动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版
动量定理及动量守恒定律在电磁感应中的应用
动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
例析动量定理在电磁感应问题中的应用
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:
一
根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)
动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版
ARv 0导轨与导体棒问题一、单棒问题【典例1】如图所示,AB 杆受一冲量作用后以初速度v 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止.AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C ,求:上述过程中 (g 取10m/s 2)(1)AB 杆运动的距离;(2)AB 杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大?【答案】(1) 0.1m;(2)0.9s;(3)12m/s2.(2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=0.9s(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。
如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。
运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。
其他电阻忽略不计,重力加速度为g。
(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。
求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。
①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。
求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。
2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)
高考物理一轮总复习考点突破:考点2 动量守恒定律在电磁感应中的应用(能力考点·深度研析)光滑的平行导轨示意图质量m b=m a电阻r b=r a长度L b=L a力学观点杆b受安培力做变减速运动,杆a受安培力做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动运动图像能量观点系统动能的减少转化为内能动量观点两杆组成的系统动量守恒(2023·全国甲卷)如图,水平桌面上固定一光滑U形金属导轨,其平行部分的间距为l,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计。
导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B。
一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上。
导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短。
碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。
P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。
不计空气阻力。
求:(1)金属棒P滑出导轨时的速度大小;(2)金属棒P在导轨上运动过程中产生的热量;(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。
[解析](1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得3mv 0=3mv Q +mv P12×3mv 20=12×3mv 2Q +12mv 2P 联立解得v P =32v 0,v Q =12v 0 由题知,碰撞一次后,P 和Q 先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P 滑出导轨时的速度大小为v P ′=v Q =12v 0。
(2)根据能量守恒有12mv 2P =12mv P ′2+Q 解得Q =mv 20。
(3)P 、Q 碰撞后,对金属棒P 分析,根据动量定理得-B I l Δt =mv P ′-mv P 又q =I Δt ,I =E R =ΔΦR Δt =Blx R Δt 联立可得x =mv 0R B 2l 2由于Q 为绝缘棒,无电流通过,做匀速直线运动,故Q 运动的时间为t =x v Q =2mR B 2l 2。
(完整版)难点6电磁感应中动量定理和动量守恒定律的运用
难点6 电磁感应中动量定理和动量守恒定律的运用1. 如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。
求:(1)棒从ab到cd过程中通过棒的电量。
(2)棒在cd处的加速度。
2. 如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能3. 在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.4. 如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。
杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。
试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。
动量在电磁感应中的应用例析
GUAN GDONG JIAO YU GAO ZHONG广东教育·高中2019年第2期动量在电磁感应中的应用例析■山东省滨州市第一中学成树明随着2017年高考大纲将动量纳入必考范畴,连续两年高考试题对动量的考查经历了从选择题到计算题的平稳过渡,尤其是2018年全国高考三套卷均以计算题的形式考查了动量和能量相关问题。
电磁感应在高考中占有非常重要的地位,这里不但有电磁感应过程中感应电流大小和方向的判定及计算,更有力学知识在电磁感应问题中的综合应用问题。
而在这些综合问题中,往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系、动能定理及能量守恒定律,并结合闭合电路的计算等物理规律及基本方法进行,上述规律和方法都是高中物理的重点和命题热点,下面通过例题分析动量在电磁感应中的应用,帮助同学们掌握处理此类问题的思路和方法。
一、动量定理在电磁感应中的应用【例1】(2018·百校联盟模拟)如图1所示,两根足够长的平行金属导轨MN 、PQ 固定在倾角为θ的绝缘斜面上,导轨顶部接有一阻值为R 的定值电阻,下端开口,轨道间距为L 。
整个装置处于磁感应强度大小为B 的匀强磁场中,磁场方向垂直斜面向上。
质量为m 的金属棒ab 在t =0时刻获得一个沿导轨向上的初速度v 0,已知金属棒返回初位置前运动状态已稳定,金属棒ab 在导轨之间的有效电阻为r ,金属棒沿导轨运动时始终与导轨垂直,且与导轨接触良好,金属棒ab 与导轨间动摩擦因数为μ,不计导轨电阻和空气阻力的影响,重力加速度为g 。
(1)求金属棒返回初位置时的速率;(2)若金属棒上滑的最大距离为s ,求金属棒运动到最高点所用的时间:(3)若金属棒上滑的最大距离为s ,求金属棒从初始位置出发又返回初位置的过程中,电阻R 上产生的焦耳热。
【解析】(1)设金属棒稳定时的速率为v m ,由法拉第电磁感应定律和闭合电路的欧姆定律,得BLv m =I (R +r )由受力平衡,得mg sin θ=μmg cos θ+BIL联立解得v m =mg (sin θ-μcos θ)(R +r )B 2L 2(2)规定平行于导轨向上为正方向,由动量定理可得-mg sin θ·t-μmg cos θ·t -BILt =0-mv 0由法拉第电磁感应定律,得E =B Lst由闭合电路的欧姆定律,得E =I (R +r )又q =It 联立解得t =mv 0(R +r )-B 2L 2s mg (sin θ+μcos θ)(R +r )(3)金属棒从初位置出发又返回初位置的过程中,由能量守恒定律得12mv 20-12mv 2m =Q+2μmg cos θ·s 电阻R 产生的焦耳热为Q R =R R +r Q 联立解得Q R =R R +r [12mv 20-2μmgs cos θ-m 3g 2(sin θ-μcos θ)2(R +r )22B 4L 4]【点评】对于电磁感应问题研究思路常常有三条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解;第三,若是涉及到电量即距离问题,可用动量定理结合电量的公式求解。
第16课时 力学三大观点在电磁感应中的应用
题 干
目录
突破高考题型
创新设计
在导体切割磁感线做变加速运动时,若用牛顿运动定律和能量观点不能解决,
可运用动量定理巧妙解决问题
求解的物理量
应用示例
电荷量或速度 位移
-B-IlΔt=mv2-mv1,q=-IΔt -B2Rl2总 - vΔt=0-mv0 即-BR2l总2x=0-mv0
目录
突破高考题型
时间
目录
突破高考题型
创新设计
高考题型二 动量观点在电磁感应中的应用
角度1 动量定理在电磁感应中的应用
【例3】 (2022·浙江1月选考,21)如图5所示,水平固定一半径r=0.2 m的金属 圆环,长均为r、电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触 良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度ω= 600 rad/s匀速转动,圆环内左半圆存在磁感应强度大小为B1的匀强磁场。圆 环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相 连,轨道间接有电容C=0.09 F的电容器,通过单刀双掷开关S可分别与接线 柱1、2相连。电容器左侧存在宽度也为l1、长度为l2、磁感应强度大小为B2的 匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场 区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段
动量观点在电磁感应中的应用
小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良
电磁感应中动量定理和动量守恒定律的运用
高考物理电磁感应中动量定理和动量守恒定律的运用(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。
求:(1)棒从ab到cd过程中通过棒的电量。
(2)棒在cd处的加速度。
(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能(4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。
杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。
试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。
6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a 和b ,与导轨紧密接触且可自由滑动。
先固定a ,释放b ,当b 的速度达到10m/s 时,再释放a ,经过1s 后,a 的速度达到12m/s ,则(1)此时b 的速度大小是多少?(2)若导轨很长,a 、b 棒最后的运动状态。
专题11 动量与能量观点在电磁感应中的应用(解析版)
《2020高考物理力学难点解析之动量与能量》 专题11 动量与能量观点在电磁感应中的应用【方法总结】解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下:1. “双轨+双杆”模型以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。
t =0时,棒ab 以初速度v 0向右滑动。
运动过程中,ab 、cd 始终与导轨垂直并接触良好:模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+=2. 巧用“动量定理”求通过导体电荷量q思路:动量定理得:p t BIL p t F ∆=∆⋅⇒∆=∆⋅安,由于t I q ∆⋅=,所以p BLq ∆=, 即:BLp q ∆=【精选试题解析】1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。
t =0时,棒ab 以初速度v 0向右滑动。
运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。
下列图像中可能正确的是( )【答案】AC【解析】ab 棒向右运动,切割磁感线产生感应电流,则受到向左的安培力,从而向左做减速运动,;金属棒cd 受向右的安培力作用而做加速运动,随着两棒的速度差的减小安培力减小,加速度减小,当两棒速度相等时,感应电流为零,最终两棒共速,一起做匀速运动,故最终电路中电流为0,故AC 正确,BD 错误。
小专题(十九) 电磁感应中的动量问题
系统动量守恒
系统动量不守恒
示意图
动力学
观点
动量
观点
能量
观点
棒1动能的减少量=棒2动能的增加量+焦耳热
外力做的功=棒1的动能+棒2的动能+焦耳热
[例3][导体框与导体棒在同一匀强磁场中的运动] (多选)如图所示,一质量为
2m的足够长U形光滑金属框abcd置于水平绝缘平台上,bc边长为L,不计金属框电
方案有多种,并且十分复杂。一种简化的物理模型如图所示,电源和一对足够长平行金属
导轨M、N分别通过单刀双掷开关K与电容器相连。电源的电动势E=10 V,内阻不计。两条
足够长的导轨相距L=0.1 m 且水平放置在磁感应强度B=0.5 T的匀强磁场中,磁场方向垂
直于导轨平面且竖直向下,电容器的电容C=10 F。现将一质量为m=0.1 kg,电阻r=0.1 Ω
总
总
总
BΔS=BLx。当题目中涉及速度 v、电荷量 q、运动时间 t、运动位移 x 时常用动量定理
求解。
[例1][“单棒+电阻”模型] (2022·辽宁沈阳模拟)(多选)如图所示,两根足够长、电阻
不计且相距L=0.2 m的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额
定电压为U=4 V的小灯泡(电阻恒定),两导轨间有一磁感应强度大小为B=5 T、方向垂直
斜面向上的匀强磁场。今将一根长为L、质量m=0.2 kg、电阻r=1.0 Ω的金属棒垂直于
导轨放置,在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的动摩擦
因数μ。已知金属棒下滑x=3.6 m后速度稳定,且此时小灯泡恰能正常发光,重力加速度g
取10 m/s2,sin 37°=0.6,cos 37°=0.8,则(
高中物理 电磁感应中的导轨上的导体棒问题
电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
08讲 动量与动量守恒定律在电磁感应中的应用解析版
2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。
专题08 电磁感应中的动量问题(解析版)
浙江高考物理尖子生核心素养提升之电磁感应中的动量问题命题点一 动量定理在电磁感应现象中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I 安=B I Lt =BLq ,通过导体棒或金属框的电荷量为:q =I Δt =ER 总Δt =n ΔΦΔtR 总Δt =n ΔΦR 总,磁通量变化量:ΔΦ=B ΔS =BLx 。
如果安培力是导体棒或金属框受到的合外力,则I 安=mv 2-mv 1。
当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解更方便。
[典例] 如图甲所示,两条相距l 的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R 的电阻,在两导轨间OO ′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B 。
现使长为l 、电阻为r 、质量为m 的金属棒ab 由静止开始自OO ′位置释放,向下运动距离d 后速度不再变化(棒ab 与导轨始终保持良好的接触且下落过程中始终保持水平,导轨电阻不计)。
(1)求棒ab 在向下运动距离d 过程中回路产生的总焦耳热; (2)棒ab 从静止释放经过时间t 0下降了d2,求此时刻的速度大小;(3)如图乙所示,在OO ′上方区域加一面积为S 的垂直于纸面向里的匀强磁场B ′,棒ab 由静止开始自OO ′上方某一高度处释放,自棒ab 运动到OO ′位置开始计时,B ′随时间t 的变化关系B ′=kt ,式中k 为已知常量;棒ab 以速度v 0进入OO ′下方磁场后立即施加一竖直外力使其保持匀速运动。
求在t 时刻穿过回路的总磁通量和电阻R 的电功率。
[解析] (1)对闭合回路:I =Blv mR +r由平衡条件可知:mg =BIl 解得v m =mg (R +r )B 2l 2由功能关系:mgd =12mv m 2+Q解得Q =mgd -m 3g 2(R +r )22B 4l 4(2)由动量定理可知:(mg -BIl )t 0=mv即mgt 0-Blq =mv 又q =ΔΦ1r +R =Bl d 2r +R解得v =gt 0-B 2l 2d2m (R +r )。
电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文
电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
高中物理:动量定理在电磁感应中的应用
高中物理:动量定理在电磁感应中的应用碰撞与动量这部分内容对进一步学习物理学科是非常重要的,因为动量守恒定律是解决经典力学和微观物理问题的重要工具和方法之一。
动量动量定理1、动量、冲量2、动量变化量和动量变化率3、动量、冲量4、应用动量定理解题的一般步骤(1)选定研究对象,明确运动过程(2)受力分析和运动的初、末状态分析(3) 选正方向,根据动量定理列方程求解动量动量定理动量定理揭示了冲量和动量变化量之间的关系.1.应用动量定理的两类简单问题(1) 应用I=Δp求变力的冲量和平均作用力.物体受到变力作用,不能直接用I=Ft求变力的冲量.(2) 应用Δp=Ft求恒力作用下的曲线运动中物体动量的变化.曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量.2.动量定理使用的注意事项(1) 用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便.(2) 动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.动量定理在电磁感应现象中的应用在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量.动量守恒定律1、动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.2、动量守恒定律表达式(1) m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变.(2) Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反.(3) Δp=0,系统的动量变化量为零.3、对动量守恒定律的理解(1) 矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向.(2) 瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定.(3) 相对性:动量的大小与参考系的选取有关,一般以地面为参考系.(4) 普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况.动量守恒定律的简单应用1、应用动量守恒定律的条件(1) 系统不受外力或系统所受的合外力为零.(2) 系统所受的合外力不为零,比系统内力小得多.(3) 系统所受的合力不为零,在某个方向上的分量为零.2、运用动量守恒定律解题的基本思路(1) 确定研究对象并进行受力分析和过程分析;(2) 确定系统动量在研究过程中是否守恒;(3) 明确过程的初、末状态的系统动量;(4) 选择正方向,根据动量守恒定律列方程.3、动量守恒条件和机械能守恒条件的比较(1) 守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功.(2) 系统动量守恒时,机械能不一定守恒.(3) 系统机械能守恒时,动量不一定守恒.动量定理在电磁感应中的应用电磁感应中的动力学问题往往比较复杂,运用动量和能量的观点可以清晰、简洁地解决问题。
专题65 电磁感应中的双棒问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。
(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。
4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。
新高考下动量、动量守恒定律在“电磁感应”中的应用
新高考下动量、动量守恒定律在“电磁感应”中的应用引言:电磁感应是物理学中重要的概念之一,涉及到动量和动量守恒定律的应用。
在新高考的物理考试中,动量和动量守恒定律的运用在解题过程中显得尤为重要。
本文将重点探讨动量和动量守恒定律在“电磁感应”中的应用,通过实例分析具体案例,帮助读者更好地理解和掌握相关知识。
一、电磁感应的基本原理1.电磁感应的概念电磁感应是指磁场相对运动产生电场,或者电场相对运动产生磁场的现象。
电磁感应是电动势和电流产生的基础,也是电磁感应定律的基础。
2.法拉第电磁感应定律法拉第电磁感应定律表明,在导线中出现磁通量的变化时,将会诱导出产生的电动势。
即:ε = -dΦ/dt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。
二、动量和动量守恒定律在电磁感应中的应用1.动量的概念动量是物体运动的物理量,它等于物体的质量乘以速度。
在电磁感应中,动量与产生的电动势和磁通量的变化有着密切的关系。
2.动量守恒定律在电磁感应中的应用动量守恒定律是指在闭合系统中,系统的总动量保持不变。
这一定律在电磁感应中有着重要的应用。
例如,在变压器的工作过程中,通过电磁感应产生的电动势使得电流变化,而电流的变化又产生磁场的变化,最终会导致动量的变化。
根据动量守恒定律,系统的总动量始终保持不变。
具体应用案例:假设在一个闭合回路中,有一匀强磁场B。
开始时,闭合回路中没有电流,磁场作用在回路上,这时由于运动的原因(例如运动的金属杆较彼处在一个大的强磁场区域)而产生的感应电动势,从而电流可以在回路中开始流动。
根据动量守恒定律,电流的产生导致磁场中的能量转化为电场中的能量,并且导致产生的电磁场中的能量。
引入动量守恒定律,可以描述上述过程中的动量变化。
在开始时,闭合回路中的动量为零,由于磁场作用,金属杆开始运动,动量开始发生变化。
随着动量的变化,电动势产生,从而电流开始流动。
通过运用动量守恒定律,我们可以定量描述磁场能量和电场能量之间的转化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABRv0B导轨与导体棒问题一、单棒问题【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB 杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大【答案】(1);(2);(3)12m/s2.(2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。
如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。
运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。
其他电阻忽略不计,重力加速度为g。
(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。
求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。
①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。
求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。
求运输车以速度vo从如图(e)通过距离D后的速度v。
【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则 ( )A.随着ab运动速度的增大,其加速度也增大B.外力F对ab做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能【答案】CD【典例4】 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中,左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计.磁感应强度为B 2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m 、电阻为R 的导体棒此时恰好能静止在导轨上,分析下述判断正确的是 ( )A .圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱B .导体棒ab 受到的安培力大小为mg sin θC .回路中的感应电流为mg sin θB 2dD .圆形导线中的电热功率为m 2g 2sin 2θB 2 2d 2(r +R ) 【答案】ABC【解析】根据左手定则,导体棒上的电流从b 到a ,根据电磁感应定律可得A 项正确;根据共点力平衡知识,导体棒ab 受到的安培力大小等于重力沿导轨向下的分力,即mg sin θ,B 项正确;根据mg sin θ=B 2Id ,解得I =mg sin θB 2d ,C 项正确;圆形导线的电热功率P =I 2r =(mg sin θB 2d )2r =m 2g 2sin 2 θB 22d 2r ,D 项错误.【典例4】如图甲所示,两根足够长平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 。
导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B 。
金属导轨的上端与开关S 、定值电阻R 1和电阻箱R 2相连。
不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g 。
现在闭合开关S ,将金属棒由静止释放。
(1) 判断金属棒ab 中电流的方向;(2) 若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻上产生的焦耳热Q ;(3) 当B = T ,L = m ,α=37°时,金属棒能达到的最大速度v m 随电阻箱R 2阻值的变化关系,如图乙所示。
取g =10 m/s 2,sin 37°=,cos 37°=。
求R 1的阻值和金属棒的质量m 。
【答案】 (1)b →a (2)mgh -12mv 2 (3) Ω kg (3)金属棒达到最大速度v m 时,切割磁感线产生的感应电动势:E =BLv m 由闭合电路的欧姆定律得:I =ER 1+R 2从b 端向a 端看,金属棒受力如图所示金属棒达到最大速度时,满足:mg sin α-BIL =0由以上三式得v m =mg sin αB 2L 2(R 2+R 1)由图乙可知:斜率k =60-302m·s -1·Ω-1=15 m·s -1·Ω-1,纵轴截距v =30 m/s所以mg sin αB 2L 2R 1=v ,mg sin αB 2L 2=k 解得R 1= Ω,m = kg24.如图所示,相距L = m 、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R = Ω的电阻相连,导轨处于磁感应强度B = T 的匀强磁场中,磁场方向垂直于导轨平面向里。
质量m = kg 、电阻r = Ω的金属棒置于导轨上,并与导轨垂直。
t =0时起棒在水平外力F 作用下以初速度v 0=2 m/s 、加速度a =1 m/s 2沿导轨向右匀加速运动。
求:(1)t =2 s 时回路中的电流;(2)t =2 s 时外力F 大小;(3)前2 s 内通过棒的电荷量。
【答案】(1)4 A (2) N (3)6 C【解析】(1)t =2 s 时,棒的速度为:v 1=v 0+at =2+1×2=4 m/s此时由于棒运动切割产生的电动势为:E =BLv 1=××4 V= V由闭合电路欧姆定律可知,回路中的感应电流:(2)对棒,根据牛顿第二定律得:FBIL =ma解得F =BIL +ma =×4×+×1= N(3)t =2 s根据闭合电路欧姆定律得EI=【名师点睛】(1)棒向右匀加速运动,由速度时间公式求出t=1 s时的速度,由E=BLv求出感应电动势,由闭合电路欧姆定律求解回路中的电流。
(2)根据牛顿第二定律和安培力公式求解外力F的大小。
(3)由位移时间公式求出第2 s内棒通过的位移大小,由法拉第电磁感应定律、欧姆定律和电荷量公式求解电荷量。
2.如图所示,两根足够长平行金属导轨MN、PQ固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R=3 Ω的定值电阻,下端开口,轨道间距L=1 m.整个装置处于磁感应强度B=2 T的匀强磁场中,磁场方向垂直斜面向上.质量m=1 kg的金属棒ab置于导轨上,ab在导轨之间的电阻r=1 Ω,电路中其余电阻不计.金属棒ab由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=,sin 37°=,cos 37°=,取g=10 m/s2.(1)求金属棒ab沿导轨向下运动的最大速度v m;(2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率P R;(3)若从金属棒ab开始运动至达到最大速度过程中,电阻R上产生的焦耳热总共为J,求流过电阻R的总电荷量q.解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m.由牛顿第二定律得mg sin θ-μmg cos θ-F安=0F安=BIL,I=BL v mR+r,解得v m=m/s(2)金属棒以最大速度v m匀速运动时,电阻R上的电功率最大,此时P R=I2R,解得P R=3 W(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x,由能量守恒定律得mgx sin θ=μmgx cos θ+Q R +Q r +12m v 2m根据焦耳定律Q R Q r=R r ,解得x = m 根据q =I Δt ,I =ER +r E =ΔΦΔt =BLx Δt ,解得q = C答案:(1)2 m/s (2)3 W (3) C26.CD 、EF 是水平放置的电阻可忽略的光滑平行金属导轨,两导轨距离水平地面高度为H ,导轨间距为L ,在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场(磁场区域为CPQE ),磁感应强度大小为B ,如图所示。
导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R 。
将一阻值也为R 的导体棒从弯曲轨道上距离水平金属导轨高度h 处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端水平距离x 处。
已知导体棒质量为m ,导体棒与导轨始终接触良好,重力加速度为g 。
求:(1)电阻R 中的最大电流和整个电路中产生的焦耳热。
(2)磁场区域的长度d 。
【答案】(1(2)222mR d B L =【解析】(1)由题意可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大 由机械能守恒定律有:2112mgh mv =解得:1v =由法拉第电磁感应定律得:1E BLv = 由闭合电路欧姆定律得:2E I R =联立解得:2BL ghI =由平抛运动规律可得:221,2x v t H gt ==解得:22gv x H = 由能量守恒定律可知整个电路中产生的焦耳热为:【名师点睛】对于电磁感应问题两条研究思路:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。
【典例9】如图所示,水平放置的足够长平行导轨MN 、PQ 的间距为L=,电源的电动势E=10V ,内阻r=Ω,金属杆EF 的质量为m=1kg ,其有效电阻为R=Ω,其与导轨间的动摩擦因素为μ=,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1T ,现在闭合开关,求:(1)闭合开关瞬间,金属杆的加速度;(2)金属杆所能达到的最大速度;(3)当其速度为v=20m/s 时杆的加速度为多大(g=10m/s 2,不计其它阻力).【答案】(1)1m/s 2;(2)50m/s ;(3)s 2.【解析】(1)根据闭合电路欧姆定律,有:I=安培力:F A =BIL=1×20×=2N根据牛顿第二定律,有:a=【典例10】如图所示,长平行导轨PQ 、MN 光滑,相距5.0=l m ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).【答案】见解析设最终达到的最大速度为υm ,根据上述分析可知:0m E Bl υ-= 所以 1.50.80.5m E Bl υ==⨯m/s=s . (2)如果ab 以恒定速度7.5υ=m/s 向右沿导轨运动,则ab 中感应电动势 5.75.08.0'⨯⨯==Blv E V=3V由于'E >E ,这时闭合电路中电流方向为逆时针方向,大小为:2.08.05.13''+-=+-=r R E E I A= 直导线ab 中的电流由b 到a ,根据左手定则,磁场对ab 有水平向左的安培力作用,大小为5.15.08.0''⨯⨯==BlI F N=所以要使ab 以恒定速度5.7=v m/s 向右运动,必须有水平向右的恒力6.0=F N 作用于ab .上述物理过程的能量转化情况,可以概括为下列三点:①作用于ab 的恒力(F )的功率:5.76.0⨯==Fv P W=②电阻(R +r )产生焦耳热的功率:)2.08.0(5.1)(22'+⨯=+=r R I P W= ③逆时针方向的电流'I ,从电池的正极流入,负极流出,电池处于“充电”状态,吸收能量,以化学能的形式储存起来.电池吸收能量的功率:'' 1.5 1.5P I E ==⨯W=由上看出,'''P P P +=,符合能量转化和守恒定律(沿水平面匀速运动机械能不变).3.如图所示,一对足够长的平行光滑金属导轨固定在水平面上,两导轨间距为L ,左端接一电源,其电动势为E 、内阻为r ,有一质量为m 、长度也为L 的金属棒置于导轨上,且与导轨垂直,金属棒的电阻为R ,导轨电阻可忽略不计,整个装置处于磁感应强度为B ,方向竖直向下的匀强磁场中.(1)若闭合开关S 的同时对金属棒施加水平向右恒力F ,求棒即将运动时的加速度和运动过程中的最大速度;(2)若开关S 开始是断开的,现对静止的金属棒施加水平向右的恒力F ,一段时间后再闭合开关S ;要使开关S 闭合瞬间棒的加速度大小为F m ,则F 需作用多长时间.解析:(1)闭合开关S 的瞬间回路电流I =E R +r金属棒所受安培力水平向右,其大小F A =ILB由牛顿第二定律得a =F A +Fm整理可得a =E R +rmLB +Fm 金属棒向右运动的过程中,切割磁感线产生与电源正负极相反的感应电动势,回路中电流减小,安培力减小,金属棒做加速度逐渐减小的加速运动,匀速运动时速度最大,此时由平衡条件得F A ′=F由安培力公式得F A ′=I ′LB 由闭合电路欧姆定律得I ′=BL v m -ER +r联立求得v m =FR +r B 2L 2+EBL(2)设闭合开关S 时金属棒的速度为v , 此时电流I ″=BL v -ER +r由牛顿第二定律得a ″=F -F A ″m 所以加速度a ″=F m -BL v -ER +rmLB若加速度大小为F m ,则⎪⎪⎪⎪⎪⎪⎪⎪F m -BL v -E R +rm LB =F m 解得速度v 1=E BL ,v 2=E BL +2FR +rB 2L 2未闭合开关S 前金属棒的加速度一直为a 0=Fm 解得恒力F 作用时间t 1=v 1a 0=mE FBL 或t 2=v 2a 0=mE FBL +2mR +r B 2L 2答案:(1)ER+rmLB+FmFR+rB2L2+EBL(2)mEFBL或mEFBL+2mR+rB2L2【典例8】如图所示,在水平面内有一个半径为a的金属圆盘,处在竖直向下磁感应强度为B的匀强磁场中,金属圆盘绕中心O顺时针匀速转动,圆盘的边缘和中心分别通过电刷与右侧电路相连,圆盘的边缘和中心之间的等效电阻为r,外电阻为R,电容器的电容为C,单刀双掷开关S与触头1闭合,电路稳定时理想电压表读数为U,右侧光滑平行水平导轨足够长,处在竖直向下磁感强度也为B的匀强磁场中,两导轨电阻不计,间距为L,导轨上垂直放置质量为m,电阻也为R的导体棒,导体棒与导轨始终垂直且接触良好,求:(1)金属圆盘匀速转动的角度ω;(2)开关S与触头2闭合后,导体棒运动稳定时的速度v.【答案】(1);(2).(2)根据动量定理得:F△t=mv﹣0,而F△t=BIL△t=BL△q,电荷的变化量△q=C△U,电压的变化量△U=U﹣U′=U﹣BLv则mv=BLC(U﹣BLv)解得:v=【典例11】光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。