解答】解:设小明答对道题,答题道题,由题意得:,故答案为:.10. 【答案】【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可.【解答】解:原式.故答案为:.11. 【答案】【解析】根据关于原点对称点的特点,可得答案.【解答】解;的顶点坐标为,故变换后的抛物线为,故答案为:.12. 【答案】【解析】延长交于点,连接,则有,由于为度数的一半,为度数的一半,为度数的一半,,即.【解答】解:延长交于点,连接.∵ 为直径,∴ ,∵ 为度数的一半,为度数的一半,为度数的一半,∴ ,∴ .故答案为.13. 【答案】【解析】要使的周长的最小,即最小.易知点关于的对称点为点,连接交于点,那么有,最小.又易知为等腰梯形,,则作于点,于点,易求得,从而,故的周长的最小值为.【解答】解:要使的周长的最小,即最小.利用正多边形的性质可得点关于的对称点为点,连接交于点,那么有,最小.又易知为等腰梯形,,则作于点,于点,∵ ,∴,∴ ,从而,故的周长的最小值为.故答案为:.14. 【答案】或或【解析】分或或三种情况根据等腰三角形的性质求出,再求出,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:由题意知与均为等腰三角形,对于可能有① ,此时,∴ ,,② ,此时,∴ ,,③ ,此时,,∴ ,,综上所述,度数可以为或或.故答案为:或或.15. 【答案】解:由题意,解不等式①,得,解不等式②,得,∴不等式组的解集是.不等式组的解集在数轴上表示如下:【解析】对不等式,移项得,对不等式两边乘以,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得,解不等式②,得,∴不等式组的解集是.不等式组的解集在数轴上表示如下:16. 【答案】或.; 列表格如下:∴ (甲、乙“心有灵犀”).【解析】由甲、乙两人玩猜数字游戏,可知事件“ ”发生的概率为:或.; 首先根据题意列出表格,然后由表格求得所有等可能的结果与甲、乙“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解: ∵甲、乙两人玩猜数字游戏,∴事件“ ”发生的概率为:或.; 列表格如下:∴ (甲、乙“心有灵犀”).17. 【答案】解:如图,点即为的圆心;; 如图,即为的直径.【解析】连接,其交点即为点位置,进而得出答案;; 连接,并延长,连接,得到其交点,连接进而得出直径.【解答】解:如图,点即为的圆心;; 如图,即为的直径.18. 【答案】;; ; (3)(分).【解析】用组的频数除以所占的百分比即可得的值,用总数减去、、、组的频数即可得的值;; 共个数据,中位数为第和第个的平均数,再判断即可;;用每组的组中值乘以各自的频数,再除以总数即可.【解答】解:(1),.; (2),组频数为,所以第和第个都在组,所以所抽取样本中体育测试成绩的中位数应落在组,; (3)(分).19. 【答案】证明:∵ 是由绕点旋转得到,∴点、、三点共线,点、、三点共线,且,,故四边形是平行四边形.; 解:当,时,四边形是正方形.理由如下:在中,∵ ,,∴ ,即.而由知,四边形是平行四边形,∴四边形是矩形.又∵ ,∴,故四边形是正方形.【解析】利用旋转的性质得出点、、三点共线,点、、三点共线,且,,即可得出答案;; 首先得出,即,由知,四边形是平行四边形,故四边形是矩形.进而求出即可得出答案.【解答】证明:∵ 是由绕点旋转得到,∴点、、三点共线,点、、三点共线,且,,故四边形是平行四边形.; 解:当,时,四边形是正方形.理由如下:在中,∵ ,,∴ ,即.而由知,四边形是平行四边形,∴四边形是矩形.又∵ ,∴,故四边形是正方形.20. 【答案】解:把,甲代入甲甲中,得甲.由于乙始终为,即乙,∴乙.; 由及优惠率的含义可知:当购买总金额都为元,且在的条件下时,甲家商场采取的促销方案是:优惠元;乙家商场采取的促销方案是:打折促销.; 由上可知,当时,甲家商场需花元,乙家商场需花元.据,得.即当时,在两家商场购买花钱一样多.再由图象易知,当时,甲商场更优惠;当时,乙商场更优惠.【解析】把,甲代入甲甲中求得得甲,然后根据乙始终为,得到乙,从而求得乙的值即可;; 当购买总金额都为元,且在的条件下时,代入可得甲家商场采取的促销方案是:优惠元;乙家商场采取的促销方案是:打折促销.; 根据当时,甲家商场需花元,乙家商场需花元.然后据,得.即当时,在两家商场购买花钱一样多.从而确定哪家更优惠.【解答】解:把,甲代入甲甲中,得甲.由于乙始终为,即乙,∴乙.; 由及优惠率的含义可知:当购买总金额都为元,且在的条件下时,甲家商场采取的促销方案是:优惠元;乙家商场采取的促销方案是:打折促销.; 由上可知,当时,甲家商场需花元,乙家商场需花元.据,得.即当时,在两家商场购买花钱一样多.再由图象易知,当时,甲商场更优惠;当时,乙商场更优惠.21. 【答案】解:连接、,并延长交于点.∵ ,,∴有垂直平分,即,.又,∴ .从而在中,,∴故在中,∴,,得故点到直线的距离约为.; 由知,且∴ .故.; ∵ ,∴日历从台历正面翻到背面所经历的圆心角为,故,此时点所经历的路径长为.【解析】连接、,并延长交于点,则垂直平分,在中根据正弦函数求得的长,在中,根据根据勾股定理得到的长.; 在中,根据正弦函数可求的度数,进而求得的度数.; 根据弧长公式即可求得.【解答】解:连接、,并延长交于点.∵ ,,∴有垂直平分,即,.又,∴ .从而在中,,∴故在中,∴,,得故点到直线的距离约为.; 由知,且∴ .故.; ∵ ,∴日历从台历正面翻到背面所经历的圆心角为,故,此时点所经历的路径长为.22. 【答案】证明:连接、.∵正方形的边长为,而的坐标为,∴ ,即为的中点,有,在和中∴ ,得,而,∴ ,故是半圆的切线.; 解:据题意,显然有切圆于点,而切圆于点,则有.若设,则,∴ ,,因而在中,,∴ ,解得.即点坐标为.又点为,设直线的解析式为,那么有,解得.∴直线的解析式为.; 解:据可得,,,.过点作于点,由四边形为正方形,显然有,则,即,∴.∴.故点的坐标为.【解析】首先利用,得出,即可得出答案;; 由题意得:在中,,进而得出点坐标,再利用待定系数法求一次函数解析式;; 由题意可得出:,则,进而得出和的长,进而得出点坐标.【解答】证明:连接、.∵正方形的边长为,而的坐标为,∴ ,即为的中点,有,在和中∴ ,得,而,∴ ,故是半圆的切线.; 解:据题意,显然有切圆于点,而切圆于点,则有.若设,则,∴ ,,因而在中,,∴ ,解得.即点坐标为.又点为,设直线的解析式为,那么有,解得.∴直线的解析式为.; 解:据可得,,,.过点作于点,由四边形为正方形,显然有,则,即,∴.∴.故点的坐标为.23. 【答案】解:该抛物线是“黄金”抛物线.理由如下:对于,当时,即,解得:,,即点坐标为,点坐标为,∴ ,.又当时,,故点坐标为,即.因而,故抛物线是“黄金”抛物线.; 设抛物线与轴的两个交点、的坐标分别为、,则有,;且、为方程的两根,则.即.在中,当时,,故点坐标为,则.据题意可知,,故,解得:.; 将抛物线及平移后可得到如下“黄金”抛物线:①;②.抛物线是“黄金”抛物线应满足的条件为:.当时,,且;.当时,,可为任意实数.【解析】首先求出时的值,进而得出,点坐标,即可得出,进而得出答案;; 根据“黄金”抛物线,求出,解出即可;; 利用“黄金”抛物线的定义即可得出是“黄金”抛物线应满足的条件.当时,,且;.当时,,可为任意实数.【解答】解:该抛物线是“黄金”抛物线.理由如下:对于,当时,即,解得:,,即点坐标为,点坐标为,∴ ,.又当时,,故点坐标为,即.因而,故抛物线是“黄金”抛物线.; 设抛物线与轴的两个交点、的坐标分别为、,则有,;且、为方程的两根,则.即.在中,当时,,故点坐标为,则.据题意可知,,故,解得:.; 将抛物线及平移后可得到如下“黄金”抛物线:①;②.抛物线是“黄金”抛物线应满足的条件为:.当时,,且;.当时,,可为任意实数.24. 【答案】;; ; ; 当时,.理由如下:如图,过点作的平行线,过点作的平行线,两线交于点,连接.∵ ,,∴ 为平行四边形,∴ ,.又,∴ .∴ .若,即,因而在中,∵ ,∴ .又∵ ,∴ .∵ 中,;同理,∴,即.【解析】过点作交于点,则有,故四边形是平行四边形,再由定理得出,由此可得出结论;; 作交于点,作交于点,根据直角三角形的性质得出,再根据四边形是矩形可知,由相似三角形的性质得出,根据相似三角形的对应边成比例即可得出结论;; 过点作的平行线,过点作的平行线,两线交于点,连接,由题意可得为平行四边形,故可得出.若,即,因而在中,由等边对等角可知,再由锐角三角函数的定义即可得出结论.;【解答】证明:如图,过点作交于点,则有.∵ ,∴ .∵四边形是正方形,∴ ,,,∴ ,四边形是平行四边形.∴ ,在与中,∵∴ ,∴ ,∴ ;; 解:作交于点,作交于点(如图).∵ ,易得,∴ .又∵四边形是矩形,∴ ,∴ ,且四边形及四边形均为平行四边形,∴ ,.∵ ,,∴ ,∴,即;; 解:∵ ,.∴ 中,,即.当时,有,解得或(不合).; 当时,.理由如下:如图,过点作的平行线,过点作的平行线,两线交于点,连接.∵ ,,∴ 为平行四边形,∴ ,.又,∴ .∴ .若,即,因而在中,∵ ,∴ .又∵ ,∴ .∵ 中,;同理,∴,即.。

2014年江西省中考数学试卷

2014年江西省中考数学试卷

2014年江西省中考数学试卷一、选择题(本大题共6小题)1.(2014江西)下列四个数中,最小的数是()A.B.0C.-2D.22.(2014江西)某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,则这组数据的众数和中位数分别是()A.25,25B.28,28C.25,28D.28,313.(2014江西)下列运算正确的是()A.a2+a3=a5B.(-2a2)3=-6a6C.(2a+1)(2a-1)=2a2-1D.(2a3-a2)÷a2=2a-14.(2014江西)直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是()A.-1B.0C.1D.25.(2014江西)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.6.(2014江西)已知反比例函数的图象如图所示,则二次函数y=2k x2-4x+k2的图像大致为()A.B.C.D.二、选择题(本大题共8小题)7.(2014江西)计算:.8.(2014江西)据相关报道,截止到今年四月,我国已完成 5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为________.9.(2014江西)不等式组的解集是________.10.(2014江西)若α,β是方程x2-2x-3=0的两个实数根,则α2+β2=________.11.(2014江西)如图,在△A B C中,A B=4,B C=6,∠B=60°,将△A B C沿射线B C的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为________.12.(2014江西)如图,△A B C内接于⊙O,AO=2,,则∠B A C的度数为________.13.(2014江西)如图,是将菱形A B C D以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠B A D=60°,A B=2,则图中阴影部分的面积为________.14.(2014江西)在R t△A B C中,∠A=90°,有一个锐角为60°,B C=6.若点P在直线A C上(不与点A,C重合),且∠A B P=30°,则C P的长为________.三、本大题共10小题15.(2014江西)计算.16.(2014江西)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.17.(2014江西)已知梯形A B C D,请使用无刻度直尺画图.(1)在图1中画一个与梯形A B C D面积相等,且以C D为边的三角形;(2)在图2中画一个与梯形A B C D面积相等,且以A B为边的平行四边形.18.(2014江西)有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上“√,×,√”,B组的卡片上分别画上“√,×,×”,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.19.(2014江西)如图,在平面直角坐标系中,点A,B分别在x轴、y轴的正半轴上,O A=4,A B=5,点D在反比例函数(k>0)的图象上,D A⊥O A,点P在y轴负半轴上,O P=7.(1)求点B的坐标和线段P B的长;(2)当∠P D B=90°时,求反比例函数的解析式.20.(2014江西)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视b c说不清楚90.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21.(2014江西)图1中的中国结挂件是由四个相同的菱形在顶点处依次串接而成,每相邻两个菱形均成30°的夹角,示意图如图2所示.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接C D、E B,猜想它们的位置关系并加以证明;(2)求A、B两点之间的距离(结果取整数,可以使用计算器).(参考数据:,,)22.(2014江西)如图1,A B是⊙O的直径,点C在A B的延长线上,A B=4,B C=2,P是⊙O上半部分的一个动点,连接O P,C P.(1)求△O P C的最大面积;(2)求∠O C P的最大度数;(3)如图2,延长P O交⊙O于点D,连接D B.当C P=D B时,求证:C P是⊙O的切线.23.(2014江西)如图1,边长为4的正方形A B C D中,点E在A B边上(不与点A,B重合),点F在B C边上(不与点B,C重合).第一次操作:将线段E F绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段F G绕点G顺时针旋转,当点F 落在正方形上时,记为点H;依此操作下去…(1)图2中的△E F D是经过两次操作后得到的,其形状为________,求此时线段E F的长;(2)若经过三次操作可得到四边形E F G H.①请判断四边形E F G H的形状为________,此时A E与B F的数量关系是________;②以①中的结论为前提,设A E的长为x,四边形E F G H的面积为y,求y与x的函数关系式及面积y的取值范围.24.(2014江西南昌)如图1,抛物线y=a x2+b x+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△A M B为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段A B围成的图形称为该抛物线对应的准蝶形,线段A B称为碟宽,顶点M称为碟顶,点M 到线段A B的距离称为碟高.(1)抛物线对应的碟宽为________;抛物线y=4x2对应的碟宽为________;抛物线y=a x2(a>0)对应的碟宽为________;抛物线y=a(x -2)2+3(a>0)对应的碟宽为________;(2)抛物线(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y n=a n x2+b n x+c n(a n>0)的对应准s蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n-1的相似比为,且F n的碟顶是F n-1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…,F n的碟高为h n,则h n=________,F n的碟宽右端点横坐标为________;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.。

2014江西中考数学试题解析

2014江西中考数学试题解析

江西省2014年中等学校招生考试数学试题卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列四个数中,最小的数是( )A..1- B. 0 C.-2 D.22考点:有理数的大小比较解析:解:在1-,0,-2,2中最小的数是-2.2答案:C点评:解答本题关键是掌握有理数的大小比较,“正数大于0,0大于负,两个负数比较时,绝对值大的反而小”.2.某市6月份某周气温(单位:C︒)为23,25,28,25,28,31,28,则这组数据的众数和中位数分别是( )A..25,25B. 28,28C.25,28D.28,31考点:众数、中位数解析:解:按从小到大排列为“23、25、25、28、28、28、31”,因为28出现了3次,是出现次数最多,所以从数是28;因为第4位数是28,所以中位数是28.答案:B点评:解答本题的关键是掌握众数和中位数的定义,注意应将数据从大小顺序排列3.下列运算正确的是( )A..235a a a +=B. 236(2)6a a -=-C.(2a +1)(2a -1) =22a -1D.(322a a -)÷2a =2a -1 考点:整式的加减、积的乘方和幂的乘方、多项式的乘除 解析:解:A 、根据整式的加减运算法则可知本选项不正确B 、根据积的乘方运算法则可知23(2a )-=323(2)(a )-=62a -,故本选项不正确.C 、根据平方差公式可知(2a+1)(2a-1)=24a 1-= 22(2a)1-,故本选项不正确.D 、根据多项式的除法法则可知322(2a a )a -÷=32222a a a a ÷-÷= 2a-1,故本选项正确.答案:D点评:解答本题应掌握整式的加减、积的乘方和幂的乘方,多项式的乘除法,关键是熟悉运算法则.4.直线y=x +1与y=-2x +a 的交点在第一象限,则a 的值可以是( )A..-1B. 0C.1D.2 考点: 一次函数的交点、象限与坐标解析:解:由y x 1y 2x a =+⎧⎨=-+⎩得a 1x 3a 2y 3-⎧=⎪⎪⎨+⎪=⎪⎩∵交点在第一象即,即a13a23-⎧>⎪⎪⎨+⎪>⎪⎩∴a>1.答案:D点评:解答本题关键是掌握一次函数交点的求法,联立两个一次函数解析式求得方程组的解就是交点坐标.5.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小,于是考点:解析:答案:点评:解析:由此图联想到了“圆锥”,动手试试可得。

江西省2014年中考数学试卷(含解析版)

江西省2014年中考数学试卷(含解析版)

2014年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分。

每小题只有一个正确选项)1.(3分)下列四个数中,最小的数是()A.﹣B.0C.﹣2D.22.(3分)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25B.28、28C.25、28D.28、313.(3分)下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1D.(2a3﹣a2)÷a2=2a﹣14.(3分)直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1B.0C.1D.25.(3分)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.6.(3分)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)7.(3分)计算:=.8.(3分)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法为.9.(3分)不等式组的解集是.10.(3分)若α、β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2=.11.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.(3分)如图,△ABC内接于⊙O,AO=2,BC=2,则∠BAC的度数为.13.(3分)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.14.(3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)计算:(﹣)÷.16.(6分)小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.17.(6分)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.18.(6分)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,√”,在B组的卡片上分别画上“√,×,×”,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)如图,在平面直角坐标系中,点A,B分别在x轴、y轴的正半轴上,OA=4,AB=5.点D在反比例函数y=(k>0)的图象上,DA⊥OA,点P在y轴负半轴上,OP=7.(1)求点B的坐标和线段PB的长;(2)当∠PDB=90°时,求反比例函数的解析式.20.(8分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21.(8分)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)五、(本大题共2小题,每小题9分,共18分)22.(9分)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O 的切线.23.(9分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.六(本大题共12分)24.(12分)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x 轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽右端点横坐标为;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.2014年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分。

2014年江西省南昌市中考数学试卷及答案【word解析版】

2014年江西省南昌市中考数学试卷及答案【word解析版】

2014年江西省南昌市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2014•南昌)下列四个数中,最小的数是()A .﹣B.0 C.﹣2 D.2分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.2.(3分)(2014•南昌)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A .5.78×103B.57.8×103C.0.578×104D.5.78×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.解答:解:5.78万=57 800=5.78×104.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、31考点:众数;中位数.分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答:解:将这组数据从小到大的顺序排列23,25,25,28,28,28,31,在这一组数据中28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28℃;故选B.点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.(3分)(2014•南昌)下列运算正确的是()D.(2a3﹣a2)÷a2=2a﹣1 A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1考点:整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.分析:A.根据合并同类项法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据多项式除以单项式判断.解答:解:A.a2与a3不能合并,故本项错误;B.(﹣2a2)3=﹣8a6,故本项错误;C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误;D.(2a3﹣a2)÷a2=2a﹣1,本项正确,故选:D.点评:本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键.5.(3分)(2014•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是A选项中所示的图形.故选:A.点评:本题考查了简单组合体的三视图,压扁是主视图是解题关键.6.(3分)(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.解答:解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.(3分)(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.A B=DE B.∠B=∠E C.E F=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.8.(3分)(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.9.(3分)(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.(3分)(2014•南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°考点:旋转的性质;平移的性质.分析:利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.解答:解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.点评:此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.11.(3分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:整式的加减;列代数式.专题:几何图形问题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12.(3分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题(本大题4小题,每小题3分,共12分)13.(3分)(2014•沈阳)计算:=3.考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.14.(3分)(2014•南昌)不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S,进而得出S△ADF即可得出答案.正方形DNMF解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.16.(3分)(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC 上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.考点:解直角三角形.专题:分类讨论.分析:根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.解答:解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.点评:本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.三、(本大题共4小题,每小题6分,共24分)17.(6分)(2014•南昌)计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•南昌)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.考点:作图—应用与设计作图.分析:(1)求出三角形CD边上的高作图,(2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解答:解:设小正方形的边长为1,则S梯形ABCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.19.(6分)(2014•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率;(2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.解答:解:(1)列表如下:√×√√(×,√)(√,√)(√,√)×(√,×)(×,×)(√,×)×(√,×)(×,×)(√,×)所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;(2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,则P=;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,则P=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2014•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.(1)求点C的坐标;(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标;(2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解析式.解答:解:Rt△PBD的斜边PB落在y轴上,∴BD⊥PB,k PD=cot∠BPD=,k BD•k PD=﹣1,k BD=﹣,直线BD的解析式是y=﹣x+3,当y=0时,﹣x+3=0,x=6,C点坐标是(6,0);(2)当x=4时,y=﹣×4+3=1,∴D(4,1).点D在反比例函数y=(k>0)的图象上,∴k=4×1=4,∴反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直线BD,再求出点的坐标.四、(本大题共3小题,每小题8分,共24分)21.(8分)(2014•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?考点:频数(率)分布直方图;用样本估计总体.分析:(1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c的值;(2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;(3)根据(1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解答:解:(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人);(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.点评:此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键.22.(8分)(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.23.(8分)(2014•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.考点:切线的判定与性质.分析:(1)在△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;观察图形,当OP⊥OC时满足要求;(2)PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.解答:(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面积为4.(2)解:当PC与⊙O相切时,∠O CP最大.如答图2所示:∵tan∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°.(3)证明:如答图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,∵=,∴=,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD∠C,在△ODB与△BPC中,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查了全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.(12分)(2014•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B 重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.考点:几何变换综合题.分析:(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4.解答:解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.点评:本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、正多边形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.25.(12分)(2014•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.考点:二次函数综合题.分析:(1)根据定义易算出含具体值的抛物线y=x2,抛物线y=4x2的碟宽,且都利用端点(第一象限)横纵坐标的相等.推广至含字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x﹣2)2+3(a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a有关.(2)根据(1)的结论,根据碟宽易得a的值.(3)①由y1,易推y2.②结合画图,易知h1,h2,h3,…,h n﹣1,h n都在直线x=2上,但证明需要有一般推广,可以考虑h n∥h n﹣1,且都过F n﹣1的碟宽中点,进而可得.另画图时易知碟宽有规律递减,所以推理也可得右端点的特点.对于“F1,F2,…,F n的碟宽右端点是否在一条直线上?”,如果写出所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反正结论成立.求直线方程只需考虑特殊点即可.解答:解:(1)4;1;;.分析如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2(a>0),碟宽为;④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)的准碟形≌抛物线y=ax2的准碟,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),∴同(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得a=,∴y=(x﹣2)2﹣3.(3)①∵F1的碟宽:F2的碟宽=2:1,∴,∵a1=,∴a2=.∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣2)2.②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=()2h n﹣2=()3h n﹣3=…=()n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+.另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑F n﹣2,F n﹣1,F n情形,关系如图2,F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行相等于FE,DE平行相等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=•∠GFH=•∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴F n﹣2,F n﹣1,F n的碟宽的右端点是在一条直线,∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.点评:本题考查学生对新知识的学习、理解与应用能力.题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,多点共线证明等知识,综合难度较高,学生清晰理解有一定困难.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省2014年中等学校招生考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。

【解答】 这组数据中28出现4次,最多,所以众数为28。

由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。

【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。

【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。

故选D 。

4.直线y =x +1与y=-2x+a 的交点在第一象限,则a 的取值可以是( ). A .-1B .0C .1D .2【答案】 D.【考点】 两条直线相交问题,一次函数图像和性质、一元一次不等式组的解法,考生的直觉判断能力.【分析】 解法一:一次函数y=kx+b ,当k>0,b>0 时,直线经过一、三、二象限,截距在y 的正半轴上当;k>0,b<0时,图解经过一、三、四象限,截距在y 的负半轴上。

当k<0,b>0 时,直线经过二、四、一象限,截距在y 的正半轴上;当 k<0,b<0时,直线经过二、四、三象限,截距在y 的负半轴上。

可以根据一次函数图象的特点,逐一代入a 的值,画出图形进行判断。

解法二:两直线相交,说明由这两条直线的解析式组成的二元一次方程组有解,解出关于x 、y 的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【解答】 解法一:直线y=x+1经过一、三、四象限,截距1,在y 的正半轴;直线y =-2x+a 经过二、四象限,如果a=1,则经过第一象限,与前面直线交于y 的正半轴上。

若a=0,则y =-2x+a 是正比例函数,与前一直线交于第二象限;而a=-1,y =-2x+a 不经过第一象线,交点不可能在第一象限,所以正确答案是2。

故选D 。

解法二:根据题意,两直线有交点,得12y x y x a ⎧⎪⎨⎪⎩=+=-+,解得1323,a a x y -+⎧⎪⎨⎪⎩== ∵两直线的交点在第一象限,∴132300a a ⎧⎪⎨⎪⎩-+>>,解得a>1,故选D.【点评】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a 看作常数表示出x 、y 是解题的关键.5.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。

以下裁剪示意图中,正确的是().【答案】 A.【考点】图形与变换.【分析】可用排除法,B、D两选项肯定是错误的,正确答案为A.【解答】答案为A。

6.已知反比例函数kyx的图像如右图所示,则二次函数2224y kx x k的图像大致为().【答案】 D.【考点】二次函数的图象与性质;反比例函数的图象与性质.【分析】反比例函数的图像作用是确定k的正负,从双曲线在二、四象限可知k<0。

要确定二次函数y=ax2+bx+c的图像,一看开口方向(a >0或a<0),二看对称轴位置,三看在y轴上的截距(即c),四看与x轴的交点个数(根据根的判别式的正负来确定)。

本题可先由反比例函数的图象得到字母系数k<-1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.【解答】解:∵函数kyx的图像的图象经过二、四象限,∴k<0,由图知,当x=-1时,y=-k>1,∴k<-1,∴抛物线y=2kx2-4x+k2开口向下,∵对称轴为411x=1022k k k-=--⨯,<<,∴对称轴在-1与0之间,故选D.比例函数的图像和性质有比较深刻地理解,并能熟练地根据二次函数图像中的信息作出分析和判断,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题(本大题共8小题,每小题3分,共24分) 7_______【答案】 3.【考点】 二次根式的性质与化简,算术平方根的概念. 【分析】 9的平方是±3,算术平方是3。

【解答】 答案为3。

8.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务。

5.78万可用科学记数法表示为________。

【答案】 5.78×104.【考点】 科学记数法—表示较大的数。

【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】 解:将5.78万用科学记数法表示为:5.78万=5.78×10000=5.78×104.故答案为:5.78×104.【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.不等式组2101(2)02x x ->-+<⎧⎪⎨⎪⎩的解集是________【答案】 x >12。

【考点】 解一元一次不等式组.【分析】 分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集。

解一元一次不等式组的步骤:一是求出这个不等式组中各个不等式的解;二是利用数轴求出这些不等式的解集的公共部分,即求出了这个不等式组的解集. 【解答】 解:解不等式2x-1>0,得x >12,解不等式-12 (x +2)<0,得x >-2,所以原不等式组的解集为:x >12。

【点评】 要保证运算的准确度与速度,注意细节(不要搞错符号),最后可画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.10.若,是方程2230xx 的两个实数根,则22_______。

【答案】 x >12。

【考点】 根的判别式,根与系数的关系,完全平方公式,代数式求值.根据一元二次方程根与系数的关系,若任意一元二次方程ax 2+bx+c=0(a≠0)有两根x 1,x 2,则x 1+x 2=-b a ,x 1•x 2= ca ,根据完全平方化公式对化数进行变形,代入计算即可.【解答】 解:∵a 、b 是方程x 2-2x -3=0的两根,∴a+b=2,ab=-3,a 2+b 2=(a +b )2--2ab =22-2×(-3)=10.【点评】 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:如果方程的两根为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=ca .也考查了代数式的变形能力、整体思想的运用.11.如图,在△ABC 中,AB=4,BC=6,∠B=60°,将三角形ABC 沿着射线BC 的方向平移2个单位后,得到三角形△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为______。

【答案】 12。

【考点】 平移的性质,等腰三角形的性质.【分析】 根据AB=4,BC=6,△ABC 向左平移了2个单位,得B B ′=2,B ′C =4=A ′B ′,又∠B=60°得∠A ′B ′C =60°,所以△A ′B ′C 是等边三角形,故可得出A ′C 长是4,进而得出△A ′B ′C 的周长,根据图形平移的性质即可得出结论.【解答】 解:∵△ABC 平移两个单位得到△A ′B ′C ′,AB =4,BC =6, ∴B B ′=2′,AB =A ′B ′。

∵AB =4,BC =6,∴A ′B ′=AB =4, B ′C =BC-B B ′=6-2=4。

∴A ′B ′= B ′C =4,即 △A ′B ′C 是等腰三角形。

又∵∠B=60°,∴∠A ′B ′C =60°,△A ′B ′C 是等边三角形。

故△A ′B ′C 的周长为:4×3=12。

【点评】 本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.12.如图,△ABC 内接于⊙O ,AO=2,23BC ,则∠BAC 的度数_______【答案】 60°.【考点】 垂径定理,圆周角定理,三解函数关系.【分析】 连接OB ,作OD ⊥BC 交BC 于点D ,根据OA=2,BC=23,得OB=2,BD=CD=23, 利用三角函数关系sin 32BOD BD BO∠==,易得∠BOD=60°;OB =OC ,得角∠BOC =120°,所以圆周角∠BAC =12∠BOC =60°. 【解答】解:∵连接OB 、OC ,过点O 作OD ⊥BC ,交BC 于点D 。

相关文档
最新文档