盾构施工中常遇到的问题
盾构施工中常见问题分析及防治措施
盾构施工中常见问题分析及防治措施盾构施工过程中,管片上浮、管片错台、管片渗水三类问题是严重影响成型管片的质量与美观。
本文结合施工过程中,对管片错台、管片上浮、管片渗水产生原因加以分析,并提出相应防治措施,以提高盾构隧道的使用效果和延长隧道使用寿命。
一、管片上浮管片上浮是指管片脱离盾尾后,在受到集中应力后产生向上运动的现象。
《规范》规定盾构掘进中线平面位置和高程允许偏差为±50mm。
管片拼装偏差控制为±50mm。
隧道建成后,中线允许偏差为高程和平面为±100mm,且衬砌结构不得侵入建筑限界。
由此推算管片上浮允许值与盾构姿态、管片姿态密切相关,因此均应限制在±30mm以内才能保证不侵限,并使管片外侧得到均匀的注浆回填。
1、上浮的原因及分析结合在合肥轨道交通一号线望湖城至葛大店盾构区间的施工经验,可从以下四个方面来分析管片上浮的原因。
(1)同步注浆不饱满,从而存在上浮空间盾构区间圆形隧道(管片)外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(管片由一块封顶块、两块邻接块、三块标准块构成)。
盾构机与管片之间存在着150㎜的建筑空隙,如果同步注浆不饱满,使管片外侧与土层之间的间隙没有及时有效地充填,就必然出现管片上浮的空间。
1其次,在同步注浆不饱满时,地层土软硬不同,产生的管片上浮情况也不同。
一般情况下,软地层不容易上浮,而硬地层却有空间导致管片上浮。
这是因为在掘进过程中,对于软地层,上部松软地层土的自稳性差,会因为自重、存在空隙而有相对的下沉,从而使因注浆不饱满造成的管片和土层之间的剩余空隙基本消失。
硬地层由于自稳能力强,完整性好,能很好的控制自身沉降。
使管片有足够的上浮空间和时间,且地层越硬,管片上浮的情况越严重。
(2)过量超挖盾构机在掘进过程中的隧道轴线与理论轴线有一定的差值,在掘进过程中时时在调整盾构机的姿态,盾构机走的线形是“蛇形”。
盾构施工过程质量通病原因及预防
盾构施工过程质量通病原因及预防一、引言盾构施工是现代化隧道掘进方法之一,具有高效、快速、安全等优势。
然而,在实际施工过程中,常常会出现一些质量问题,影响施工进度和工程质量。
本文将针对盾构施工过程中常见的质量通病,分析其原因,并提出相应的预防措施。
二、质量通病及原因分析1. 土层塌方原因分析:土层塌方是盾构施工过程中常见的质量问题之一。
主要原因包括:- 地质勘察不准确:对地质条件的了解不足,未能准确预测土层的稳定性。
- 施工参数设置不当:施工过程中,盾构机的推力、刀盘转速等参数设置不合理,导致土层塌方。
- 施工操作不规范:施工人员对盾构机的操作不熟练,未能掌握正确的施工技术,导致土层塌方。
预防措施:- 加强地质勘察:在盾构施工前,进行详细的地质勘察,准确评估土层的稳定性,为施工提供可靠的地质数据。
- 合理设置施工参数:根据地质条件和盾构机的性能特点,合理设置推力、刀盘转速等施工参数,确保施工的稳定性和安全性。
- 加强施工人员培训:对施工人员进行系统培训,提高其盾构机操作技术,确保施工操作规范、准确。
2. 盾构机故障原因分析:盾构机故障是影响施工进度和质量的重要因素。
常见原因包括:- 设备老化:盾构机长时间使用,设备老化,导致故障频发。
- 设备维护不当:对盾构机的维护保养不到位,未能及时发现和解决潜在问题。
- 配件质量问题:盾构机配件质量不过关,容易出现故障。
预防措施:- 定期检修维护:对盾构机进行定期检修和维护,及时更换老化的零部件,确保设备的正常运行。
- 严格配件质量控制:选择优质的盾构机配件供应商,确保配件质量过关,减少故障发生的可能性。
- 建立完善的维修保养制度:制定维修保养计划,明确责任人和时间节点,确保设备的长期稳定运行。
3. 土层沉降原因分析:土层沉降是盾构施工过程中常见的质量问题之一。
主要原因包括:- 施工参数设置不当:盾构施工过程中,推力、刀盘转速等参数设置不合理,导致土层沉降。
- 土层变形过大:由于地下水位变化、地质构造变动等原因,土层发生较大变形,导致沉降。
盾构施工监理中的难点问题与解决思路
盾构施工监理中的难点问题与解决思路引言:盾构技术在地铁、隧道等工程中得到了广泛应用,而盾构施工监理作为保证工程质量和安全的重要环节,也面临着一系列的难点问题。
本文将探讨在盾构施工监理过程中的一些难点问题,并提出相应的解决思路。
第一节:施工安全难题首先,盾构施工中存在的施工安全问题是监理面临的首要难题。
在盾构施工中,存在坍塌、水涌、火灾等一系列危险。
监理人员需要科学合理地制定切合实际的安全监控措施,确保施工过程中的安全性。
第二节:环境保护难点盾构施工对周边环境的影响不可忽视,因此环境保护也是监理中的重要问题。
如何减少噪音、减少对土壤和水源的污染,是监理人员需要思考的方向。
监理应制定详细的环境保护措施,确保施工过程中对环境的影响最小化。
第三节:施工质量监控难题盾构施工的质量直接影响到工程的安全性和耐久性,因此质量监控是监理中的重要问题。
监理人员需要加强对盾构机械和隧道支护施工的质量把关,确保质量符合相关工程标准。
第四节:沟通与合作难点在盾构施工中,存在多个施工单位之间的协作问题。
各个单位之间需要充分沟通,共同解决施工中的问题。
监理人员需要起到协调和沟通的作用,促进各方顺利合作。
第五节:项目管理难题盾构施工过程中涉及多个工程环节,需要进行综合的项目管理。
监理人员需要制定详细的项目计划和进度安排,及时排查和解决施工过程中的问题,确保施工按计划进行。
第六节:材料选用与检验难点盾构施工中使用的材料质量直接关系到工程的安全性和可靠性。
监理人员需要对材料的选用和检验进行严格控制,确保材料质量符合标准要求。
第七节:地质情况难题盾构施工的地质情况复杂多变,监理人员需要对地质情况进行充分了解,根据地质情况制定相应的施工方案和安全措施。
第八节:变形监测与控制难点盾构施工过程中,随着土壤力的变化,地下隧道可能会发生变形。
监理人员需要进行变形监测和控制,及时采取相应措施防止变形过大。
第九节:技术难题盾构施工作为一项高科技工程,技术问题也是监理中的难点之一。
盾构法施工过程中的常见问题及防治措施
盾构法施工过程中的常见问题及防治措施本文结合南京地铁二号线D2-TA05标所街站~向兴路站盾构区间隧道在施工中出现的问题,提出了解决这些问题的防治措施,为以后同类似的工程提供了参考与借鉴。
标签:盾构施工技术常见问题防治措施0 引言盾构法具有快速、安全、对地面建筑物影响小等诸多优点,已被越来越多地应用于城市地铁、公路、铁路等诸多施工领域。
盾构推进过程中掘削参数的变化会对地层产生扰动影响,诸如地表沉降、孔隙水压力、强度和承载力等物理力学参数的变化都是不可避免的;而土体的扰动往往又引发一系列环境病害,如造成周围建筑物开裂、倒坍、地表沉降,隧道内漏水、工作面漏砂等。
如何采用合理的施工技术避免或减轻环境病害的发生,是盾构法施工的难点。
1 工程概况所街站~向兴路站区间隧道位于江东中路上,在江东中路和纬八路交叉口隧道下穿低水河(河宽40.7m,河底标高3.0m);区间地下管线埋深较浅,一般在3.0m以内,不影响盾构推进。
区间隧道包括左线和右线,隧道外直径6.2m,内径直5.5m。
衬砌的设计强度为C50,抗渗强度等级为S10。
衬砌每环宽1.2m,由封顶块(K),领接块(B1、B2),标准块(A1、A2、A3)构成。
纵、环向均采用M30弯螺栓连接。
衬砌接缝间防水采用由三元乙丙橡膠制成的弹性密封垫。
本工程向兴路站~所街站区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为孔隙潜水,赋存于砂层中的地下水具微承压性,属微承压水。
2 地表沉降的原因与防治措施2.1 地表沉降的原因地层损失包括建筑空隙及超挖或其它土层流失,具体为①盾构工作面前方上体的挤入;②盾构上方土体挤入因盾构外壳直径和拼装管片直径不同产生的建筑空隙;③盾构纠偏引起土体超挖;④盾构推进有曲率时造成土体损失;⑤盾构推进时切口环上的突缘引起超挖;⑥盾构推进引起土体孔隙水压力变化,或因降水引起地下水位下降,引起土体固结沉降。
土压平衡盾构施工中常见的问题及措施
密封装置损坏
密封装置老化、磨损或损坏,导致密封效果不佳。
密封材料选择不当
密封材料耐久性差或与盾构机不兼容,导致密封失效。
密封系统维护不到位
密封系统维护不及时或操作不当,导致密封系统失效。
推进系统故障
液压系统故障
液压系统压力不足或波动 大,导致推进力不足或不 稳定。
推进油缸故障
推进油缸磨损、泄漏或卡 滞,导致推进力不均匀或 失效。
常见问题及措施的重要性
01
地面沉降
土压平衡盾构施工引起的地面沉降是一个常见问题。如果沉降过大,可
能导致管线损坏、道路塌陷等后果。采取措施如加强土体加固、调整盾
构参数等可以有效减少沉降。
02
渗漏水
隧道或地铁工程中,渗漏水是一个普遍存在的问题。长期渗漏可能导致
结构腐蚀、影响使用安全。采取措施如加强防水设计、改善材料性能等
施工管理
施工管理不当可能导致安全事故和质量问题。采取措施如加 强施工现场管理、落实安全生产责任制等可以降低事故发生 的风险。
02
土压平衡盾构施工常见问题
土压控制不当
01
02
03
土压波动大
由于开挖面土质不均匀、 出渣量不稳定等原因,导 致土压波动较大,影响施 工安全。
土压设定不合理
土压设定值过高或过低, 可能导致开挖面失稳或刀 盘磨损加剧。
土压监测不准确
土压监测设备故障或数据 传输错误,导致土压控制 不准确。
刀盘磨损严重
刀具材料选择不当
刀具更换不及时
刀具材料硬度不足或耐磨性差,导致 刀盘磨损严重。
刀具磨损达到极限后未及时更换,导 致刀盘进一步磨损。
刀具磨损监测不到位
刀具磨损监测设备故障或数据传输错 误,导致刀具磨损情况不明。
盾构施工中常见问题分析及防治措施
盾构施工中常见问题分析及防治措施随着城市的不断拓展和市场的不断扩大,盾构工程日益受到重视,成为城市建设中的重要组成部分。
然而,在盾构施工过程中,也时常会出现一些问题,如何有效地分析和解决这些问题,是保证盾构工程进展顺利和安全的关键之一。
本文将对盾构施工中常见问题进行分析,并提出相应的防治措施。
1. 盾构机故障盾构机是盾构施工中不可或缺的设备之一。
然而,在实际施工中,盾构机故障是比较常见的情况。
盾构机故障可能导致施工进度延误、安全事故等问题的发生。
1.1 故障原因•设备故障:盾构机本身设计出现缺陷或部件损坏等。
•操作不当:盾构机的操作人员在操作过程中出现失误或者质量不合格等问题。
•环境因素:如地质情况不稳定、施工区域的气候环境等因素均有可能导致盾构机故障。
1.2 防治措施•设备保养:对盾构机进行定期维护和保养,预防盾构机本身的故障。
•员工培训:对盾构机操作人员进行专业培训,提高员工的专业技能和操作水平,减少操作不当造成的故障。
•环境管理:对施工环境进行科学合理的管理,结合具体环境类型进行不同的措施,提高施工效率的同时减少盾构机故障的发生。
2. 施工质量问题盾构施工质量是工程质量的重要组成部分。
若施工质量存在问题,则会直接影响到工程安全和工程质量。
2.1 问题原因•施工人员技能不足:盾构施工需要相应的专业技能和经验,如果施工人员对于施工过程中的技术要求不熟练,则很容易出现质量问题。
•环境因素影响:施工过程中,环境因素会对施工质量产生一定的影响。
•材料质量问题:质量不达标的材料会对施工质量产生影响。
2.2 防治措施•员工培训:加强员工技术培训,保障员工对施工过程的掌握和熟练操作,提高施工质量。
•严格现场管理:加强现场施工管理,对施工现场进行密切的监管和管理,确保施工质量。
•细化施工标准:建立规范的施工标准,明确施工过程中的每一个环节,严格按照标准进行操作,提高施工质量。
3. 安全事故问题盾构施工涉及到大量的工程设备,涉及到工人的安全问题,因此安全事故问题时刻不能忽视。
土压平衡盾构施工中常见的问题及措施
土压平衡盾构施工中常见的问题及措施一、土压平衡盾构施工常见问题1.1盾构机身产生的滚动问题对于盾构机身所产生的滚动问题来说,主要是因刀盘切削开挖面土体引发的扭矩比盾构机壳体和隧道洞壁间的摩擦力矩大而诱发。
基于两地层分界面掘进工作过程中,因岩性差异很大,同时岩层稳定性比较好,如果扭矩偏高,但盾构机壳体和洞壁只有部分产生摩擦力,在摩擦力矩难以对刀盘切削土体形成的扭矩进行有效平衡时,便会导致盾构机身产生滚动问题。
值得注意的是,当滚动呈现大幅度状况时,会对管片拼装产生影响,并且也会导致隧道轴线发生偏斜的状况。
1.2泥饼问题当盾构机穿越粘性土层的情况下,因刀盘面需要维持比较高的压力,同时温度通常偏高,基于此条件下,受到高温、高压的影响,容易导致粘土压实固结,进而形成泥饼,尤其是基于刀盘中心位置,形成泥饼的几率颇高。
在形成泥饼的情况下,掘进速度会快速降低,同时刀盘扭矩也会升高,这样会使开挖的效率大幅度下降,严重情况下引发无法继续掘进的情况,严重影响施工进度。
1.3螺旋输送机产生的喷涌问题基于基岩裂隙水发育的条件下,隔水层厚度差异,同时经常出现缺失的情况,便易发生喷涌问题。
并且,倘若面对此类地层,在盾构机未能持续掘进,或掘进间歇的情况下,又或者同步注浆不够密实,导致流水通道形成,水压偏高,土质较差,置入土仓当中的渣土缺乏塑性,便会导致承压水和无塑性渣土之间发生螺旋输送器喷涌问题。
1.4地表沉降问题在土仓内压力不足的情况下,同时和外界水土压力处于不平衡条件下,容易导致盾构刀盘面前方土层发生坍塌事故,进而使地表沉降问题诱发。
并且当管片脱出盾尾之后,管片和地层之间存在一环形成建筑空间,若软岩地层当中未能及时做好同步注浆填充工作,则拱顶围岩易发生变形,进而导致地表出现沉降速率过大或过量沉降情况。
二、土压平衡盾构施工常见问题相关解决措施分析2.1盾构机身滚动问题的解决措施针对上述提到的盾构机身所产生的滚动问题,需采取的纠正措施为:一方面,加注适量的泡沫,使刀盘扭矩减小;另一方面,采取及时注浆处理措施,保证注浆量充分,并使用活性浆液使盾构周边摩擦力得到有效增大。
盾构施工中常见的问题及处理措施
盾构施工中常见的问题及处理措施前言盾构施工工法在国内近年流行的机械化施工作业,由于盾构工法较传统的矿山法施工作业安全、自动化程度高、工人劳动强度低,越来越受施工单位欢迎。
盾构工法经过在国内多年的施工实践,盾构工法逐步被人们所认识和了解,虽然盾构工法有很多的优点,但其缺点也不少,如盾构施工中发生错台、管片破损等质量问题,没法返工,留下工程永久性的质量缺陷,质量问题重点为预控。
因此,施工过程中的风险管理越来越受人们所重视,不断探索施工风险预控制技术,不但可以提供施工质量水平和企业的技术管理水平,同时有利于避免质量、安全事故,降低施工成本。
风险管理关键在于发现问题,分析问题,采取应对措施和预防措施,总结经验,不断提高工程风险的管理。
现本文以表格的形式对盾构施工过程中的一些质量问题分类概述,并找出问题产生的原因,进而提出处理措施。
见下表:质量问题产生的原因处理措施出洞段拆除封门时出现涌水、流砂封门外侧加固土体强度低1.创造条件使盾构尽快进入洞口,并对洞门圈进行加固封堵,如双液注浆、直接冻结等2.加强监测,观测封门附近、工作井和周围环境的变化。
3.加强工作井的支护结构体系地下水发生变化封门外土体暴露时间太长洞口土体流失洞口土体加固效果不好1.洞口土体加固应提高施工质量,保证加固后土体强度和均匀性;2.洞门密封圈安装要准确,在盾构推进的过程中要注意观察,防止盾构刀盘的周边刀割伤橡胶密封圈;密封圈可涂牛油增加润滑性;洞门的扇形钢板要及时调整,改善密封圈的受力状况;3.在设计、使用洞门密封时要预先考虑到盾壳上的凸出物体,在相应位置设置可调节的构造,保证密封的性能;洞口密封装置失效掘进面土体失稳盾构推进轴线偏离设计轴线盾构基座变形1.盾构基座中心夹角轴线应与隧道设计轴线方向保持一致,当洞口段隧道设计轴线处于曲线状态时,可考虑盾构基座沿隧道设计曲线的切线方向放置,切点必须取洞口内侧面处;2.对基座框架结构的强度和刚度进行验算,以满足出洞时盾构穿越加固土体所产生的推力要求;3.控制盾构姿态,尽量使盾构轴线与盾构基座中心夹角轴线保持一致;4.盾构基座的底面与始发井的底板之间要垫平垫实,保证接触面积满足要求;5.在推进过程中合理控制盾构的总推力,使千斤顶合理编组,避免出现不均匀受力盾构后靠支撑发生位移或变形出洞推进时盾构轴线上浮后盾系统出现失稳反力架失效1.对体系的各构件必须进行强度、刚度校验,对受压构件一定要作稳定性验算。
盾构机常见故障原因及对策 amp
盾构机常见故障原因及对策amp盾构机在施工过程中可能会发生各种故障,导致工程进度被延误甚至停工。
以下是盾构机常见故障原因及对策:一、泥水密封失效泥水密封失效是盾构机施工中常见的故障之一。
泥水密封失效的原因主要有:1. 密封圈老化:长时间使用导致密封圈老化,弹性减弱;2. 密封圈安装不当:安装密封圈时未注意把握好放射量,导致密封不严;3. 泥浆压力过高:泥浆压力超过设计值,导致密封圈承受过大作用力;针对泥水密封失效的对策有:1. 定期更换密封圈:根据使用寿命的建议,定期更换密封圈,避免老化导致的失效;2. 注意安装密封圈:安装密封圈时应注意放射量,确保密封严密;3. 控制泥浆压力:控制泥浆压力在设计值范围内,避免压力过大;二、电力系统故障电力系统故障会导致盾构机停工,影响施工进度。
电力系统故障的原因主要有:1. 电源供电异常:供电电压过高或过低,电缆接触不良等原因导致电力系统故障;2. 电机故障:电机内部故障或电机与其他电器设备之间的连接问题导致电力系统故障;针对电力系统故障的对策有:1. 检查供电电源:定期检查供电电源的电压,确保电压稳定;2. 检查电缆连接:定期检查电缆连接情况,确保连接良好;3. 定期维护电机:定期对电机进行维护保养,避免电机故障;三、刀盘故障刀盘故障会导致盾构机停工,并需要维修刀盘,影响工程进度。
刀盘故障的原因主要有:1. 刀盘耗损:长时间使用导致刀盘耗损,刀具不锋利;2. 刀盘卡住:刀盘被较大的土层或石块卡住,无法正常运转;针对刀盘故障的对策有:1. 定期维护刀盘:定期更换刀盘刀具,保持刀盘的锋利度;2. 清理施工面:在施工过程中,定期清理施工面上的大块土层或石块,避免刀盘被卡住;四、液压系统泄漏液压系统泄漏会导致液压系统压力下降,影响盾构机正常工作。
液压系统泄漏的原因主要有:1. 老化密封件:长时间使用导致液压系统中的密封件老化;2. 液压管路磨损:液压管路磨损导致泄漏;针对液压系统泄漏的对策有:1. 定期更换密封件:根据使用寿命的建议,定期更换液压系统中的密封件;2. 定期检查液压管路:定期检查液压管路的磨损情况,及时更换磨损严重的管路。
盾构施工中的常见问题
盾构施工中的常见问题摘要:从1825年在英国泰晤士河下首次用一个矩形盾构建设隧道到现在盾构法进行地下隧道施工已经有170余年的历史。
在这170多年里,盾构机随着现代科学的发展自动化程度越来越高,根据不同的地质条件所使用的盾构机种类也越来越多。
现在,盾构法施工已经成为了现代城市地下快速轨道交通隧道和过江隧道施工方法中进度最快,效率最高的的方法。
尽管盾构法施工在盾构法施工中有很多优点,在很多资料上也提到这些,但是盾构施工中也有很多问题,今天我介绍的就是一些常见的问题和解决方法。
关键词:盾构法施工,常见问题,解决方法一盾构法施工的主要内容图1 盾构施工概貌1-盾构;2-盾构千斤顶;3-盾构正面网格;4-出土转盘;5-出土皮带运输机;6-管片拼装机;7-管片;8-压浆泵;9-压浆孔;10-出土机;11-由管片组成的隧道衬砌结构;12-在盾尾空隙的压浆;13-后盾管14-竖井。
如图1所示构成盾构法施工的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。
盾构从竖井或基坑的墙壁开孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计孔洞推进。
盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制隧道衬砌结构,再传到竖井或基坑的后靠壁上,盾构是这种施工方法中最主要的独特的施工机具。
它是一个能支承地层压力而又能在地层中推进的圆形或矩形或马蹄形等特殊形状的钢筒结构,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内面安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以拼装一至二环预制的隧道衬砌环。
盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向紧靠盾尾后面的开挖坑道周边与衬砌环外周之间的空隙中压注足够的浆体,以防止隧道及地面下沉。
在盾构推进过程中不断从开挖面排出适量的土方。
二盾构法施工的优点1.除竖井施工外,施工作业均在地下进行,噪音、振动引起的公害小,既不影响地面交通,又可减少对附近居民的噪音和振动影响。
盾构实训中遇到的困难及解决方法
盾构实训中遇到的困难及解决方法盾构是一种用于地下隧道建设的机械化施工方法,它通过推进机械沿着隧道轴线前进,同时控制土层的稳定性,实现隧道的开挖和支护。
在盾构实训中,经常会遇到一些困难和问题,下面我将介绍一些常见的困难及解决方法。
1. 土层复杂导致推进困难在实际盾构施工中,地下土层的复杂性可能导致推进困难,如遇到硬岩、软土、砂砾等不同土层。
解决这个问题的方法是通过改变推进机械的工作参数,如调整刀盘转速、刀盘刀片类型等,以适应不同的土层条件。
此外,还可以采用预处理技术,如冻结法、注浆法等,加固和改良土层,提高推进效率。
2. 地下水问题引发安全隐患在盾构实训中,地下水是一个常见的问题,如果地下水位过高,可能导致隧道坍塌或机械故障。
解决这个问题的方法是采取有效的排水措施,如设置排水井、安装抽水泵等,降低地下水位,保证施工的安全性。
此外,还可以采用注浆技术,加固土层,防止水流进入隧道。
3. 盾构机故障影响施工进度盾构机是盾构施工的核心设备,如果出现故障,可能会导致施工进度延误。
解决这个问题的方法是定期进行设备维护和保养,及时发现和修复潜在故障。
另外,还可以采取备用设备和备件的方式,以备不时之需,确保施工的连续性和稳定性。
4. 安全问题需要重视盾构施工是一项危险性较高的工作,安全问题必须得到重视。
解决这个问题的方法是加强安全培训和教育,提高工人的安全意识和技能,确保施工过程中的安全。
此外,还要建立健全的安全管理制度和应急预案,及时应对突发事件,保障施工人员的生命安全。
5. 环境保护需注重盾构施工会产生噪音、振动、尘土等环境污染,对周围环境造成影响。
解决这个问题的方法是采取有效的环境保护措施,如设置隔音墙、喷淋降尘、振动隔离等,减少对周围环境的影响。
同时,还要加强环境监测和治理,确保施工过程中的环境安全和可持续发展。
在盾构实训中,我们经常会遇到各种困难和问题,但只要我们积极应对,采取合适的解决方法,就能够顺利完成施工任务。
土压平衡盾构施工中常见的问题及措施
工程实例三:提升盾构设备维护效率
1. 提升盾构设备维护效率可延长设备使用寿命,提高施工效益。
2. 在某大型隧道工程项目中,施工单位采用了土压平衡盾构机进行施工。为了提 高盾构设备的维护效率,施工单位加强了对设备的日常检查和维护,实行定期保 养制度。这些措施有效地延长了盾构设备的使用寿命,提高了施工效益。
土压平衡盾构施工中常 见的问题及措施
汇报人: 日期:
目录
• 土压平衡盾构施工概述 • 土压平衡盾构施工中的常见问题 • 土压平衡盾构施工中的问题对策 • 土压平衡盾构施工的优化建议 • 土压平衡盾构施工实例及效果展示
土压平衡盾构施工
01
概述
盾构施工的基本原理
盾构是一种隧道挖掘和衬砌的专用设备,它利用强大的挖掘能力和迅速的衬砌速 度,在地下进行快速挖掘和衬砌,实现隧道工程的连续施工。
通过实时监测、数据分析等技 术手段,提高土压控制精度, 确保施工过程的安全性与质量 。
总结词
减少对环境的影响
详细描述
精确控制土压,减少对周围环 境的影响,降低施工风险。
加强盾构设备维护保养
总结词
延长设备使用寿命
总结词
提高设备使用效率
详细描述
制定全面的设备维护保养计划,延长盾构设 备的使用寿命,提高设备的可靠性。
盾构设备是土压平衡盾构施工的关键设备, 应加强其维护和保养。定期检查设备的各项 参数和运行状态,确保设备正常运行。同时 ,要加强对设备的维护和保养,及时发现和
处理设备故障,延长设备使用寿命。
隧道线性控制问题对策
要点一
总结词
加强隧道线性控制,确保隧道质量
要点二
详细描述
隧道线性控制是土压平衡盾构施工的关键技术之一。在掘 进过程中,应加强对隧道的测量和监控,确保隧道线性符 合设计要求。同时,要加强对隧道衬砌的施工质量控制, 确保隧道质量符合设计要求和使用要求。
盾构施工常见问题及治理
隧道盾构掘进施工盾构掘进是盾构法隧道施工的主要工序,要保证隧道的实际轴线和设计轴线相吻合,并确保圆环拼装质量,使隧道不漏水,地面不产生大的变形。
总结了盾构掘进施工九大常见问题及预防措施,方便大家在实际施工中比对防治。
一、土压平衡式盾构正面阻力过大现象盾构推进过程中,由于正面阻力过大造成盾构推进困难和地面隆起变形。
原因分析(1) 盾构刀盘的进土开口率偏小,进土不畅通;(2) 盾构正面地层土质发生变化;(3) 盾构正面遭遇较大块的障碍物;(4) 推进千斤顶内泄漏,达不到其本身的最高额定油压;(5) 正面平衡压力设定过大;(6) 刀盘磨损严重预防措施(1) 合理设计土孔的尺寸,保证出土畅通;(2) 隧道轴线设计前应对盾构穿越沿线作详细的地质勘察,摸清沿线影响盾构推进障碍物的具体位置、深度、以使轴线设计考虑到这一状况;(3) 详细了解盾构推进断面内的土质状况,以便及时调整土压设定值、推进速度等施工参数;(4) 经常检修刀盘和推进千斤顶,确保其运行良好;(5) 合理设定平衡压力,加强施工动态管理,及时调整控制平衡压力值。
治理办法(1) 采取辅助技术,尽量采取在工作面内进行推进障碍物清理,在条件许可的情况下,也可采取大开挖施工法清理正面障碍物;(2) 增添千斤顶,增加盾构总推力。
二、土压平衡盾构正面压力过量波动现象在盾构推进及管片拼装的过程中,开挖面的平衡上压力发生异常的波动,与理论力值或设定应力值发生较大的偏差。
原因分析(1) 推进速度与螺旋机的旋转速度不匹配;(2) 当盾构在砂土土层中施工时,螺旋机摩擦力大或形成土塞而被堵住,出土不畅,使开挖面平衡压力急剧上升;(3) 盾构后退,使开挖面平衡压力下降;(4) 土压平衡控制系统出现故障造成实际上压力与设定土压力的偏差。
预防措施(1) 正确设定盾构推进的施工参数,使推进设速度与螺旋机的出土能力相匹配;(2) 当土体强度高,螺旋机排土不畅时,在螺旋机或土仓中适量地家注水或泡沫等润滑剂,提高出土的效率。
盾构施工过程中的常见问题
盾构施工过程中的常见问题一、土压平衡式盾构正面阻力过大现象:盾构推进过程中,由于正面阻力过大造成盾构推进困难和地面隆起变形。
原因分析:(1)盾构刀盘的进土开口率偏小,进土不畅通;(2)盾构正面地层土质发生变化;(3)盾构正面遭遇较大块的障碍物;(4)推进千斤顶内泄漏,达不到其本身的最髙额定油压;(5)正面平衡压力设定过大;(6)刀盘磨损严重预防措施:(1)合理设计土孔的尺寸,保证出土畅通;(2)隧道轴线设计前应对盾构穿越沿线作详细的地质勘察,摸清沿线影响盾构推进障碍物的具体位置、深度、以使轴线设计考虑到这一状况;(3)详细了解盾构推进断面内的土质状况,以便及时调整土压设定值、推进速度等施工参数;(4)经常检修刀盘和推进千斤顶,确保其运行良好;(5)合理设定平衡压力,加强施工动态管理,及时调整控制平衡压力值。
治理办法:(1)采取辅助技术,尽量釆取在工作面内进行推进障碍物清理,在条件许可的情况下,也可釆取大开挖施工法清理正面障碍物;(2)增添千斤顶,增加盾构总推力。
二、土压平衡盾构正面压力过量波动现象:在盾构推进及管片拼装的过程中,开挖面的平衡上压力发生异常的波动,与理论力值或设定应力值发生较大的偏差。
原因分析:(1)推进速度与螺旋机的旋转速度不匹配;(2)当盾构在砂土土层中施工时,螺旋机摩擦力大或形成土塞而被堵住,出土不畅,使开挖面平衡压力急剧上升;(3)盾构后退,使开挖面平衡压力下降;(4)土压平衡控制系统出现故障造成实际上压力与设定土压力的偏差。
预防措施:(1)正确设定盾构推进的施工参数,使推进设速度与螺旋机的出土能力相匹配;(2)当土体强度髙,螺旋机排土不畅时,在螺旋机或土仓中适量地家注水或泡沫等润滑剂,提髙出土的效率。
当土体很软,排土很快影响正面压力的建立时,适当关小螺旋机的闸门,保证平衡土压力的建立;(3)管片拼装作业,要正确伸缩千斤顶,严格控制油压和伸出千斤顶的数量,确保拼装时盾构不后退;(4)正确设定平衡土压力值以及控制系统的控制参数;(5)加强设备维修保养,保证设备完好率,确保千斤顶没有内漏泄现象。
盾构施工中常见问题分析及防治措施
盾构施工中常见问题分析及防治措施盾构施工过程中,管片上浮、管片错台、管片渗水三类问题是严重影响成型管片的质量与美观。
本文结合施工过程中,对管片错台、管片上浮、管片渗水产生原因加以分析,并提出相应防治措施,以提高盾构隧道的使用效果和延长隧道使用寿命。
一、管片上浮管片上浮是指管片脱离盾尾后,在受到集中应力后产生向上运动的现象。
《规范》规定盾构掘进中线平面位置和高程允许偏差为±50mm。
管片拼装偏差控制为±50mm。
隧道建成后,中线允许偏差为高程和平面为±100mm,且衬砌结构不得侵入建筑限界。
由此推算管片上浮允许值与盾构姿态、管片姿态密切相关,因此均应限制在±30mm以内才能保证不侵限,并使管片外侧得到均匀的注浆回填。
1、上浮的原因及分析结合在合肥轨道交通一号线望湖城至葛大店盾构区间的施工经验,可从以下四个方面来分析管片上浮的原因。
(1)同步注浆不饱满,从而存在上浮空间盾构区间圆形隧道(管片)外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(管片由一块封顶块、两块邻接块、三块标准块构成)。
盾构机与管片之间存在着150㎜的建筑空隙,如果同步注浆不饱满,使管片外侧与土层之间的间隙没有及时有效地充填,就必然出现管片上浮的空间。
其次,在同步注浆不饱满时,地层土软硬不同,产生的管片上浮情况也不同。
一般情况下,软地层不容易上浮,而硬地层却有空间导致管片上浮。
这是因为在掘进过程中,对于软地层,上部松软地层土的自稳性差,会因为自重、存在空隙而有相对的下沉,从而使因注浆不饱满造成的管片和土层之间的剩余空隙基本消失。
硬地层由于自稳能力强,完整性好,能很好的控制自身沉降。
使管片有足够的上浮空间和时间,且地层越硬,管片上浮的情况越严重。
(2)过量超挖盾构机在掘进过程中的隧道轴线与理论轴线有一定的差值,在掘进过程中时时在调整盾构机的姿态,盾构机走的线形是“蛇形”。
谈谈盾构隧道管片若干问题的处理措施
谈谈盾构隧道管片若干问题的处理措施引言在盾构施工中,盾构管片是盾构施工的主要装配构件,是隧道的最外层屏障,承担着抵抗土层压力、地下水压力以及一些特殊荷载的作用。
盾构管片质量直接关系到隧道的整体质量和安全,影响隧道的防水性能及耐久性能。
盾构管片的受力分析是盾构隧道设计和施工的技术难题。
在盾构施工中,常常会遇到盾构管片结构开裂、上浮、错台等问题,给拼装带来困难并对防水构成隐患,直接影响盾构工程的正常施工及安全运营。
由于盾构隧道的管片开裂、上浮、错台问题在很长一段时间内,没有得到足够的重视。
随着盾构法隧道施工技术和技术标准的发展,管片上浮对施工质量和运营的问题以及错台引起的管片开裂、拼装困难和防患等问题对施工和运营的影响开始凸现出来,甚至管片的开裂和接头的渗水问题,不仅增大了施工和维护的困难,而且影响了工程质量和隧道安全合理的管片计算模型能有助于更好的研究管片的结构受力。
本文将分析管片开裂、上浮、错台等问题的原因并提出相应的处理措施,为以后的盾构施工提供参考。
1.管片开裂原因及处理措施1.1管片开裂原因1)管片受力不均当纠偏、管片拼装质量差、环缝夹泥时,管片环面不佳,引起管片受力不均,从而导致应力集中部位的管片破碎。
盾构推进时推进力通过油泵衬垫传递到管片上,油泵衬垫与管片接触部位是应力集中区,如果衬垫面不平整或者衬垫面与管片环面存在夹角,就会造成管片破碎。
2)管片螺栓连接不当在盾尾脱出管片,管片螺栓连接的过程中也会由于操作不当造成管片的破损,开裂。
3)曲线掘进时的“卡壳”现象在曲线段的掘进过程中,管片环心与盾构无法保持同心,当管片环面与盾构推进方向存在夹角时,其合力作用方向部位的管片容易破碎。
盾构推进过程也是不断纠偏过程。
该区间隧道进入曲线段后,管片外弧与盾尾内壁间的距离沿环向分布不均匀,造成一侧间距很小,而另一侧间距较大,这时易产生“卡壳”现象,即两者碰在一起。
盾构机一推进,就会造成管片一定部位破碎。
盾构施工中常遇到的问题
1.盾构始发时怎样避免盾构机头扎头?始发推进后,在盾构抵达撑子面及脱离加固区时由于盾构下半部土体受到扰动,承载力降低容易出现盾构叩头现象。
应抬高盾构始发姿态,盾构机机头在安置时应设置一个仰角。
在掘进过程中头部周期性下降产生原因:盾构机在推进过程中,由于泥土仓实际土压力值低于理论值,使盾构机头部周期性地下降。
造成盾构机“磕头”。
处理方法:实际操作中,应使泥土仓土压力值略高于理论值,并在推进时按工况条件和地质情况在盾构机正面加入发泡剂、膨润土和水等改良土体的添加剂,改良开挖面的土体.施工过程中要根据隧道的埋深、所在位置的土层状况和地层变形量等信息的反馈,对土压力设定值、推进速度和注浆量等施工参数及时地进行调整。
2.在盾构过程中如何解决机身滚动问题?盾构机身滚动是由于刀盘切削开挖面土体产生的扭矩大于盾构机壳体与隧道洞壁之间的摩擦力矩而产生的。
解决方法是1)针对性地加注泡沫减小刀盘扭矩。
2)及时注浆,确保注浆量,采用活性浆液等措施增大盾构周边摩擦力。
3)改变刀盘旋转方向,放慢推进速度。
.3.盾构过程中产生泥饼问题?盾构机在粘性土层中施工时,由于粘性土具有内摩擦角小、粘性大和流动困难等特点,使得粘性土体粘附在刀盘上。
被刀盘从开挖面上切削下来的粘土,通过刀盘渣槽进入泥土仓后,在泥土仓上压力的作用下容易被压实固结,首先将刀盘支撑臂中心充满填实,并很快地堵死了刀盘中心的渣槽,使刀盘中心正面的土体不能通过中心刀渣槽进入泥土仓,而是在刀盘挤压力的作用下从刀盘四周的渣槽进入泥土仓。
逐渐地,整个泥土仓内全部被压实固结的土体充满并堵塞。
当刀盘继续旋转切削土体时,固结土体的刀盘和开挖面土体之间产生很大的摩擦力,相互摩擦产生大量的热量,刀盘温度不断升高,使刀盘和泥土仓内的土体不断地被烧结固化,最终在刀盘和整个泥土仓内形成坚硬的“泥饼”。
“泥饼”形成后,刀盘扭矩和盾构机推进阻力均迅速增大,螺旋输送机无法出土,盾构机不能往前推进。
7施工中常见问题
7施工中常见问题7、施工中常见问题7.施工中常见的质量问题在盾构施工中,三大主要工序为管片拼装、盾构机掘进、管片壁后注浆,也就是在这几项工序的实施过程中,会造成隧道常见的质量问题,管片拼装容易造成管片破损碎裂、成型隧道渗漏;盾构掘进容易造成隧道轴线偏差超标、地面沉降超标,管片碎裂;管片壁后注浆容易造成成型隧道渗漏、地面沉降超标。
1.管片破损、碎裂节段在运输、吊装和组装过程中,节段会损坏、开裂、缺角、缺边。
管片损伤可分为地面管片损伤和隧道成型管片损伤。
1.1地面段1.1.1原因分析经分析,地上管片损坏的原因主要有以下几个方面:(1)行车司机和起重指挥工的动作行为不一致,导致管片在吊运过程中与其他管片相撞,造成管片缺角掉边。
(2)进入现场的路段太多,导致堆放高度违反标准。
当管段提升至井前管道区域时,司机的视线受阻,导致提升管段和放置管段之间发生碰撞,导致管段损坏。
1.1.2预防措施(1)未严重损坏的节段应专门放置。
经监理人检查批准后,按分段等待方案进行修复。
待修复件强度达到一定要求后,方可吊入井内使用。
(2)对行车司机、起重指挥工和丝索人员进行技术交底,提高吊装人员的整体施工水平。
(3)吊装节段必须使用专用吊索,以确保节段的稳定吊装和放置。
(4)严格控制分段推进高度,确保驾驶员视线。
1.2隧道段隧道管片破碎的情况大致可分为二种类型:①管片间断发生较小的破损。
②连续几环相同位置发生较大的破损。
1.2.1原因分析(1)针对第一种类型,经分析,有以下几个方面造成的:1)管段组装操作人员在组装过程中没有严格遵守规范要求,导致管段组装困难后,相邻管片之间的错台比较明显,造成管片在盾构机再次推进过程中管片破裂。
2)粘贴环形缓冲材料时,缓冲材料与管片边缘之间的距离过大,因此在管片组装后,由于管片角部之间缺少缓冲材料,当千斤顶推到管片上时,管片上的力不均匀,导致段的角部碎裂。
3)在拼装过程中,管片拼装机灵敏度低,不容易控制,也可造成管片角部被撞裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.盾构始发时怎样避免盾构机头扎头?始发推进后,在盾构抵达撑子面及脱离加固区时由于盾构下半部土体受到扰动,承载力降低容易出现盾构叩头现象。
应抬高盾构始发姿态,盾构机机头在安置时应设置一个仰角。
在掘进过程中头部周期性下降产生原因:盾构机在推进过程中,由于泥土仓实际土压力值低于理论值,使盾构机头部周期性地下降。
造成盾构机“磕头”。
处理方法:实际操作中,应使泥土仓土压力值略高于理论值,并在推进时按工况条件和地质情况在盾构机正面加入发泡剂、膨润土和水等改良土体的添加剂,改良开挖面的土体。
施工过程中要根据隧道的埋深、所在位置的土层状况和地层变形量等信息的反馈,对土压力设定值、推进速度和注浆量等施工参数及时地进行调整。
2.在盾构过程中如何解决机身滚动问题?盾构机身滚动是由于刀盘切削开挖面土体产生的扭矩大于盾构机壳体与隧道洞壁之间的摩擦力矩而产生的。
解决方法是1)针对性地加注泡沫减小刀盘扭矩。
2)及时注浆,确保注浆量,采用活性浆液等措施增大盾构周边摩擦力。
3)改变刀盘旋转方向,放慢推进速度。
.3.盾构过程中产生泥饼问题?盾构机在粘性土层中施工时,由于粘性土具有内摩擦角小、粘性大和流动困难等特点,使得粘性土体粘附在刀盘上。
被刀盘从开挖面上切削下来的粘土,通过刀盘渣槽进入泥土仓后,在泥土仓上压力的作用下容易被压实固结,首先将刀盘支撑臂中心充满填实,并很快地堵死了刀盘中心的渣槽,使刀盘中心正面的土体不能通过中心刀渣槽进入泥土仓,而是在刀盘挤压力的作用下从刀盘四周的渣槽进入泥土仓。
逐渐地,整个泥土仓内全部被压实固结的土体充满并堵塞。
当刀盘继续旋转切削土体时,固结土体的刀盘和开挖面土体之间产生很大的摩擦力,相互摩擦产生大量的热量,刀盘温度不断升高,使刀盘和泥土仓内的土体不断地被烧结固化,最终在刀盘和整个泥土仓内形成坚硬的“泥饼”。
“泥饼”形成后,刀盘扭矩和盾构机推进阻力均迅速增大,螺旋输送机无法出土,盾构机不能往前推进。
泥土仓内过高的温度会缩短刀盘主轴承的使用寿命,加速主轴承的损坏,甚至会出现主轴承“烧结、抱死”的严重后果解决方法为1)适量增加泡沫的注入量,减小碴土的黏附性,降低泥饼产生的几率。
2)刀盘背面和土仓压力隔板上设搅拌棒,以加强搅拌强度和范围,并通过土仓隔板上搅拌棒的泡沫孔向土仓中注射泡沫,改善渣土和易性,增大渣土流动性。
3)必要时螺旋输送机内也要加入泡沫,以增加碴土的流动性,利于碴土的排出。
4)控制循环睡的温度由于刀盘温度高造成的泥饼问题5)一旦产生泥饼,可空转刀盘使泥饼在离心力的作用下脱落。
确保开挖面稳定的情况下也可采用人工进仓清除。
4.管片上浮问题?管片上浮主要是由于脱出盾尾的管片周围处于无约束的地下水包围状态,隧道是中心的筒体则会产生上浮趋势(防水性能不好的隧道则会下沉)。
解决方法为:1)选择适当的注浆浆液,选择浆液时应保证浆液的充填性、初凝时间与早期强度、限定范围防止流失(浆液的稠度)的有机结合,这样才能保证隧道管片与围岩共同作用形成一体化的构造物。
2)衬背注浆的浆液配比应进行动态管理,依据不同地质、水文、隧道埋深等情况的变化而调整,以控制地表的沉降和保证管片的稳定。
..5.盾尾漏浆问题造成盾尾漏浆主要有以下几个原因:一是盾尾刷磨损;二是盾尾与管片之间隙不均匀;三是衬背注浆压力过高。
可采取下列措施防止盾尾漏浆。
1)在挖掘前对盾尾密封系统进行全面检查与维护,全面更换已磨损的密封刷。
2)在管片拼装前必须把盾壳内的杂物清理干净,防止对盾尾刷造成损坏;每30环全面检查1次盾尾密封腔油脂状况,严格控制盾尾油脂的压力。
3)经常检查盾尾周边与管片的间隙,控制好盾构机的姿态和管片选型,保持间隙均匀。
4)进行管片壁后注浆时,压浆部位为5~8环,并应严格控制注浆的压力。
发现盾构漏浆比较严重时,应使用初凝时间较短的浆液。
6.当刀盘磨损严重时如何降低刀具的磨损减小推力:这是最简单、有效的方法,但同时也会降低掘进速度。
减小刀具的贯入度:即在保持掘进速度基本不变的情况下,提高刀盘转速,一般达2.5~3r/m左右。
当开挖面为全断面硬岩时,减小刀具贯入度,能显著降低刀盘扭矩。
但刀盘高转速不适用有孤石的围岩,因为孤石很容易造成刀具崩裂。
向开挖面、土仓内加入土质改良剂(膨润土,发泡剂)。
7.同步注浆时遇到堵管情况出现堵管的情况,其原因主要是以下几方面:①砂浆配比不好,以致砂浆初凝时间太短、砂浆易沉淀离析、砂浆流动性差②原材料不好,如砂太粗③盾尾浆管回砂④长时间停注前未注射膨润土液洗管解决方法:1)调整浆液配合比,选择合适的胶凝时间。
一般为8-10小时。
2)安装管片活或出渣过程中预留部分砂浆,保持管路畅通。
3)改装管路,增加独立的膨润土清洗管路。
8.同步注浆时遇到堵管漏浆情况主要原因:①盾尾间隙过大。
②尾刷损坏③盾尾油脂注入量不够处理办法:①控制好盾构机姿态,选择适当的管片,以保持良好的盾尾间隙.②在管片迎水面垫厚约15cm 左右的海绵或者更换尾刷。
③加大油脂注入量。
9.若螺旋输送机被卡住(即扭矩超限),无法正常出渣.解决方法为反复伸、缩螺杆并同时正、反转,如低速正转同时伸、缩螺杆,若超限则反转同时伸、缩螺杆,如此反复,基本上都可以脱困。
10.若启动刀盘时刀盘被卡住,则将部分推进千斤顶收缩,使土压力、刀具贯入度减小即可以转动刀盘。
11. 管片拼装常见质量问题(1)、管片在拼装前一般要先检查管片是否完好、型号是否正确、缓冲垫和止水条是否贴牢。
在拼装过程中一定要注意对止水条的保护,若止水条损坏严重则很可能出现渗漏水的质量问题。
(2)、千斤顶撑靴正常情况下应该不会同时顶在两块管片的角上,但如果隧道管片发生扭转,则可能会出现这种情况,那么要特别注意拼管片或掘进时会管片发生崩裂。
(3)、管片扭转:如果拼装管片时,盾构机的滚动角较大而且一直朝同一个方向,则可能会发生隧道管片扭转的情况。
因此应该通过调整刀盘的旋转方向来减小盾构机在拼装时的滚动角。
(4)、管片错台:在小半径曲线(本工程最小曲线半径R=350m)线路施工时,因推进千斤顶对管片有环向分力而造成管片环错台。
解决办法是在推进后及时复紧管片连接螺栓约束管片的环向位移,或者在拼装时人为地将管片拼成与转弯方向一致的错台。
(5)管片拼装完成后查看螺栓是否上紧。
12.螺旋输送机循环“喷涌”泥水产生原因:盾构机在高水砂层进行施工时,由于开挖面土体充水裂隙,含水量丰富,而且已成型的盾构隧道同步注浆量没有完全充实衬背空隙,以致留下流水通道,开挖面土体裂隙的水不断地流入泥土仓,泥土仓内不停地积水。
当螺旋输送机工作时,首先吸入泥土仓内的水,然后从其出土闸门迅速喷出,形成“喷涌”。
泥土仓内的水被暂时吸干后,螺旋输送机才能出渣排土,很快地泥土仓内又积水较多,螺旋输送机又必须先吸水后出土。
造成盾构机无法正常工作,螺旋输送机不停地喷涌—停机—喷涌……,如此恶性循环,盾构机推进缓慢。
处理方法:(1)当遇到此情况时,关闭螺旋输送机,停止出土,保持盾构机继续往前推进,增加泥土仓内的土压力,让刀盘切削下来的土体将泥土仓内的水不断地挤出,减少泥土仓内的含水量。
同时要防止土仓压力过高,造成盾构机前方隆起、冒浆,以及击穿盾尾密封等现象的发生。
(2)向泥土仓内加入高浓度泥浆或泡沫,改善泥土仓内土体的和易性,使土体中的颗粒、泥浆成为一整体,使土体具有良好的可塑性、止水性及流动性,便于螺旋输送机顺利出土。
(3)在进入富水砂层前,盾构机提前采用气压平衡模式进行推进,但要防止发生漏气事件。
13.呈“蛇形”前进产生原因:在盾构机的推进过程中,操作人员在对盾构机中心轴线与隧道中心线出现的偏差进行纠正时,若每次的纠偏量过大,将导致不停地对盾构机进行左右纠偏,造成盾构机呈“蛇形“前进。
处理方法:对于盾构机中心轴线与隧道中心线出现的偏差,操作人员应及时纠正,盾构机一次(一环)的纠偏量以不超过5 mm为标准,以减少盾构机在推进过程中对地层的扰动,以及盾尾钢板拉伤了管片,损坏了管片的止水条,影响止水效果;若每次纠偏量过大,还会造成盾尾内管片拼装困难,有时会给完成后的隧道使用带来障碍。
14.螺旋输送机出料口形成大土堆产生原因:在粘性土层中,由于土体粘性大,由刀盘切削下来的粘土与土仓内的水难以均匀地混和,造成泥水分离。
在螺旋输送机出土时,整团泥土从螺旋输送机出土闸门排出至胶带输送机的胶带上。
由于泥和水呈分离状态,所以泥和胶带之间的摩擦力较小,而且胶带向上运转,使泥土在胶带上打滑而不能被及时运走。
随着螺旋输送机不停地出土,皮带上的泥土越积越多,土堆越来越大,逐渐被胶带两侧的挡上板支撑住。
土堆底部的泥土因受土堆重压而被胶带运走,被胶带两侧挡土板支撑住的泥土堆和胶带不接触,不能被胶带运走,滞留在胶带的上方,结果在螺旋输送机出料口形成大土堆。
处理方法:当形成大土堆后,螺旋输送机应停止出土,继续运转胶带输送机,采用人工方法进行清除,并通过胶带运走。
禁止操作人员为了减少麻烦试图通过螺旋输送机继续出土,增加土堆土方的泥土重量将其压塌,使土堆塌落在胶带上而被运走。
若此时螺旋输送机继续出土,大量泥土将从土堆的上方滑落至胶带输送机前端的支撑架上,结果不但不能将土堆压塌,反而会使支撑架上的泥土越积越多,可能造成整个支撑架被压塌的后果。
所以当遇到粘土地层时,在盾构机推进过程中,应使泥和水在泥土仓内尽可能地均匀混和,避免泥水混和不均;同时通过摄像仪观察螺旋输送机的出土情况,当发现有整团泥土在胶带上打滑,滞留在胶带上不能被胶带及时运走时,应减小螺旋输送机出土速度,或停止出土,以防止胶带上的泥土越积越多而形成大土堆,待滞留在胶带上的泥土被运走后,再继续出土。
总之,在遇到粘土地层时,只要操作人员谨慎地操作,注意观察,措施及时,就可避免形成大土堆。
1.泥土仓土压大幅度突降产生原因:这是由于泥土仓内空气和水的含量较多,泥土仓的土压主要是由空气压力组成的。
压力空气容易穿过泥水层进入螺旋输送机,从其出土闸门迅速地喷出,泥土仓内压力空气瞬时大量释放,造成泥土仓内土压大幅度突降;在较松软的地质中,泥土仓内压力空气有时会通过盾构机外壳的松软土层向盾尾方向移动,击穿尾盾密封向盾构机内部释放压力空气,也会造成泥土仓内土压大幅度突降。
处理方法:当遇此情况时,立即关闭螺旋输送机及其出土闸门,停止出土。
盾构机继续往前推进,使泥土仓土压尽快恢复至正常值,以保持开挖面土层的稳定,防止由于泥土仓压力的突降而引起地层发生变化,引起地表面出现较大幅度的沉降。
同时,在操作中应根据土质情况和刀盘扭矩的大小,减少注水量,调整泡沫系统中空气的比例,并减小泡沫量,降低泥土仓内水和空气的含量。
2.停止推进后泥土仓土压自动上升产生原因:盾构机停止往前推进后,泡沫系统已关闭,但由于泡沫系统某个进气阀故障,阀芯被卡住,进气阀仍处于开启状态,压力空气继续通过该进气阀进入泥土仓,导致在盾构机停止往前推进后泥土仓出现土压自动上升的现象。