初中数学竞赛辅导讲义
初中数学竞赛讲义(1)
![初中数学竞赛讲义(1)](https://img.taocdn.com/s3/m/019dd1cfa76e58fafbb00333.png)
初中数学竞赛讲义
1、证明:对于任意自然数k,存在无穷多个不含数码0的自然数t(十进制计数法),使得t与kt数码和相同。
2、设n是一个正整数,且d是十进制中的一个一位数,若
=0.d25d25d25…,求n
3、两位数
能整除十位数字为零的三位数。
求。
4、设n=99…9(100个9),则n3 的10进制表示中含有的数字9的个数为多少
5、求
…,1234567892的和的个位数的数字
6、求数1,2,3…,10n -2,10n -1的所有数码之和
7、求最小的自然数,当它的最后一个数码排列到第一位时,它的值增加到原来的五倍
8、已知a是一个1988位的自然数且可被9整除,a的各位数字相加和为b,b的各位数字相加和为c,c的各位数字相加和为d,求d
9、求适合等式
中的数码x,y,z
10、设x=0.1234567…999中的数字依次写下整数1到999而得到的,那么小数点右边第1983位数字是什么
11、设x与y是两个有两位数码的自然数,且x<y,乘积xy是一个有四位数码的自然数.首位数是2,如果把这个首位数2去掉,剩下的数正好是x+y,例如x=30,y=70.除此之外还有一组数具有如上性质,试求出这两个数
12、试求满足下列条件的六位整数
,。
这里a,b,c,d,e,f表示不同的数码,且a,e≠0
13、求满足
=(a+b+c)3的所有三位数。
14、已知某三位整数是5的倍数,其各位数字之和是20,个位数字与百位数字的和是3的倍数,求此整数。
15、求使nn有k个数字,kk有n个数字的所有自然数n,k
16、证明:如果n是正奇数,那么数22n(22n+1-1)在十进制中的最后两位数是28。
初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)
![初中数学(初二)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)](https://img.taocdn.com/s3/m/9c71f4122af90242a895e5bb.png)
初二数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,,则等于()A.2 B.1 C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.B.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则= .2.(1)计算:= .(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则= .(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3 B.2 C.1 D.(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1 B.0 C.—1 D.28.如果有两个因式和,则()A.7 B.8 C.15 D.21(奥赛培训试题)9.已知均为正数,又,,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1 B.2 C.3 D.411.设满足求的值.12.若为整数,且,,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值; (3)若为整数,且.试比较的大小.(四川省竞赛试题)专题01 整式的乘除例1(1)(n 2)100>(63)100,n 2>216,n 的最小值为15.(2)原式=x 2(x 2+x )+x (x 2 +x )-2(x 2+x ) +2005= x 2+x -2+2005=2004 (3)令x =1时,a 12+a 11+a 10+…+a 2+a 1+a 0=1, ① 令x =-1时,a 12 –a 11+a l 0-…+n 2-a l +a 0 =729 ② 由①+②得:2(a 12+a l 0+a 8+…+a 2 +a 0)=730. ∴a 12 +a 10 +a 8 +a 6+a 4 +a 2+a 0 =365.(4)所有式子的值为x 3项的系数,故其值为7.例2 B 提示:25xy =2 000y, ①80x y=2 000x , ② ①×②,得:(25×80)x y =2000x +y,得:x + y =xy .例3 设a =m 4,b =m 5,c =n 2,d =n 3,由c -a =19得,n 2-m 4=19,即(n +m 2) (n -m 2)=19,因19是质数,n +m 2,n -m 2是自然数,且n +m 2>n -m 2,得=12=19,解得n =10,m =3,所以d -b =103-35=757例4 -87 提示:由题意知:2x 2+3xy -2y 2-x +8y -6=2x 2+3x y -2y 2+(2m +n )x +(2n -m )y +m n .∴mn =-62n -m =8,解得n =3m =-2,∴-13+1=-87倒5提示:假设存在满足题设条件的p ,q 值,设(x 4+p x 2+q )=(x 2+2x +5)(x 2+mx +n ),即x 4+p x 2+q =x 4+(m +2)x 3+(5+n +2m )x 2+(2n +5m )x +5n ,得5n =q 2n +5m =0,解得q =25p =6, 故存在常数p ,q 且p =6,q =25,使得x 4+p x 2+q 能被x 2+2x +5整除.例6解法1 ∵x 2+x -2=(x +2) (x -1),∴2x 4-3x 3+ax 2+7x +b 能被(x +2)(x -1)整除,设商是A .则2x 4-3x 3+a x 2+7x +b =A (x +2)(x -l ),则x =-2和x =1时,右边都等于0,所以左边也等于0.当x =-2时,2x 4-3x 3+a x 2+7x +b =32+24+4a -14+b =4a +b +42=0, ①当x =1时, 2x 4-3x 3+a x 2+7x +b =2-3+a +7+b =a +b +6=0. ② ①-②,得3a +36=0,∴ a =-12, ∴ b =-6-a =6. ∴b a =6-12=-2解法2 列竖式演算,根据整除的意义解∵2x 4-3x 3+a x 2+7x +b 能被x 2+x -2整除,∴=0-12-a =0,即b =6a =-12,∴b a =-2A 级1.(1) -5 (2)53 2.8 3.7 4.6 5.7 9 6.A 7.D 提示:a =(25)11,b -(34)11,c =(53)11,d =(62)11 8.A 9.B 10.C 11.4800 12.a =4.b =4,c =113. 提示:令x 3 +k x 2+3=(x +3) (x 2+a x +6)+r 1,x 3+kx 2+3=( x +1) (x 2+cx +d )+r 2,令x =-3,得r 1=9k -24.令x =-1,得r 2=k +2,由9k -24+2=k +2, 得k =3.B 级1. 1251892. (1)499 提示:原式=19987×20002000=19987×20003=499(2)123.(1) < 1516 <1615=264,3 313 >3213=265 >264.(2) > 提示:设32 000=x .4.4 5.512 提示:令x =±2. 6.C 提示:由条件得a =c -3 ,b =c 2 ,abc =c -3·c 2·c =1 7.C 8.D9.C 提示:设a 2+a 3+…a 1996=x ,则M =(a 1+x )(x +a 1997)=a 1x +x 2+a 1a 1997+a 1 997x .N =(a 1+x +a 1 997)x =a l x +x 2+a 1997x .M =N =a 1a 1997>0. 10.D11.由a x2+by2=7,得(ax2+b y2)(x+y)=7(x+y),即ax3-a x2y+b x y2+by3=7(x+y),(a x3+by3)-xy(ax+by)-7(x+y).∴16+3xy= 7(x+y).①由a x3+by3=16,得(ax3+by3)(x+y) =16(x+y),即ax4 +a x3 y+b x y3+by4 =16(x+y),(a x4+by4)+xy(a+b)=16(x+y).∴42+7xy=16(x+y).②由①②可得,x+y=-14,xy=-38.由a+b=42,得(a+b)(x+y)=42×(-14),(a+b)+xy(a+b)=-588,+16×(-38)=-588.故=20.12.两边同乘以8得+++=165.∵x>y>z>w且为整数,∴x+3>y+3>z+3>w+3,且为整数.∵165是奇数,∴w+3=0,∴w=-3.∴++=164.∴++=41,∴z+1=0,∴z=-1.∴+=40.两边都除以8得:+=5.∴y-2=0,∴y=2.∴=4.∴x-2=2,∴x=4.∴==1.13.(1)∵(x-1)(x+4)=+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a,b,c为整数,∴1<a≤,则a=2,c=4.又a+b+c=-1,∴b=-7,.∴c>a>b.专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;3.逆用即将公式反过来逆向使用;4.变用即能将公式变换形式使用;5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.(全国初中数字联赛试题)解题思路:因,而的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知满足等式,则的大小关系是( ) 14.B.C.D.(山西省太原市竞赛试题)(2)已知满足,则的值等于()A.2 B.3 C.4 D.5(河北省竞赛试题)解题思路:对于(1),作差比较的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1);(天津市竞赛试题)(2);(“希望杯”邀请赛试题)(3).解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设,求的值.(西安市竞赛试题)解题思路:由常用公式不能直接求出的结构,必须把表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设满足求:(1)的值;(2)的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A级1.已知是一个多项式的平方,则.(广东省中考试题)2.数能被30以内的两位偶数整除的是.3.已知那么.(天津市竞赛试题)4.若则.5.已知满足则的值为.(河北省竞赛试题)6.若满足则等于.7.等于()A.B.C.D.8.若,则的值是()A.正数B.负数C.非负数D.可正可负9.若则的值是()A.4 B.19922 C.21992 D.41992(“希望杯”邀请赛试题)10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?(“CASIO”杯全国初中数学竞赛试题)11.设,证明:是37的倍数.(“希望杯”邀请赛试题)12.观察下面各式的规律:写出第2003行和第行的式子,并证明你的结论.B级1.展开式中的系数,当1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出的值为.(《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,则的值为.(天津市竞赛试题)3.已知满足等式则.4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为.(全国初中数学联赛试题)5.已知,则多项式的值为()A.0 B.1 C.2 D.36.把2009表示成两个整数的平方差的形式,则不同的表示法有()A.16种B.14种C.12种D.10种(北京市竞赛试题)7.若正整数满足,则这样的正整数对的个数是()A.1 B.2 C.3 D.4(山东省竞赛试题)8.已知,则的值是()A.3 B.9 C.27 D.81(“希望杯”邀请赛试题)9.满足等式的整数对是否存在?若存在,求出的值;若不存在,说明理由.10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.(天津市竞赛试题)11.若,且,求证:.12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?(浙江省中考试题)专题02 乘法公式例1 73 提示:满足条件的整数是奇数或是4的倍数.例2 (1)B x-y=(+4a+a)+(-8b+16)=+≥0,x≥y.(2)B 3个等式相加得:++=0,a=3,b=-1,c=1.a+b +c=3-1+1=3.例3 (1)(2)4 (3)-5050例4 提示:由a+b=1,+=2得ab=-,利用+=(+)(a+b)-ab(+)可分别求得+=,+=,+=,+=,+=.例5 (1)设n为自然数,则n(n+1)(n+2)(n+3)+1=(2)由①得,2000×2001×2002×2003+1=.例6(1)设-②,得ab+b c+a c=,∵-3ab c=(a+b+c)(-ab-b c-a c),∴ab c=()-(a+b+c)(-ab-b c-a c)=×3-×1×(2+)=.(2)将②式两边平方,得∴=4-2=4-2=.A级1.0或6 2.26,28 3.2 4.40 5.34 6.0 7.D 8.A 9.C10.原有136或904名学生.设m,n均为正整数,且m>n,①-②得(m+n)(m-n)=240=.,都是8的倍数,则m,n能被4整除,m+n,m-n均能被4整除.得或,∴或8x=-120=904或8x=-120=136.11.因为a=+-2=(-1)+(-1)=999 999 999+37×(+38+1),而999 999 999=9×111 111 111=9×3×37 037 037=27×37×1 001 001=37×(27×1 001 001).所以37|999 999 999,且37|37×(+38+1),因此a是37的倍数.12.第2003行式子为:=.第n行式子为:=.证明略B级1.1.0942.76 提示:由13+a=9+b=3+c得a-b=-4,b-c=-6,c-a=103.13 4.156 5.D6.C 提示:(x+y)(x-y)=2009=7×7×41有6个正因数,分别是1,7,41,49,287和2009,因此对应的方程组为:故(x,y)共有12组不同的表示.7.B 8.C9.提示:不存在符合条件的整数对(m,n),因为1954不能被4整除.10.设所求两位数为,由已知得=(k为整数),得而得或解得或,即所求两位数为65,5611. 设, 则由得③②③, 得, 即或分别与联立解得或12. (1), 故28和2012都是神秘数(2)为4的倍数(3)神秘数是4的倍数,但一定不是8的倍数. ,故两个连续奇数的平方差不是神秘数专题3 和差化积----因式分解的方法(1)阅读与思考提公因式、公式法、十字相乘法、分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法,有公因式的先提公因式,分解必须进行到每一个因式都不能再分解为止.一些复杂的因式分解问题经常用到以下重要方法:1.换元法:对一些数、式结构比较复杂的多项式,可把多项式中的某些部分看成一个整体,用一个新字母代替,从而可达到化繁为简的目的.从换元的形式看,换元时有常值代换、式的代换;从引元的个数看,换元时有一元代换、二元代换等.2.拆、添项法:拆项即把代数式中的某项拆成两项的和或差,添项即把代数式添上两个符号相反的项,因式分解中进行拆项与添项的目的是相同的,即经过拆项或添项后,多项式能恰当分组,从而可以运用分组分解法分解.例题与求解【例l】分解因式___________.(浙江省中考题)解题思路:把看成一个整体,用一个新字母代换,从而简化式子的结构.【例2】观察下列因式分解的过程:(1);原式=;(2).原式=.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式:(1);(西宁市中考试题)(2).(临沂市中考试题)解题思路:通过分组,使每一组分组因式后,整体能再分解,恰当分组是关键,经历“实验--失败--再试验--再失败--直至成功”的过程.【例3】分解因式(1);(重庆市竞赛题)(2);(“缙云杯”邀请赛试题)(3).(“五羊杯”竞赛试题)解题思路:(1)式中系数较大,直接分解有困难,不妨把数字用字母来表示;(2)式中、反复出现,可用两个新字母代替,突出式子的特点;(3)式中前两项与后一项有密切联系.【例4】把多项式因式分解后,正确的结果是().A. B.C. D.(“希望杯”邀请赛试题)解题思路:直接分组分解困难,可考虑先将常数项拆成几个数的代数和,比如-3=-4+1.【例5】分解因式:(1);(扬州市竞赛题)(2);(请给出多种解法)(“祖冲之杯”邀请赛试题)(3).解题思路:按次数添上相应的项或按系数拆项法分解因式的基本策略.【例6】分解因式:.(河南省竞赛试题)解题思路:拆哪一项?怎样拆?可有不同的解法.能力训练A 级1.分解因式:(1)=___________________________.(泰安市中考试题)(2)=__________________________.(威海市中考试题)2.分解因式:(1)=_________________________;(2)=_____________________________.3.分解因式:=____________________________.4.多项式与多项式的公因式是____________________.5.在1~100之间若存在整数,使能分解为两个整系数一次式的乘积,这样的有_______个.6.将多项式分解因式的积,结果是().A. B.C. D.7.下列各式分解因式后,可表示为一次因式乘积的是().A. B.C. D.(“希望杯”邀请赛试题)8.把分解因式,其中一个因式是().A. B. C. D.9.多项式有因式().A. B.C. D.(“五羊杯”竞赛试题)10.已知二次三项式可分解成两个整系数的一次因式的积,那么().A.一定是奇数 B.一定是偶数C.可为奇数也可为偶数 D.一定是负数11.分解因式:(1);(2);(3);(“祖冲之杯”邀请赛试题)(4);(重庆市竞赛试题)(5);(6).12.先化简,在求值:,其中,.B 级1.分解因式:=_______________.(重庆市竞赛试题)2.分解因式:=_____________.(“五羊杯”竞赛试题)3.分解因式:=_________________________.(“希望杯”邀请赛试题)4.分解因式:=______________________.(“五羊杯”竞赛试题)5.将因式分解得().A. B.C. D.(陕西省竞赛试题)6.已知是△ABC三边的长,且满足,则此三角形是().A.等腰三角形B.等边三角形C.直角三角形D.不能确定7.的因式是().A. B. C. D. E.(美国犹他州竞赛试题)8.分解因式:(1);(湖北省黄冈市竞赛试题)(2);(江苏省竞赛试题)(3);(陕西省中考试题)(4);(“祖冲之杯”邀请赛试题)(5);(“五羊杯”竞赛试题)(6).(太原市竞赛试题)9.已知乘法公式:利用或者不利用上述公式,分解因式:.(“祖冲之杯”邀请赛试题)10.分解因式:(1);(2);(3).11.对方程,求出至少一组正整数解.(莫斯科市竞赛试题)12.已知在△ABC中,,求证:.(天津市竞赛试题)专题03 和差化积-------因式分解的方法(1)例1.例2. (1) 原式(2) 原式例3.(1)(2)(3)例4. D例5.(1)提示: 原式(2) 提示: 原式(3) 提示: 原式例6. 解法1原式解法2 原式A级1. (1)(2)2. (1)(2)3.4.5. 96. D7. A8. D9. A10. A11. (1)提示: 令(2)(3) \(4) 提示: 原式(5) 提示: 原式(6)12. 原式当原式B 组1. (1)(2)3.5. D6. B7. A 提示: 原式8. (1)(2) 提示: 令(3)(4) 提示: 原式(5)(6)9. 由公式有10. (1)(2)(3)11. 有或解得或12.是三角形三边长,由条件只有,故专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l】因式分解后的结果是(). A. B.C. D.(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1);(“希望杯”邀请赛试题)(2).(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式.(“希望杯”邀请赛试题)解题思路:因的最高次数低于的最高次数,故将原式整理成字母的二次三项式.【例4】为何值时,多项式有一个因式是(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是,因此二次三项式的一般形式为,求出即可.【例6】如果多项式能分解成两个一次因式,的乘积(为整数),则的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于的方程组,通过消元、分解因式解不定方程,求出的值.能力训练A 级1.分解因式:=___________________________.(“希望杯”邀请赛试题)2.分解因式:=_______________________(河南省竞赛试题)3.分解因式:=____________________________.(重庆市竞赛试题)4.多项式的最小值为____________________.(江苏省竞赛试题)5.把多项式分解因式的结果是()A. B.C. D.6.已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数是().A.3 个B.4 个C.5 个D.6个7.若被除后余3,则的值为().A.2 B.4 C.9 D.10(“CASIO杯”选拔赛试题)8.若,,则的值是().A. B. C. D.0(大连市“育英杯”竞赛试题)9.分解因式:(1);(吉林省竞赛试题)(2);(昆明市竞赛试题)(3);(天津市竞赛试题)(4);(四川省联赛试题)(5)(天津市竞赛试题)10.如果能够分割成两个多项式和的乘积(为整数),那么应为多少?(兰州市竞赛试题)15.已知代数式能分解为关于的一次式乘积,求的值.(浙江省竞赛试题)B 级1.若有一个因式是,则=_______________.(“希望杯”邀请赛试题)2.设可分解为一次与二次因式的乘积,则=_____________.(“五羊杯”竞赛试题)3.已知是的一个因式,则=________________________.(“祖冲之杯”邀请赛试题)4.多项式的一个因式是,则的值为__________.(北京市竞赛试题)5.若有两个因式和,则=().A.8 B.7 C.15 D.21 E.22(美国犹他州竞赛试题)6.多项式的最小值为().A.4 B.5 C.16 D.25(“五羊杯”竞赛试题)7.若(为实数),则M的值一定是().A.正数B.负数C.零D.整数(“CASIO杯”全国初中数学竞赛试题)8.设满足,则=()A.(2,2)或(-2,-2)B.(2,2)或(2,-2)C.(2,-2)或(-2,2)D.(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.为何值时,多项式能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:.(北京市竞赛试题)11.已知整数,使等式对任意的均成立,求的值.(山东省竞赛试题)12.证明:对任何整数,下列的值都不会等于33.(莫斯科市奥林匹克试题)专题04 和差化积-------因式分解的方法(2)例1. A 提示: 将原式重新整理成关于的二次三项式例2. (1) 提示: 原式(2) 提示: 原式例3. 原式例 4. 提示: 可设原式展开比较对应项系数得解得k=12.例5原式=.例6设x2-(a+5)x+5a-1=(x+b)(x+c)=x2+(b+c)x+bc.∴①×5+2得bc+5(b+c)=-26,bc+5(b+c)+25=-1,(b+5)(c+5)=-1.∴或∴或故a=5.A级1.(3a+2b-c)(3a-2b+c)2.(x+3y)(x+2y+1)3.(x+y+1)(x-y+3)4.-185.C6.D7.D8.D9.(1)(2a+b)(a-b+c);(2)(a+c-2b)2;(3)(x-2)(x2-x+a);(4)(x-2y+3)(2x-3y-4);(5)(x+1)(y+1)(x-1)(y-1).10.提示:由题意得①×4+②,得(b+4)(c+4)=-1,推得或故a=4.11.∵x2-3xy-4y=(x+y)(x- 4y),∴可设原式=(x+y+m)(x-4y+n),展开比较对应项系数得b=-6或9.B级1.k=-52.-2提示:原式=x(x2+3x-k)-2y(x+2),令x=-2.3.5提示:令原式=(x-y+4)·A,取一组x,y的值代入上式.4.-35.C提示:x=-1,x=-2是方程x3+ax2+bx+8=0的解.6.C提示:原式=(x-2y)2+(2x+3)2+167.A提示:原式=2(x-2y)2+(x-2)2+(y+3)2≥0,且这三个数不能同时为零,M >0.8.C9.k=-3 提示:因x2+3x+2=(x+1)(x+2),故可令原式=(x+my+1)·(x十ny+2),展开比较对应项系数求出k.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开x2+(a+b+c)x+ab-l0c=x2-10x-11.∴①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴或或或∴或或或代入①得c=0或20.12.原式=(x5+3x4y)-(5x3y+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y2)=(x+3y)(x2-4y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5≠33;当y≠0时,x+3y,x-y,x-2y,x+2y,x+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当x取任意整数,y取不为0的任意整数,原式≠33.专题05 和差化积——因式分解的应用阅读与思考:因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算;2.代数式的化简与求值;3.简单的不定方程(组);4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果:1. ;2. ;3. ;4.;5. .例题与求解【例1】已知,,那么的值为___________ .(全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a,b之间的关系,代入关系求值.【例2】a,b,c是正整数,a>b,且,则等于( ).A. -1 B.-1或-7 C.1 D.1或7(江苏省竞赛试题)解题思路:运用因式分解,从变形条件等式入手,在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式称代数式的恒等变形,它是研究代数式、方程和函数的重要工具,换元、待定系数、配方、因式分解又是恒等变形的有力工具.求代数式的值的基本方法有;(1)代入字母的值求值;(2)代入字母间的关系求值;(3)整体代入求值.【例3】计算:(1) (“希望杯”邀请赛试题)(2)(江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨用字母表示数,通过对分子、分母分解因式来探求解题思路;对于(2),可以先研究的规律.【例4】求下列方程的整数解.(1); (上海市竞赛试题)(2). (四川省竞赛试题)解题思路:不定方程、方程组没有固定的解法,需具体问题具体分析,观察方程、方程组的特点,利用整数解这个特殊条件,从分解因式入手.解不定方程的常用方法有:(1)穷举法; (2)配方法; (3)分解法; (4)分离参数法.用这些方程解题时,都要灵活地运用质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知,,求下列各式的值:(1) ; (2) ; (3).解题思路:先分解因式再代入求值.【例6】一个自然数恰等于另一个自然数的立方,则称自然数为完全立方数,如27=33,27就是一个完全立方数.若=19951993×199519953-19951994×199519923,求证:是一个完全立方数.(北京市竞赛试题)解题思路:用字母表示数,将分解为完全立方式的形式即可.能力训练A 级1. 如图,有三种卡片,其中边长为的正方形卡片1张,边长分别为,的长方形卡片6张,边长为的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为 ________.(烟台市初中考试题)2.已知,则的值为__________.(江苏省竞赛试题)3.方程的整数解是__________.(“希望杯”邀请赛试题)4. 如果是完全平方式,那么的值为__________.(海南省竞赛试题)5. 已知(),则的值是( ).A.2, B.2 C. D.6.当,的值为( ).A. -1 B.0 C.2 D.17.已知,,则M与N的大小关系是( ).A. M<N B.M>N C.M=N D.不能确定(“希望杯”邀请赛试题)8.为某一自然数,代入代数式中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是( ).A. 388944B.388945C.388954D.388948(五城市联赛试题)9.计算:(1) (北京市竞赛试题)(2) (安徽省竞赛试题)10. 一个自然数恰好等于另一个自然数的平方,则称自然数为完全平方数,如64=82,64就是一个完全平方数,若=19982+19982×19992+19992,求证:是一个完全平方数.(北京市竞赛试题)16.已知四个实数,,,,且,,若四个关系式,,,同时成立.(1)求的值;(2)分别求,,,的值.(湖州市竞赛试题)B 级1.已知是正整数,且是质数,那么____________ .(“希望杯”邀请赛试题)2.已知三个质数的乘积等于这三个质数的和的5倍,则=________ .(“希望杯”邀请赛试题)3.已知正数,,满足,则=_________ . (北京市竞赛试题)4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取=9,=9时,则各个因式的值是:,于是就可以把“0181 62”作为一个六位数的密码,对于多项式,取=10,=10时,用上述方法产生的密码是:__________.(写出一个即可).(浙江省中考试题)5.已知,,是一个三角形的三边,则的值( ).A.恒正 B.恒负 C.可正可负 D.非负(太原市竞赛试题)6.若是自然数,设,则( ).A. 一定是完全平方数 B.存在有限个,使是完全平方数C. 一定不是完全平方数 D.存在无限多个,使是完全平方数7.方程的正整数解有( )组.A.3 B.2 C.1 D.0(“五羊杯”竞赛试题)8.方程的整数解有( )组.A.2 B.4 C.6 D.8(”希望杯”邀请赛试题)9.设N=695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N的因数?(美国中学生数学竞赛试题)10.当我们看到下面这个数学算式时,大概会觉得算题的人用错了运算法则吧,因为我们知道.但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:,,,,…你能发现以上等式的规律吗?11.按下面规则扩充新数:已有,两数,可按规则扩充一个新数,而以,,三个数中任取两数,按规则又可扩充一个新数,…每扩充一个新数叫做一次操作. 现有数1和4,求:(1) 按上述规则操作三次得到扩充的最大新数;(2) 能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设,,为正整数.被整除所得的商分别为,.(1)若,互质,证明与互质;(2)当,互质时.求的值;( 3)若,的最大公约数为5,求的值.(江苏省竞赛试题)。
初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
![初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)](https://img.taocdn.com/s3/m/db099e430508763230121249.png)
【例5】已知实数 、 、 、 互不相等,且 ,试求 的值.思路点拨:运用连等式,通过迭代把 、 、 用 的代数式表示,由解方程求得 的值.
注:一元二次方程常见的变形形式有:
(1)把方程 ( )直接作零值多项式代换;
(2)把方程 ( )变形为 ,代换后降次;
11、已知 、 是有理数,方程 有一个根是 ,则 的值为.
12、已知 是方程 的一个正根.则代数式 的值为.
13、对于方程 ,如果方程实根的个数恰为3个,则m值等于()
A、1B、2 C、 D、2.5
14、自然数 满足 ,这样的 的个数是()
A、2 B、1 C、3 D、4
15、已知 、 都是负实数,且 ,那么 的值是()
20、如图,锐角△ABC中,PQRS是△ABC的内接矩形,且S△ABC= S矩形PQRS,其中 为不小于3的自然数.求证: 需为无理数.
参考答案
第二讲 判别式——二次方程根的检测器
为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等.我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:
利用判别式,判定方程实根的个数、根的特性;
运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;
通过判别式,证明与方程相关的代数问题;
借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题.
【例题求解】
【例1】 已知关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是.(广西中考题)
初二数学竞赛辅导资料(共12讲)讲义
![初二数学竞赛辅导资料(共12讲)讲义](https://img.taocdn.com/s3/m/aaeb10f0aeaad1f346933f53.png)
目录本内容适合八年级学生竞赛拔高使用。
重点落实在奥赛方面的基础知识和基本技能培训和提高。
本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。
另外,在本次培训中,内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容。
其中《因式分解》为初二下册内容,但是考虑到它的重要性和工具性,将在本次培训进行具体解读。
注:有(*)标注的为选做内容。
本次培训具体计划如下,以供参考:第一讲实数(一)第二讲实数(二)第三讲平面直角坐标系、函数第四讲一次函数(一)第五讲一次函数(二)第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷(未装订在内,另发)第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试(未装订在内,另发)第十四讲试卷讲评第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数 1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b ③对任意实数a ,则|a |≥a , |a |≥-a ④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b |(2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0(3)算术平方根是非负数,即a ≥0,其中a ≥0.算术平方根的性质:()a a =2(a ≥0)||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数 (2)若干个非负数的和等于零,则每个加数都为零 (3)若非负数不大于零,则此非负数必为零 3的式子,被开方数必须为非负数; 4a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。
初一数学竞赛辅导讲义
![初一数学竞赛辅导讲义](https://img.taocdn.com/s3/m/5a222e622f60ddccda38a0b0.png)
初一数学竞赛辅导讲义一次方程(组)与二元一次不定方程本讲就解一次方程(组)与二元一次不定方程的基本方法和技巧作些简单介绍。
一、一次方程(组)解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,两边同除以未知数的系数。
任何一个一元一次方程最终都可以化为ax b =的形式。
解方程的根据是方程的同解原理。
如果两个方程的解相同,那么这两个方程叫同解方程。
1. 方程两边都加上(减去)同一个数(或同一个整式),所得的方程与原方程是同解方程。
2. 方程两边都乘以(除以)同一个不等于0的数,所得的方程与原方程是同解方程。
例1.解下列个方程(1)()()()()11323327322337x x x x ---=---(2)()14335190.50.125x x x +++=+ (3)3421424904532x ⎧⎫⎡⎤⎛⎫--+-=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭例2.是否存在这样的a 值,使当1b =时,关于x 的方程()()322387a x b x x -+-=-有无数多个解?例3.关于x 的方程1x ax =+同时有一个正数解和一个负数解,求a 的值。
例4.关于x 、y 的两个方程组2227ax by x y -=⎧⎨-=⎩和359311ax by x y -=⎧⎨-=⎩具有相同的解,求a 、b 的值。
例5.已知()()()()()()22219992000200101999200020012000x y y z x z x y y z z x -+---=⎧⎪⎨-+-+-=⎪⎩求z y -的值。
二、二元一次不定方程如果一个方程(组)中,未知数的个数多于方程的个数,则把这种方程(组)叫做不定方程(组)。
例如,二元一次方程3215x y +=是不定方程;三元一次方程组11426x y z x y z ++=⎧⎨+-=⎩是不定方程。
不定方程(组)的解是不确定的。
一般不定方程总有无数穷多个(组)解,但若加上整数(或正整数)解的限制,则不定方程(组)的解三种都有可能:有无穷组解,或有限组解,或无解。
初中一年级,数学竞赛辅导讲义
![初中一年级,数学竞赛辅导讲义](https://img.taocdn.com/s3/m/0308cd3676c66137ef061931.png)
初中,一年级,数学,竞赛,辅导,讲义,初中,初中一年级(上)数学竞赛辅导资料(1)数的整除(一)甲内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除。
0能被所有非零的整数整除.一些数的整除特征除数能被整除的数的特征2或5末位数能被2或5整除4或25末两位数能被4或25整除8或125末三位数能被8或125整除3或9各位上的数字和被3或9整除(如771,54324)11奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除.如1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)乙例题例1已知两个三位数和的和仍是三位数且能被9整除.求x,y.解:x,y都是0到9的整数,∵能被9整除,∴y=6.∵328+=567,∴x=3例2己知五位数能被12整除,求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8当末两位能被4整除时,X=0,4,8∴X=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.丙练习1. 分解质因数:(写成质因数为底的幂的連乘积)①593②1859 ③1287④3276⑤10101⑥102962. 若四位数能被3整除,那么a=_______________.3. 若五位数能被11整除,那么X=__________.4. 当m=_________时,能被25整除.5. 当 n=__________时,能被7整除.6. 能被11整除的最小五位数是________,最大五位数是_________.7. 能被4整除的最大四位数是____________,能被8整除的最小四位数是_________.8. 8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9. 从1到100这100个自然数中,能同时被2和3整除的共_____个.10. 能被3整除但不是5的倍数的共______个.11. 由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?12. 己知五位数能被15整除,试求A的值.13. 求能被9整除且各位数字都不相同的最小五位数.14. 在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)初中一年级(上)数学竞赛辅导资料(2)倍数约数甲内容提要1两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数.例如3|15,15是3的倍数,3是15的约数.2因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6公约数只有1的两个正整数叫做互质数(例如15与28互质).7在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2 则23-2能被3整除.乙例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下正整数正约数个数计正整数正约数个数计正整数正约数个数计21,2231,322×31,2,3,64221,2,4 3321,3,32 322×31,2,3,4,6,126231,2,4,84331,3,32,33422×321,2,3,4,6,9,12,18,36 9241,2,4,8,165341,3,32,33,345其规律是:设A=ambn (a,b是质数,m,n是正整数)那么合数A的正约数的个是(m+1)(n+1)例如求360的正约数的个数解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个)例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6最小公倍数是23×32×5=360,记作[24,90]=360例3己知32,44除以正整数N有相同的余数2,求N解:∵32-2,44-2都能被N整除,∴N是30,42的公约数∵(30,42)=6,而6的正约数有1,2,3,6经检验1和2不合题意,∴N=6,3例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359丙练习21. 12的正约数有_________,16的所有约数是_________________.2. 分解质因数300=_________,300的正约数的个数是_________.3. 用分解质因数的方法求20和250的最大公约数与最小公倍数.4. 一个三位数能被7,9,11整除,这个三位数是_________.5. 能同时被3,5,11整除的最小四位数是_______最大三位数是________.6. 己知14和23各除以正整数A有相同的余数2,则A=________.7. 写出能被2整除,且有约数5,又是3的倍数的所有两位数.答_____________.8. 一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9. 一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?初中一年级(上)数学竞赛辅导资料(3)质数合数甲内容提要1 正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2 根椐质数定义可知1 质数只有1和本身两个正约数,2 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.乙例题例1两个质数的和等于奇数a (a≥5).求这两个数解:∵两个质数的和等于奇数∴必有一个是2所求的两个质数是2和a-2.例2己知两个整数的积等于质数m,求这两个数解:∵质数m只含两个正约数1和m,又∵(-1)(-m)=m∴所求的两个整数是1和m或者-1和-m.例3己知三个质数a,b,c它们的积等于30求适合条件的a,b,c的值解:分解质因数:30=2×3×5适合条件的值共有:应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d它们的积等于210,即abcd=2×3×5×7那么适合条件的a,b,c,d值共有24组,试把它写出来.例4试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N是不大于5的所有质数的积,即N=2×3×5那么N+2,N+3,N+4,N+5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数.丙练习31. 小于100的质数共___个,它们是__________________________________.2. 己知质数P与奇数Q的和是11,则P=__,Q=__.3. 己知两个素数的差是41,那么它们分别是_____.4. 如果两个自然数的积等于19,那么这两个数是___.如果两个整数的积等于73,那么它们是____.如果两个质数的积等于15,则它们是_____.5. 两个质数x和y,己知xy=91,那么x=__,y=__,或x=__,y=__.6. 三个质数a,b,c它们的积等于1990.那么7. 能整除311+513的最小质数是__.8. 8,己知两个质数A和B适合等式A+B=99,AB=M.求M及+的值.9. 试写出6个連续正整数,使它们个个都是合数.10. 具备什么条件的最简正分数可化为有限小数?11. 求适合下列三个条件的最小整数:①大于1 ②没有小于10的质因数③不是质数12. 某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是___.13. 一个质数加上10或减去14都仍是质数,这个质数是__.。
数学七年级竞赛入门辅导讲义_共十讲_很实用 2
![数学七年级竞赛入门辅导讲义_共十讲_很实用 2](https://img.taocdn.com/s3/m/f599c30b0740be1e650e9aa7.png)
第一讲 数的整除一、内容提要:如果整数A 除以整数B (B ≠0)所得的商A /B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征 除 数能被整除的数的特征 2或5末位数能被2或5整除 4或25末两位数能被4或25整除 8或125末三位数能被8或125整除 3或9各位上的数字和被3或9整除(如771,54324) 11 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1 已知两个三位数328和92x 的和仍是三位数75y 且能被9整除.求x ,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y =6.∵328+92x =567,∴x =3.1234能被12整除,求x.例2 己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8.当末两位4x能被4整除时,x=0,4,8.∴x=8.例3 求能被11整除且各位字都不相同的最小五位数.解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.三、练习1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296.987能被3整除,那么a=_______________.2若四位数ax能被11整除,那么x=__________.3若五位数123435m能被25整除.4当m=_________时,59610能被7整除.5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________.7能被4整除的最大四位数是_____,能被8整除的最小四位数是______.88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个.10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?1234能被15整除,试求A的值.11己知五位数A12求能被9整除且各位数字都不相同的最小五位数.第二讲倍数约数一、内容提要1.两个整数A和B(B≠0),如果B能整除A(记作B/A),那么A叫做B 的倍数,B叫做A的约数.例如3/15,15是3的倍数,3是15的约数.2.因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3.整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4.整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5.通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6.公约数只有1的两个正整数叫做互质数(例如15与28互质).7.在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除.二、例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下:正整数正约数个数计正整数正约数个数计正整数正约数个数计2 1,2 2 31,3 2 2×3 1,2,3,6422 1,2,4 3 32 1,3,32 3 22×3 1,2,3,4,6,12623 1,2,4,84 331,3,32,334 22×321,2,3,4,6,9,12,18,36924 1,2,4,8,165 341,3,32,33,345其规律是:设A=a m b n(a,b是质数,m,n是正整数) 那么合数A的正约数的个是(m+1)(n+1)例如:求360的正约数的个数.解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个).例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6.最小公倍数是23×32×5=360,记作[24,90]=360.例3己知32,44除以正整数N有相同的余数2,求N.解:∵32-2,44-2都能被N整除,∴N是30,42的公约数.∵(30,42)=6,而6的正约数有1,2,3,6.经检验1和2不合题意,∴N=6,3.例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359.三、练习1.12的正约数有_________,16的所有约数是_________________2.分解质因数300=_________,300的正约数的个数是_________3.用分解质因数的方法求20和250的最大公约数与最小公倍数.4.一个三位数能被7,9,11整除,这个三位数是_________5.能同时被3,5,11整除的最小四位数是_______最大三位数是________ 6.己知14和23各除以正整数A有相同的余数2,则A=________7.写出能被2整除,且有约数5,又是3的倍数的所有两位数.答____8.一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9.一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?第三讲 质数 合数一、内容提要1.正整数的一种分类:1⎧⎪⎨⎪⎩质数合数质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2. 根椐质数定义可知① 质数只有1和本身两个正约数,② 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3.任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.二、例题例1 两个质数的和等于奇数a (a ≥5).求这两个数.解:∵两个质数的和等于奇数, ∴必有一个是2,所求的两个质数是2和a -2.例2 己知两个整数的积等于质数m , 求这两个数.解:∵质数m 只含两个正约数1和m ,又∵(-1)(-m )=m ,∴所求的两个整数是1和m 或者-1和-m .例3 己知三个质数a ,b ,c 它们的积等于30,求适合条件的a ,b ,c 的值.解:分解质因数:30=2×3×5.适合条件的值共有: ⎪⎩⎪⎨⎧===532c b a ⎪⎩⎪⎨⎧===352c b a ⎪⎩⎪⎨⎧===523c b a ⎪⎩⎪⎨⎧===253c b a ⎪⎩⎪⎨⎧===325c b a ⎪⎩⎪⎨⎧===235c b a .应注意上述六组值的书写排列顺序,本题如果改为4个质数a ,b ,c ,d 它们的积等于210,即abcd =2×3×5×7那么适合条件的a ,b ,c ,d 值共有24组,试把它写出来.例4 试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N 是不大于5的所有质数的积,即N =2×3×5那么N +2,N +3,N +4,N +5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N 等于不大于n +1的所有质数的积,那么N +2,N +3,N +4,……N +(n +1)就是所求的合数.三、练习1.小于100的质数共 个,它们是 .2.己知质数P 与奇数Q 的和是11,则P = ,Q = .3.己知两个素数的差是41,那么它们分别是 .4.如果两个自然数的积等于19,那么这两个数是 .如果两个整数的积等于73,那么它们是 .如果两个质数的积等于15,则它们是 .5.两个质数x 和y ,己知xy=91,那么x = ,y = ,或x = ,y= .6. 三个质数a ,b ,c 它们的积等于1990.那么 _______________a b c =⎧⎪=⎨⎪=⎩7.能整除311+513的最小质数是 .8.己知两个质数A 和B 适合等式A +B =99,AB =M .求M 及B A +AB 的值. 9.试写出6个連续正整数,使它们个个都是合数.10.具备什么条件的最简正分数可化为有限小数?11.求适合下列三个条件的最小整数:① 大于1 ②没有小于10的质因数 ③不是质数.12.某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是 .13.一个质数加上10或减去14都仍是质数,这个质数是 .第四讲零的特性一、内容提要(一)、零既不是正数也不是负数,是介于正数和负数之间的唯一中性数.零是自然数,是整数,是偶数.1.零是表示具有相反意义的量的基准数.例如:海拔0米的地方表示它与基准的海平面一样高收支平衡可记作结存0元.2.零是判定正、负数的界限.若a>0则a是正数,反过来也成立,若a是正数,则a>0记作a>0 ⇔a是正数读作a>0等价于a是正数b<0 ⇔b是负数c≥0 ⇔c是非负数(即c不是负数,而是正数或0)d≤0 ⇔d是非正数(即d不是正数,而是负数或0)e≠0 ⇔e不是0(即e不是0,而是负数或正数)3.在一切非负数中有一个最小值是0.例如绝对值、平方数都是非负数,它们的最小值都是0.记作:|a|≥0,当a=0时,|a|的值最小,是0,a2≥0,a2有最小值0(当a=0时).4.在一切非正数中有一个最大值是0.例如-|x|≤0,当x=0时,-| x |值最大,是0,(∵x≠0时都是负数),-(x-2)2≤0,当x=2时,-(x-2)2的值最大,是0.(二)、零具有独特的运算性质1.乘方:零的正整数次幂都是零.2.除法:零除以任何不等于零的数都得零;零不能作除数.从而推出,0没有倒数,分数的分母不能是0.3.乘法:零乘以任何数都得零.即a×0=0,反过来如果ab=0,那么a、b中至少有一个是0.要使等式xy=0成立,必须且只需x=0或y=0.4.加法:互为相反数的两个数相加得零.反过来也成立.即a、b互为相反数⇔a+b=0。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页
![初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页](https://img.taocdn.com/s3/m/6f270272011ca300a6c3902a.png)
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
初中数学竞赛辅导资料(初一用)
![初中数学竞赛辅导资料(初一用)](https://img.taocdn.com/s3/m/922bd7c60912a21615792942.png)
初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。
0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。
∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
初中数学竞赛辅导讲义全
![初中数学竞赛辅导讲义全](https://img.taocdn.com/s3/m/d7c6319b804d2b160a4ec0b6.png)
初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
初中数学竞赛辅导资料全
![初中数学竞赛辅导资料全](https://img.taocdn.com/s3/m/2103330b7dd184254b35eefdc8d376eeaeaa1748.png)
第一篇一元一次方程的讨论第一部分基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2*+6=0, *(*-1)=0, |*|=6, 0*=0, 0*=2的解分别是: *=-3, *=0或*=1, *=±6, 所有的数,无解。
2. 关于*的一元一次方程的解(根)的情况:化为最简方程a*=b 后,讨论它的解:当a ≠0时,有唯一的解 *=ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论*取什么值,0*=0都成立)3. 求方程a*=b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程a*=b第二部分典例精析例1 a 取什么值时,方程a (a -2)*=4(a -2)①有唯一的解?②无解?③有无数多解?④是正数解?例2 k 取什么整数值时,方程①k (*+1)=k -2(*-2)的解是整数?②(1-*)k =6的解是负整数?例3 己知方程a (*-2)=b (*+1)-2a 无解。
问a 和b 应满足什么关系?例4a 、b 取什么值时,方程(3*-2)a +(2*-3)b =8*-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (*+1)=0, ②*2=9,③|*|=9, ④|*|=-3, ⑤3*+1=3*-1,⑥*+2=2+*2. 关于*的方程a*=*+2无解,则a __________3. 在方程a (a -3)*=a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
4. k 取什么整数值时,下列等式中的*是整数?① *=k4②*=16-k ③*=k k 32+④*=123+-k k 5. k 取什么值时,方程*-k =6*的解是①正数?②是非负数?6. m 取什么值时,方程3(m +*)=2m -1的解①是零?②是正数?7. 己知方程221463+=+-a x 的根是正数,则a 、b 应满足什么关系? 8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数" 9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。
初中数学竞赛辅导讲座19讲(全套)
![初中数学竞赛辅导讲座19讲(全套)](https://img.taocdn.com/s3/m/3619b348f46527d3250ce036.png)
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个数ca b ab 1,1,1-的大小关系。
分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较ca b ab 1,1,1-的大小关系,只要比较分母的大小关系。
例4、 在有理数a 与b(b >a)之间找出无数个有理数。
提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)⨯项数÷2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
![初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页](https://img.taocdn.com/s3/m/8a55f8ff9f3143323968011ca300a6c30c22f17f.png)
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
初中数学竞赛辅导讲座19讲全套.docx
![初中数学竞赛辅导讲座19讲全套.docx](https://img.taocdn.com/s3/m/c46e23e69b6648d7c0c74645.png)
第一讲有理数一、冇理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范1、数轴与大小例1、己知数轴上有A、B两点,A、B之间的距离为1,点A与原点0的距离为3, 那么满足条件的点B与原点0的距离之和等于多少?满足条件的点B有多少个?例2、将—122Z,_97 1998 98这四个数按由小到大的顺序,用连结起来。
1998 98 1999 99提示1:四个数都加上1不改变大小顺序;提示厶先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。
试确定三个数丄,丄丄的大小关系。
cib b-a c3 3分析:由点B在A右边,知b・a〉O,而A、B都在原点左边,故ab〉O,又c>l>0,故耍比较丄,丄丄的大小关系,只要比较分母的大小关系。
ab b- a c例4、在有理数a与b(b>a)之间找出无数个冇理数。
捉示:Pp + 山5为大于是的自然数) n注:P的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、在数1、2、3、…、1990前添上“ + ”和“一”并依次运算,所得可能的最小非负数是多少?提水:造零:n-(n+1 )-(n+2)+(n+3)=0注:造零的基本技巧「两个相反数的代数和为零。
3、算对与算巧例6、计算-1-2-3— -2000-2001-2002提示:1、逆序相加法。
2、求和公式:S二(首项+末项)x项数+2。
例7、计算1+2—3—4+5+6—7-8+9+…—2000+2001+2002提示:仿例5,造零。
结论:2003o例8、计算99...9x99・・・9 + 199 (9)s_V~v_V_z x~V~'n个9 拜个9 〃个9提示1:凑整法,并运用技巧:199…9二10"+99…9, 99・・・9二10"-1。
全国通用初中数学竞赛培优辅导讲义1-10)讲
![全国通用初中数学竞赛培优辅导讲义1-10)讲](https://img.taocdn.com/s3/m/3b247a0fa45177232f60a270.png)
2.根椐质数定义可知
1)质数只有1和本身两个正约数,
2)质数中只有一个偶数2
如果两个质数的和或差是奇数那么其中必有一个是2,
如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________
9.从1到100这100个自然数中,能同时被2和3整除的共_____个,
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习
1.分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
那么N+2,N+3,N+4,N+5就是适合条件的四个合数. 即32,33,34,35就是所求的一组数。
本题可推广到n个。
令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数。
练习3
1.小于100的质数共___个,它们是__________________________________
三在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米;
初二数学竞赛培优讲义
![初二数学竞赛培优讲义](https://img.taocdn.com/s3/m/728e57090975f46526d3e104.png)
初二数学竞赛培优讲义【知识细读】要是多项式的各项有公因式,根据乘法分派律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分化的最基本也是最常用的要领。
它的理论依据便是乘法分派律。
多项式的公因式实在定要领是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大条约数,公因式可以是数、单项式,也可以是多项式。
下面我们议决例题进一步学习用提公因式法因式分化【分类剖析】1. 把下列各式因式分化(1)-+--+++a x abx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222剖析:(1)若多项式的第一项系数是负数,一般要发起“-”号,使括号内的第一项系数是正数,在发起“-”号后,多项式的各项都要变号。
解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式议决标记变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分化历程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---322222. 利用提公因式法简化谋略历程 例:谋略1368987521136898745613689872681368987123⨯+⨯+⨯+⨯剖析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出终于。
解:原式)521456268123(1368987+++⨯= 3. 在多项式恒等变形中的应用例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
剖析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,查看代数式,发觉每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出终于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1•化简x^4r^ +厂只+ 厂九 1 + 1—(x 2)(x 3) (x 3)(x 4)1 1,1--- — ---------- ---- 十x 1x 2 x 21,1 1----- 十 ------ —-----x 3 x 3x 4例2.解:原式二i(x 1)(x 2)x y kz(1)解:易知:-一-= -―z= -一z = k 贝y x z ky(2)亠z y x=2 或x+y+z=O y z kx(3)(1)+(2) +(3) 得: (k -2)(x+y+z)=0 k 若k =2贝9原式=k 3 = 8 若x + y + z =0,则原式二 k 3 =-1例3.设2 1,求x mx 1ft x1 42 2x m x的值。
1解:显然2X 0,由已知xmx 1 “=1 ,x贝y x +丄=xm + 14 2 2.x m x 1 (2)x+ 1) 2-2 x -m 22•••原式二一2m 1=(m +1) 2-2- m 2 = 2 m -1例4.已知多项式3x3 +ax 2 +3x +1能被x2+1整除,求a的值解:1- a =0 二a =1例5:设n为正整数,求证1111 ++ …....+v1 3 15(2n1)(2 n 1)2证:左边=1(1 - 1 1-1 + ••…• +1-1)23352n 12n 1 1(1-1)22n11•••n为正整数,2n 112、参数法是解决比例问题特别是连比问题时非常有效的方法, 其优点在于设连比值为 K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
3、整体代换及倒数法是分式的的求值中常用的方法, 应熟练掌握。
[巩固练习]••• 1- 故左边V2n 1 [小结归纳] 1、部分分式的通用公式:1 x(x k)1、若分式2m二的值是正整数,则整数m= ________m 12、若a2a3a4 = a1 a 3a4 = a1 a2a4 ,=a1 a2 a3-ka1a2a3a4则k=03、已知a2-3b 2 = 2ab .(a>0, b> 0),则a2b =a b4、已知a、b、c是有理数, 且ab -1 ,-bc=1 ca _=-,贝y——abca b 3 b c 4 c a 5 ab bc ca5、若丄1-2006,则. x xy y =0x y2x 6019 xy 2y6、实数a、b 满足ab=1,设A = + —,B=』+ -b+1,则A、B的关系1 a 1 b 1 a 1 b7、当a、b、c为何值时,多项式x43x33x2ax b能被除数x23x 2整除8、计算2007 2007 200715 2152007 720079、已知(x2x2x 33x 2)(x 3) X求A、B、C的值。
10、若对于3以外的一切实数X,等式代均成立, mn 二________11、已知ab第二讲分式方程及应用[知识点击]1、解分式方程的基本思路是去分母化分式方程为整式方程;2、解分式的方程的常用方法有:换元法、整体法、通分法等;3、分式方程广泛应用于生活实际中,要注意未知数的值既要是原方程的根,又要与实际意义相符[例题选讲]例1. 解方程组X y9y5x y10y x1866=n ,2m 5n 189m 10n 66可得: 6n5例3.当m 为何值时,关于 x 的方程2 口--—1的解为正数x x 2 x 1 x 2例2.解方程447x 5 x 1x 8 4x 30 x 6 x 7两边分别通分:(x 2)(x1) (x 7)(x 6),易求:“ =41 x 21 1 1x 1 x 7 x 6易求:y解:原方程可化为解:解方程可得: x=12m,需:2可得m< 1且伊-3例4.设库池中有待处理的污水a吨,从城区流入库池的污水按每小时b吨的固定流量增加,若同时幵动2台机组需30小时处理完污水,同时启动4台机组需10小时处理完污水,若要求在5小时内将污水处理完毕,那么至少要同时幵动多少台机组解:设1台机组每小时处理污水y吨,要在5小时内处理完污水,至少同时幵动x台机组,贝V:a 30b 2 30 ya30y a 5ba 10b 4 10y 可得X > 7b y 5ya 5b 5xy例5. 求证对任意自然数n,有1^2 $ v22 3 n证明:当n=1时,1 v 2显然成立。
21 1 1 n(n 1) n 1 n [点评归纳]1、 当某个代数式在一个问题中多次反复出现时,我们可以把这个代数式当作一个整体去替换,使问题简化; 2、 假分式构成的分式方程一般先分离整数, 然后等式两边分别通分可解。
3、解分式方程要注意验根,在求分式方程中待定字母的值时往入容易忽略这一点当n> 1 时,n(n -1故:1 1 V 1 n 1(n 1[巩固练习]1、某同学用一架不等臂天平称药品,第一次将左盘放入50g砝码,右盘放药品使天平平衡,第二次将右盘放入50g砝码,左盘放药品使天平平衡,则两次称得药品总质量()A、等于100g B 、大于100g C 、小于100g D、都有可能2、用大小两部抽水机给麦田浇水,先用两部抽水机一起抽水2小时,再用小抽水机单独抽水1小时即可浇完,已知单独用小抽水机所用时间是大抽水机单独抽水所需时间的1丄倍,求两部抽水机单独浇完这块2麦田各需多少小时3、解方程三7x2x 30 = 2x3"x236x 45x2x 13 2x27x 205、某工厂将总价2000元的甲种原料与总价4800元的乙种原料混合后,其平均价格比原甲种原煤料每斤少3元,比原乙种原料每斤多 1元,问混合后的单价。
7、已知 f (x) 2x 3 7x 2 m 有因式 2x 3,则:m = _____________第三讲一元二次方程的解法[知识点击]4、解方程凡 1 (X 1)(X 2) 1 (x 2)( x 3) 1 2(x 9)(x 10) 56、自然数m n 是两个不同质数,且 m+n 勺最小值为P ,则 2 2m n 2P 8、求y 的最大值1、一元二次方程的常规解法有:直接幵平方、配方法、因式分解及求根公式法2、对于复杂的一元二次方程往往要借助换元法、和差构造法等。
3、含有字母系数的一元二次方程一般要分类型讨论。
4、设而不求是研究一元二次方程公共解的基本方法。
[例题选讲]例1.解方程2X2X2X-2 X1 13X 1 16解:令2X X2Xy嗨解得y i y22X2X号,解得X11, X2,315例2. 解方程3X25X 8 - 3x25x 1 =1解:T( 3x25x 8 + -3x25x 1 ) ( . 3x25x 8 - 3x25x 1 ) =7 •I3x25x 8 + 3x25x 1 =7 ①又3x25x 8 - 3x25x 1 =1 ②①+②:一3x25x 8 =4易知:X2=1 X 2=-3例3:已知m是方程X2 -2007X+1=0的一个不为0的根求m 2 -2006m+ 竽乙的值m 1解:Tm为方程的非零根,「・m 2 -2007 m +1=0可得m 2 =2007 m-1 , m + 丄=2007,m 2+1=2007mm原式=2007m -1-2006 m + -200L =m +1-1=2007-1=20062007 m m例4、设a>b为实数,那么a2+ab+b2- a - 2b的最小值为多少解:原式:二a2+( b-1)a+ (b2-2b)=(a+ ・)2 + 3 (b-1)2 -12 4当a=o b=1时,最小值为-1例5:解方程m 2(x2-x+1 ) - m( x2-1 ) = (m 2-1 ) x解:原方程整理为:m(m -1 ) x 2- (2m 2-1 ) x +m(m +1 ) =0[mx - ( m + 1 ) [ (m -1 ) x - m ]=0m x= m +1 或(m -1 ) x =m1) 当mH O,mM 1 时,x1二—1 , x2= mm m 12) m =0,x = 03) m =1 时x =2例6:方程(2007 x) 2 -2006 X 2008X-1=0 的较大根为m, 方程2006x2 -2007X+1=0的较小根为n ,求n - m的值解:方程①可化为(20072X+1)(X-1)=01X=———X 2=1 V X2> X ••• m=120072方程②可化为(2006X-1')(X-1)=01 X i =- -^ X 2=1 2006[点评归纳]1、 有的方程某部分重复出现,或经过变形后产生重复出现的式子,可通过换元使方程简化而便于求解。
2、 含有两个无理根式且可化为一元二次方程的方程,若两个无理式的有理化因式与它的乘积等于一个常 数,这时通常可用平方差公式构造两个无理式的和与它们的差,从而加减消去一个根式,可使方程简 化并求解。
3、 一元一次方程的根是满足方程的未知数的值,由此得到的等式是许多代数式求值的依据,要灵活运用[巩固练习]1、 解方程:2x 2^2,-3X- -= __________x x-1=- 2006 2005 2006••• X i v X 2 20062、解方程:—X 7 +_X 5 = ________________UX 3 2 (X 4 13、解方程:x2-|2X-1|-4= ________4、三个二次方程a x 2 +bx+c=O, b x2 + cx + a =0, c x 2 + ax + b =0 有公共根,求证a +b +c =05、已知a、b、c 均为实数,且满足.a22a 1 +| b +1|+( c +2)2 =0试求方程a x 2 + cx - b =0的解6、求证方程(a - b) x2 + (b - c) x + c - a =0 (a^ b)有一个根为1。
7、设方程x2+px+q二的两根为X、%,且11 =x i + X2 I 2=x;+x; ......................I n = X; + x n 则当n> 3 时,求I n+PI n-l+ql n-2 + 的值。
8、证明:不论X为何实数,多项式2x4- 4 x 2- 1的值总大于x4-2x2-4的值。
9、已知a2 -4a+b 2 - b +65 =0,则a2-4 . b =2 1610、已知m n为有理数,方程x +mx+n=0有一个根为J5-2,求m+n的值。