线性方程组与n维向量空间
向量空间与线性方程组
向量空间与线性方程组线性代数是现代数学中的一个重要分支,广泛应用于各个领域。
其中,向量空间和线性方程组是线性代数中的基本概念和工具。
本文将介绍向量空间和线性方程组的相关内容,以帮助读者更好地理解和应用线性代数中的这两个重要概念。
一、向量空间向量空间是线性代数中研究向量及其运算的一种结构。
一个向量空间由非空集合V和定义在其上的两种运算——向量的加法和标量与向量的乘法所组成。
满足一定条件的集合和运算规则被称为向量空间。
向量空间具有以下性质:1. 向量的封闭性:对于向量空间中的任意两个向量u和v,它们的线性组合仍然在该向量空间中,即u+v∈V。
2. 标量乘法封闭性:对于向量空间中任意一个标量k和任意一个向量u,标量与向量的乘积仍然在向量空间中,即ku∈V。
3. 加法交换律:对于向量空间V中的任意两个向量u和v,u+v=v+u。
4. 加法结合律:对于向量空间V中的任意三个向量u、v和w,(u+v)+w=u+(v+w)。
5. 存在零向量:向量空间V中存在一个零向量0,使得对于向量空间中的任意向量u,u+0=u。
6. 存在负向量:对于向量空间V中的任意向量u,存在一个负向量-u,使得u+(-u)=0。
二、线性方程组线性方程组是由一组线性方程组成的方程组。
对于向量空间中的向量和标量,线性方程组可以用以下形式来表示:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,aᵢₙ表示系数,bᵢ表示常数,xₙ表示未知数,方程组共有m个方程,n个未知数。
解线性方程组的目标是找到满足所有方程的解集,或者判断无解或无穷解。
解线性方程组的常用方法包括高斯消元法、矩阵的逆和行列式等。
三、向量空间与线性方程组的关系线性方程组的解集合构成了向量空间中的一个子空间。
具体地说,对于线性方程组Ax=b,其中A是一个m×n的矩阵,x和b是n维向量,x表示未知数向量,b表示常数向量。
n元线性方程组线性方程组的
1 4
R2
2 R1 ,R3
R1
2
x1 x2 4x2
3x3 x3 2
1
2x1 x2 2x3 5
2x2 x3 4
R2 2 R3
2
x1
x2 3x3 x3 6
1
R2 R3
2
x1 x2 2x2
crr xr dr cr,r1xr1 crn xn ,
由此给出xr1,, xn的一组值,就可唯一地给出x1, x2 ,, xr的值,
即给出(7)的一个解。
一般地,由(7)我们可以把x1, x2 ,, xr通过xr1,, xn表示出来, 这样的一组表达式称为方程组(1)的一般解,而xr1,, xn称为 一组自由未知量。
n元一次线性方程组_2
n元线性方程组
a11x1 a12 x2 a1n xn b1, a21x1 a22 x2 a2nxn b2 , as1x1 as2 x2 asn xn bs ,
的一个解就是指由n个数k1, k2,, kn组成的有序数组(k1, k2,, kn), 当(x1, x2,, xn)分别用(k1, k2,, kn)代入后,方程组中的每个等式都 变成恒等式,方程组的解的全体称为它的解集合。
(4)
而(3)与(1)是同解的,
as2 ' x2 asn ' xn bs ', 因此,方程组(1)有解的充分必要条件为方程组(4)有解。
对(4)依照以上变换,一步步作下去,最后得到一个阶 梯 形 方 程 组,设为
c11x1 c12 x2 c1r xr c1n xn d1,
3.2 n维向量空间
n维向量一般用小写黑体的希腊字母 α, β, γ 等表示; 有时也用黑体的拉丁字母 a, b, c, o, u, v, x, y来表示.
例如, n维向量 α = (a1 , a2 , L , an ).
n维向量 α = ( a1 , a2 , L , an ).
n 维向量写成一行,称为 n 维行向量, 维向量写成一行, 行向量,
3.向量的相等 . 如果n维向量 如果 维向量 α = ( a1 , a2 ,L , an ) ,β = (b1 , b2 ,L , bn ) 的对应分量皆相等, 的对应分量皆相等,即
ai = bi ,
i = 1, 2,L , n
相等, 则称向量 α 与 β 相等,记作 α = β .
4.特殊的向量 . 零向量: 分量全为零的向量称为零向量 零向量, 零向量 分量全为零的向量称为零向量,记作 0. 即, 0 = (0,0,L ,0) .
n 维向量还可以写成一列,称为 n 维列向量, 维向量还可以写成一列, 维列向量,
a1 a2 β = = (a1 , a2 , L , an )T . M a n
n 维行向量就是一行 列的矩阵; × n 的矩阵 维行向量就是一行n列的矩阵 1 列的矩阵; n 维列向量就是 行一列的矩阵 n × 1 的矩阵 维列向量就是n行 列的矩阵.
为向量α 与 β 的和; 称向量
kα = ( ka1 , ka2 ,L , kan )
数量乘积. 为向量 α 与数 k 的数量乘积.称向量
α − β = α + (− β ) = (a1 − b1 , a2 − b2 ,L , an − bn )
为向量α 与 β 的差;
北京工业大学线性代数第四章第一节 n 维向量空间
n
向量组 1 , 2 , , n 称为矩阵A 的列向量组.
10
类似地, 矩阵A (aij )mn 又有m个n维行向量
a11 a12 a 21 a 22 A ai1 ai 2 a m1 am 2 a1n 1 1 a 2 n 2 2 , a in i m a mn m
23
例4 已知
1 1, 4, 0, 2,2 2, 7, 1, 3, 3 0, 1, 1, a , 3, 10, b, 4 , 不能由1 ,2 ,3 线性表出? ⑴ a , b为何值时, 能由1 ,2 ,3 线性表出且表示法 ⑵ a , b 为何值时,
, n
n xn 是否有解。
n xn
,n 线 性表出.
19
*若方程组 1 x1 2 x2
有解,则 可以由1 ,2 ,
n xn
,n 线 性表出.
且方程组的一组解就是表出系数. ① 若方程组有唯一解,则 可以由1 ,2 , ,n 线性表出且表示法唯一. ② 若方程组有无穷多解,则
1
第一节 n 维向量空间
一. n 维向量空间的概念 二.向量与矩阵的关系 三.向量的线性组合与线性表出
2
一. n 维向量空间的概念 一个mn矩阵的每一行都是由n个数组成 的有序数组,其每一列都是由m个数组成的有序 数组。 n元线性方程组的一个解也是由n个数 组成的有序数组。所以研究线性方程组解的结 构离不开有序数组。 1.定义:由数域P 中n 个数组成的有序数组称为 数域P 上的一个n 维向量,用小写的希腊字母 , , …表示.
线性代数-n维向量
一. n维向量及其线性运算 二. 线性相关性 三. 向量组的秩 四. 向量空间
五. 内积与正交化
第Байду номын сангаас节 n维向量及其线性运算
(一) n维向量的概念
定义
由n 个有数 a1 , a2 ,
, an 组成的有序数组 a1 , a2 ,
, an
称为一个n 维向量。 这 n 个数称为该向量的 n 个分量,第 i 个数 a i 称为第i个分量。 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量.
2
0
0 3 1 2 0 3 1 2 2 0 1 1 2 0 1 1 0 1 1 b 0 0 0 b 2 0 0 a 1 0 1 a 2 0
1 0 0 0
T T T (2, 5,1) , (10,1, 5) , (4,1, 1) , 求 . 其中 1 2 3
解 3 1 3 2 2 2 5 3 5 ,
6 3 1 2 2 5 3 ,
1 ( 3 1 2 2 5 3 ) (1, 2, 3)T . 6
一般用希腊字母 , , 等表示 n 维向量。
a1 , a2 , 向量通常写成一行:
, an 称为行向量。
a1 a 2 有时也写成一列: 称为 列向量 。它们的区别只是 写法上的不同。 an
分量全为零的向量 0,0,
,0 称为零向量,记为 0。
, km称为这个线性组合的系数。 , m ,和向量 , 如果存在
m m
定义2:给定向量组 A : 1 , 2 , 一组实数 1 , 2 , m , 使得 1 1 2 2
线性代数--向量空间
dx4 0 d 2 x4
0
a 3 x1 b3 x2 c 3 x3 d 3 x4 0
该方程组的系数行列式
1111 abcd a2 b2 c2 d 2 (b a)(c a)(c b)(d a)(d b)(d c) a3 b3 c3 d 3
由于a,b,c,d各不相同.,所以行列式不等于零
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2 am1 x1 am2 x2 amn xn bm
含n个未知量m个方程的线性非齐次方程组可写成矩阵形式
a11 a12 a1n
x1 b1
AX
b
其中
A
a21
a22
a2n
,
a a 3 = (1,c,c2 , c3 , )T , 4 = (1,d, d2 , d3 )T
(其中a,b,c,d各不相同)
解 考察 x1a1 x2a2 x3a3 x4a4 0
x1 x2 x3 x4 0
按分量写出来,即为
a
2
ax1 x1
b
bx2 2 x2
cx3 c2 x
3
线性相关的充要条件是其中至少有一个向量可由 其余向量线性表示。
k1a1 k2a2 ksas 0 (1) 则称向量组a1,a2, as 线性相关;
否则称之为线性无关。
即当且仅当 k1 k2 ks 0 时,(1)式才成立,
则称向量组 a1,a2 , as , 线性无关。
注意
(1) 任何含有零向量的向量组都线性相关. (2) 仅含两个向量的向量组,它线性相关的充分
X
x2
,
b
b2
am1
am2
n向量定义
返回
返回
向量相等: = (a1, a2, …, an), =(b1, b2, …, bn)
= ai = bi
零向量: = (0, 0, …, 0)
负向量: - = (-a1, -a2, …, -an )
Rn :
n 维向量的全体.
n维向量的线性运算: = (a1, a2, …, an), =(b1, b2, …, bn), + = (a1 +b1, a2 +b2, …, an+ bn), k • =(ka1, ka2, …, kan ), k R.
3.1
n 维向量空间
一、n 维向量空间的概念 二、Rn 的子空间
返回
在空间(或平面)解析几何中,从有向线段出发,
引进了向量的概念,并进一步引进了向量的加法和数 乘向量的运算;另外,在空间中引进笛卡尔坐标系 后,空间中的点和向量都和三维数组建立了一一对
应关系。所以,由所有三维数组构成的集合
{(a1 , a2 , a3 ) | a1 , a2 , a3 R}
1 2 因此,矩阵 A可表示为 A , 其中1 , 2 , , m为矩阵 A 的行向量. m
线性代数第三章(一二节向量与线性相关性)
证明
必要性 设向量组 A: a1 , a2 , ... , am 线
性相关, 则有 m 个不全为零的实数 k1 , k2 , ... , km 使 k1a1 + k2a2 + ... + kmam = 0 . 因 k1 , k2 , ... , km 不全为 0 , 不妨设 k1 0 , 于是便 有
(9) 若a1 , a2 , ... , an是n维向量组,则 a1 , a2 , ... , an线性相关的充要条件是其 构造的行列式值为0. 若a1 , a2 , ... , an是n维向量组,则
a1 , a2 , ... , an线性无关的充要条件是其
构造的行列式值非0. (10) 若a1 , a2 , ... , am是n维向量组,且 m>n,则 a1 , a2 , ... , am线性相关。 特别地,n+1个n维向量必线性相关。
第 三 章 向量组的线性相关性与n 维向量空间
第一节
1. 向量的定义 定义1 n 个有次序的数 a1 , a2 , ... , an 所组成的
数组称为 n 维向量,其中第 i 个数 ai 称为第i 个分量,n称为向量的维数.
n维向量
n 维向量可写成一行, 也可写成一列. 分别
称为行向量和列向量, 也就是行矩阵和列矩阵。
引例1:非齐次线性方程组(Ⅰ)有解<=>
存在一组数x1, x2, ... , xn, 满足
x1a1 + x2a2 + ... + xnan = b。 引例2:齐次线性方程组(Ⅱ)有非零解<=> 存在一组不全为零的数x1, x2, ... , xn, 满足 x1a1 + x2a2 + ... + xnan = 0。 从这两个引例中我们可以提炼出向量组两个
第三章n维向量空间与线性相关性
QQ空间
第3章 3.1
n 维向量
n 维向量及向量组的线性相关性
其中 , , F n , 1, k , l F , O 为 F n 中的零向量。
在数学中,把具有上述八条规律的运算称为线性运算。 故向量的加法运算和数乘向量的运算统称为向量的线性运 算
定义 3 数域 F (一般为实数域 R 或复数域 C ) 上全体 n 维 向量的集合, 连同定义在其上的线性运算, 称为数域 F 上的
向量的加法运算和数乘向量的运算满足下述运算规律: (1) (2) ( )
( )
(加法交换律) (加法结合律)
(3) O O (4) ( ) O (5) 1 (6) k l kl (8) k l k l (数乘结合律) (7) k k k (数对向量的分配律) (向量对数的分配律)
k 2 1 , k 3 1 。故,
所以方程组有唯一解 k1 1 ,
能由向量组
1 , 2 , 3 线性表示,且 1 2 3
例 3 设 有 向 量 1 1 , 0 , 1 , 2 1 , 1 , 1 ,
3 3 , 1 , 1 , 5 , 3 , 1 ,试问向量 能否由向量组
1 , 2 ,, m 线性表示。其中 k1 , k 2 ,, k m 称为组合系数。
特别地, (1) 设有两个向量 , ,若存在数 k ,使得
第4章 n维向量空间
# 实 向 量 a : 向 量 a的 分 量 都 是 实 数 ; # 复 向 量 b : 向 量 b的 分 量 都 是 复 数 。 定 义 4 . 1 所 有 n维 实 向 量 ( r e a l v e c t o r )的 集 合 称 为 , n维 实 向 量 空 间 , 记 为 , 即
例 4.1 判 断 向 量 β = -3, 2, 0, 5 是 否 可 由 向 量 ,
T
e 1 (1, 0, 0, 0 ) , e 2 ( 0, 1, 0, 0 ) ,
T T
e 3 ( 0, 0, 1, 0 ) , e 4 ( 0, 0, 0, 1 )
T
T
线性表示。 解 因 = - 3 e 1 2 e 2 0 e 3 5 e 4, 所 以 β 可 由 e 1 , e 2 , e 3 , e 4
T
a1 a2 a n
复习若干概念: # 向 量 α a1 , a 2 , , a n
T
和 β b1 , b 2 , , b n
T
相等
对应分量都相等 a i bi 1 i n # 向 量 α , β的 和 : α β a 1 b2 , a 2 b2 , , a n bn # 向 量 0 ,0 , , 0 称 为 零 向 量 , 用 O 表 示 。
即 : x1 α1 x 2 α 2 x m α m β
定 理 4.1 ( 1 ) 向 量 β 可 由 向 量 α 1 , α 2 , , α m 线 性 表 示 的 充 要 条 件 是 : ra n k ( α 1 , α 2 , , α m ) ra n k ( α 1 , α 2 , , α m , β ) ( 2 ) 向 量 β 可 由 向 量 α 1 , α 2 , , α m 惟 一 线 性 表 示 的 充 要 条 件 是 : ra n k ( α 1 , α 2 , , α m ) ra n k ( α 1 , α 2 , , α m , β ) m 。 证 (1 ) β 可 由 向 量 α 1 , α 2 , , α m 线 性 表 示 x1 α1 x 2 α 2 x m α m 方 程 组 A X β 有 解 其中A 存 在 m 个 数 x 1 , x 2 , , x m , 使 得
线性代数n维向量和向量组的线性相关性
第三章 线性方程组 § n 维向量及其线性相关性教学目标:掌握n 维向量及其运算,准确理解向量的线性相关和线性无关的定义,掌握向量组的线性相关和线性无关的判定定理和判定方法.重 点:★ n 维向量的概念 ★ 向量的线性运算 ★ 线性方程组的向量形式 ★ 向量组的线性组合 ★ 向量组间的线性表示 ★ 线性相关和线性无关的概念 ★ 向量组的线性相关和线性无关判定难 点:★ 线性相关和线性无关的概念的理解, ★ 向量组的线性相关和线性无关的证明内容要点一、n 维向量及其线性运算定义 数域F 上的n 个有次序的数n a a a ,,,21 所组成的有序数组),,,(21n a a a称为数域F 上的n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量.向量常用小写希腊字母,,,αβγ来表示;向量通常写成一行 12(,,,)n a a a α= 称之为行向量;向量有时也写成一列 12n a a a α⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭T n a a a ),,,(21 = 称之为列向量.注:在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),此即上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象.若干个同维数的列向量(或行向量)所组成的集合称为向量组.=n F {数域F 上n 维向量的全体},=n R 实数域上的n 维向量的全体.例如,一个n m ⨯矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211 每一列⎪⎪⎪⎪⎪⎭⎫⎝⎛=mj j j j a a a 21α),2,1(n j =组成的向量组n ααα,,,21 称为矩阵A 的列向量组,而由矩阵A 的每一行),,2,1(),,,(21m i a a a in i i i ==β组成的向量组m βββ,,,21 称为矩阵A 的行向量组.根据上述讨论,矩阵A 记为),,,(21n A ααα = 或 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A βββ 21.这样,矩阵A 就与其列向量组或行向量组之间建立了一一对应关系.定义 两个n 维向量),,,(21n a a a =α与),,,(21n b b b =β的各对应分量之和组成的向量,称为向量α与β的和, 记为βα+,即),,,(2211n n b a b a b a +++=+ βα由加法和负向量的定义,可定义向量的减法:)(βαβα-+=-),,,(2211n n b a b a b a ---= .定义 n 维向量),,,(21n a a a =α的各个分量都乘以实数k 所组成的向量,称为数k 与向量α的乘积(又简称为数乘),记为αk ,即),,,(21n ka ka ka k =α.向量的加法和数乘运算统称为向量的线性运算.注:向量的线性运算与行(列)矩阵的运算规律相同,从而也满足下列运算规律:(1) αββα+=+;(2) )()(γβαγβα++=++; (3) ;αα=+o (4) ;)(o =-+αα (5) ;1αα=(6) ;)()(ααkl l k =(7) ;)(βαβαk k k +=+ (8) .)(αααl k l k +=+二、 n 维向量空间定义:数域P 上的n 维向量的全体,同时考虑到定义在它们上的的加法和数量乘法,称为数域F 上的n 维向量空间,记作n F .n R 称为你n 维实向量空间.三、 向量组的线性组合定义 给定向量组s A ααα,,,:21 ,对于任何一组实数s k k k ,,,21 , 表达式s s k k k ααα+++ 2211称为向量组A 的一个线性组合, s k k k ,,,21 称为这个线性组合的系数. 注:s k k k ,,,21 可以都取零定义 给定向量组s A ααα,,,:21 和向量β, 若存在一组数,,,,21s k k k 使,2211s s k k k αααβ+++=则称向量β是向量组A 的线性组合, 又称向量β能由向量组s A ααα,,,:21 线性表示(或线性表出).注:(1)β能由向量组s ααα,,,21 唯一线性表示的充分必要条件是线性方程组βααα=+++s s x x x 2211有唯一解;(2) β能由向量组s ααα,,,21 线性表示且表示不唯一的充分必要条件是线性方程组βααα=+++s s x x x 2211有无穷多个解;(3) β不能由向量组s ααα,,,21 线性表示的充分必要条件是线性方程组βααα=+++s s x x x 2211无解;四、向量组间的线性表示定义 设有两向量组,,,,:;,,,:2121t s B A βββααα 如果向量组A :t ααα,,,21 中每一个向量),,2,1(t i i =α都可以经向量组:B s βββ,,,21 线性表出,那么向量组t ααα,,,21 就称为可以经向量组s βββ,,,21 线性表出.如果两个向量组互相可以线性表出,它们就称为等价.由定义有,每一个向量组都可以经它自身线性表出.同时,如果向量组t ααα,,,21 可以经向量组s βββ,,,21 线性表出,向量组s βββ,,,21 可以经向量组pγγγ,,,21 线性表出,那么向量组t ααα,,,21 可以经向量组p γγγ,,,21 线性表出. 向量组之间等价具有以下性质:1)反身性:每一个向量组都与它自身等价. 2)对称性:如果向量组s ααα,,,21 与t βββ,,,21 等价,那么向量组tβββ,,,21 与s ααα,,,21 等价.3)传递性:如果向量组s ααα,,,21 与t βββ,,,21 等价,t βββ,,,21 与p γγγ,,,21 等价,那么向量组s ααα,,,21 与p γγγ,,,21 等价.例1 设,)2/5,2,1,3(,)1,1,4,2(21TT---=--=αα 如果向量满足,0)(2321=+-αβα 求β.解 由题设条件,有022321=--αβα 则有β)32(2112αα--=1223αα+-=T T )1,1,4,2(23)2/5,2,1,3(--+----=.)1,2/1,5,6(T --=例2 设).3,0,0,1(),1,4,0,3(),1,2,0,1(21--==-=βαα 问β是否可由21,αα线性表示. 解: 设2211ααβk k +=,可求得1,221-==k k ,所以有212ααβ-=,因此β是21,αα的线性表出.例3 证明:向量)5,1,1(-=β是向量)6,3,2(),4,1,0(),3,2,1(321===ααα的线性组合并具体将β用321,,ααα表示出来.证 先假定,332211αλαλαλβ++=其中321,,λλλ为待定常数,则)5,1,1(-)6,3,2()4,1,0()3,2,1(321λλλ++=)6,3,2()4,,0()3,2,(33322111λλλλλλλλ++=)6,3,2()4,,0()3,2,(33322111λλλλλλλλ++=由于两个向量相等的充要条件是它们的分量分别对应相等,因此可得方程组:⎪⎩⎪⎨⎧=++=++-=+56431321232132131λλλλλλλλ.121321⎪⎩⎪⎨⎧-===λλλ 于是β可以表示为321,,ααα的线性组合,它的表示式为.2321αααβ-+= 向量组的线性组合例4 任何一个n 维向量Tn a a a ),,,(21 =α都是n 维单位向量组T n T T )1,0,,0,0(,,)0,,0,1,0(,)0,,0,1(21 ===εεε的线性组合.解:因为 .2211n n a a a εεεα+++=例5 零向量是任何一组向量的线性组合. 解:因为.00021s o ααα⋅++⋅+⋅=例6 向量组s ααα,,,21 中的任一向量)1(s j j ≤≤α都是此向量组的线性组合. 解:因为 .0101s j j αααα⋅++⋅++⋅=五、线性相关性的概念定义 给定向量组,,,,:21s A ααα 如果存在不全为零的数,,,,21s k k k 使,02211=+++s s k k k ααα (1)则称向量组A 线性相关, 否则称为线性无关. 线性相关的概念的理解:“有一组不全为零的常数”,“存在一组不全为零的常数”,“找到一组不全为零的常数”使得,02211=+++s s k k k ααα 则称向量组,,,,:21s A ααα 线性相关.例 向量组14433221αααααααα++++,,,,判定该向量组线性相关.解:取一组常数1,-1,1,-1使得01-11-114433221=+++++)()()()(αααααααα,所以14433221αααααααα++++,,,线性相关. 线性无关的定义的理解:线性无关的定义:若向量组12,,,s ααα不线性相关,即没有不全为零的数12,,,s k k k P ∈,使11220s s k k k ααα+++=则称12,,,s ααα为线性无关的.等价定义:一个向量组12,,,s ααα,若11220s s k k k ααα+++=,只有120s k k k ====时成立,则称12,,,s ααα为线性无关的.等价定义:一个向量组12,,,s ααα,对于任意一组不全为零的数12,,,s k k k P ∈,使,02211≠+++s s k k k ααα 则称该向量组线性无关.等价定义:一个向量组12,,,s ααα,存在一组常数12,,,s k k k P ∈使得11220s s k k k ααα+++=,可求得120s k k k ====,则称12,,,s ααα为线性无关.例5.2 若向量组),(),,(1001==βα,则向量组βα,线性无关. 找不到一组不全为零的常数21,k k 使得021=+βαk k ,所以向量组βα,线性无关.或者,若存在一组常数21,k k 使得021=+βαk k ,则可求得021==k k , 所以,向量组βα,线性无关.例 若向量组),(11k k ==βα),,(,则向量组βα,线性相关. 因为0,=-=βααβk k 有,即存在1,-k 不全为零的数使得0=-βαk ,所以向量组βα,线性相关例 向量组Tn T T )1,0,,0,0(,,)0,,0,1,0(,)0,,0,1(21 ===εεε线性无关注: 给定向量组,,,,:21s A ααα 如果存在数,,,,21s k k k 使得,02211=+++s s k k k ααα (1)① 当且仅当021====s k k k 时,(1)式成立, 向量组s ααα,,,21 线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.六、线性相关性的判定定理 向量组)2(,,,21≥s s ααα 线性相关的充分必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示. 证明:必要性 设向量组12,,,s ααα线性相关,即存在不全为零的数,,,,21s k k k 使,02211=+++s s k k k ααα 不妨设,01≠k ,则有s s k k k k k k αααα13132121----= , 所以必要性成立.充分性 不妨设1α可由s ααα,,,32 线性表示,即,33221s s l l l αααα+++= 于是有,033221=++++-s s l l l αααα 成立.因为s l l l ,,,132-不全为零,故向量组12,,,s ααα线性相关.定理的逆否命题是:定理6.1’ 向量组)2(,,,21≥s s ααα 线性无关的充分必要条件是向量组中任一向量不能由其余1-s 个向量线性表示.例 设n 维向量组Tn T T )1,0,,0,0(,,)0,,0,1,0(,)0,,0,1(21 ===εεε,证明该向量组线性无关.证:设一组常数,,,,21n k k k 使,02211=+++n n k k k εεε 可得021====n k k k ,故该向量组线性无关.例 如果向量组m ααα,,,21 中有一部向量线性相关, 则整个向量组m ααα,,,21 线性相关.证:不妨设)(,,,21m j j <ααα 线性相关,由线性相关的定义,存在不全为零的数,,,,21j k k k 使,02211=+++j j k k k ααα 从而有不全为零的数,0,0,,,,21 j k k k使得,00012211=+++++++m j j j k k k ααααα 故,m ααα,,,21 .该题的逆否命题是:如果向量组m ααα,,,21 线性无关,则该向量组中一部向量组)(,,,21m j j <ααα 线性无关.结论:向量组m ααα,,,21 部分向量线性相关, 则整个向量组m ααα,,,21 线性相关.向量组m ααα,,,21 整体线性无关,该向量组部分向量线性无关.定理 设列向量组),,,2,1(,21r j a a a nj j j j=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组r ααα,,,21 线性相关的充要条件是齐次线性方程组 0=AX ()有非零解,其中矩阵==),,,(21r A ααα .,21212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛r nr n n r r x x x X a a a a a a a a a证:设 ,02211=+++r r x x x ααα ()即2121111x a a a x n +⎪⎪⎪⎪⎪⎭⎫⎝⎛ ++⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 22212n a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021 nr r r r a a a x . () 将()式做向量的线性运算,即得()线性方程组.向量组r ααα,,,21 线性相关,就必有不全为零的数r x x x ,,,21 使()成立,即是齐次线性方程组 0=AX 有非零解;反之,如果齐次线性方程组 0=AX 有非零解,也就是有不全为零的数r x x x ,,,21 使()成立,则向量组r ααα,,,21 线性相关.该定理的等价命题:向量组r ααα,,,21 线性无关的充要条件是齐次线性方程组0=AX 只有零解结论:任何1+n 个n 维向量都是线性相关的.理由:由定理 当方程个数少于未知数的个数时,齐次线性方程组有非零解.定理 若向量组r ααα,,,21 线性无关,而,βr ααα,,,21 线性相关,则β可由r ααα,,,21 线性表示,且表示法唯一.证:因为,βr ααα,,,21 线性相关,则存在不全为零的数,,,,,21r k k k k使,02211=++++r r k k k k αααβ 其中0≠k (如果0=k ,则由r ααα,,,21 线性无关,又使得,,,,,21r k k k k 必须全为零,这与,,,,,21r k k k k 不全为零矛盾) 于是β可由r ααα,,,21 线性表示,且r r kkk k k k αααβ---= 2211-, 在证表示法唯一,设有两种表示法:,2211r r l l l αααβ+++=,2211r r h h h αααβ+++=于是.0)()()(222111=-++-+-r r r h l h l h l ααα因为向量组r ααα,,,21 线性无关,所以必有,0=-i i h l 即,,,2,1,r i h l i i == 故β可由r ααα,,,21 线性表示,且表示法唯一.推论 如果n F 中的n 向量n ααα,,,21 线性无关,则nF 中的任意向量α可由n ααα,,,21 线行表示,且表示法唯一.例 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例 设有二个2维向量:,10,0121⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛λλ.0002121=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛λλλλ 于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例 n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21 ===εεε称为n 维单位向量组, 讨论其线性相关性. 解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,, =⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 是n 阶单位矩阵.齐次线性方程组0=EX ,由,01≠=E 0=EX 只有零解 故该向量组是线性无关的.例 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 由定理 )(321a a a A ,,= 求齐次线性方程组0=AX 的解,由高斯消元法,对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩阵,可同时看出矩阵A ),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 0=AX 有非零解故向量组,,,321ααα线性相关.同样,),(21αα=B 有0=BX 只有零解,故向量组21a a ,线性无关. 例 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明(1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.随堂练习:1. 判断下列命题是否正确,如正确,证明之,如不正确,举反例:(1) )2(,,,21>m m ααα 线性无关的充要条件是任意两个向量线性无关; (2) )2(,,,21>m m ααα 线性相关的充要条件是有1-m 个向量线性相关;(3) 若向量组21,a a 线性相关, 向量组21,ββ线性相关,则有不全为零的数21,k k ,使得,02211=+ααk k 且,02211=+ββk k 从而使,0)()(222111=+++βαβαk k故2211,βαβα++线性相关;(4)若向量组321,,αa a 线性无关,则133221,,αααα---a a 线性无关;(5)若向量组4321,,,ααa a 线性无关,则14433221,,,αααααα++++a a 线性无关; (6)若向量组n a a α,,,21 线性相关,则113221,,,,αααααα++++-n n n a a 线性相关.百度文库 - 好好学习,天天向上-11 (7))2(,,,21>m m ααα 线性无关的充要条件是任意一个向量都不能由其余的向量线性表示;(8)若有一组全为零的数,021====r k k k 使得,02211=+++r r k k k ααα 则 r ααα,,,21 线性无关.(9)若有一组不全为零的的数,,,,21j k k k 使得,02211≠+++j j k k k ααα 则向量组 j ααα,,,21 线性无关.(10)若向量组r ααα,,,21 线性相关,则任一向量可由其余向量线性表示.2. 试证明:(1) 一个向量α线性相关的充要条件是0=α;(2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
线性代数-第二章-向量和向量空间
n维单 位坐标 向量组
所以,称 是 1, 2 , 3 ,4 的线性组合, 或 可以由 1, 2 , 3 ,4线性表示。
命题2 设向量可由向量组(I) :1,2,,m
线性表出,而(I)中每个向量都可以由向量组
(II) : 1, 2,, s线性表出, 那么也可由向量组
(II)线性表出 给出证明
二 线性相关
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr nr
例3 : 求下列齐次方程组的通解。
(1)
x1 2 x1
2 x2 4 x2
分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
例如:
(1,2,3,, n)
(1 2i,2 3i,,n (n 1)i)
第2个分量 第1个分量
第n个分量
n维实向量 n维复向量
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
xr1 1 0
,nr
是令
xr2
为
0
,
1
,
xn
0
0
0
,
0
所得。
1
Ax 0 的通解是 x k11 k22 knr nr
注:
(1) 证明过程提供了一种求解空间基(基础 解系)的方法。
(2) 基(基础解系)不是唯一的。
(3) 当 r( A) n 时,解空间是{0}.
(2) s t
则向量组 1,2 , , s 必线性相关。
线性方程组6.n 维向量空间
例 2. 设 1 1 , 3 , 0 , 2 , 2
1 , 0 , 3 ,1 ,
3 2 , 7 ,1 , 5 , 4 4 , 4 , 2 , 6 ,
求 子 空 间 M L 1 , 2 s 的 一 组 基 .
b1 b2 a 1 , a 2 a n bn
行向量
T . 称为向量内积的
矩阵表示 !!
11
a1 a2 * 若 an
b1 b2 , , 则 , bn
7
解 :设
1 0 0 0
3 1 1 0 A 2 7 4 4 3 0 2
0 3 1 2
2 1 5 6
2 3 4
1
②+①×1 ③-①×2 ④-①×4
3 1 8
3 1 2
3 1 2
2 1 3 1 4 4 1
1
即 求 与 1的 系 数 矩 阵 A的 行 向 量 组 均 正 交 的 所 有 实 n维 向 量 .
而 求 解 实系数 方程组 AX b
设
A 为 m n矩阵 非齐次线性
2 其 中b b1 , b2 bmT
0,
即 求 与 系 数 矩 阵 A的 行 向 量 组 内 积
下面我们再作一些进一步的讨论 。
1. n 维向量空间的定义
1
我们将数域 F上全体 n 维向量所成集合记为 F , n 则 F 中有两个普遍可行的运算(向量的加法与数乘) 运算结果唯一且封闭 , 适合八条运算性质 。将它们 视为一个整体 , 称为数域 F上的一个 n 维向量空间 , n 仍记为 F 。 Fn={(a1 ,a2 . . .an ),两个运算,八条性质|ai F}
线性代数 N维向量空间 第1节 向量空间
第一节
n维向量空间
向量空间的概念
一、n维向量和n维向量空间
定义1(n维向量) n个有顺序的数 a1 , a2 ,...,an 所在组成的
数组称为一个n维向量。
记作 (a1 , a2 ,...,an (称为行向量) ) a1 a 或 2(称为列向量) 其中ai 称为的第i个分量 an
定义2: (a1 , a2 , , an ), (b1 , b2 , , bn ) R n , 设 规定 (a1 b1 , a2 b2 , , an bn ) ; k (ka1 , ka2 , , kan )
定义3(n维向量空间): 以实数域中的数作为分量的n维向量的全体同时考虑到 如上定义的向量的加法和数乘运算。称R上的n维向量空间,
L(1, 2 ,, m ) {k11 k 22 k mm ki R, i 1,2,,
则 L(1,2 ,,m )是一个向量空间,称为由1,2 ,,m
张成(或生成)的向量空间。
记作:span{1,2 ,,m } 定义3
m n 矩阵A的列向量组成的向量空间称为A的列空间
n n
例1: V1 {( x, y,0) | x, y R}
V2 {( x, y,1) | x, y R}
例2:
V1 {( x1 , x2 , x3 ) | x1 x2 x3 0}
对于向量的加法和数乘是否是R上的个n维向量,记
称N(AT)为A的左零空间。
n
;
记为 R
二、向量空间
定义1 设V是R n 的非空子集合,如果 (1)V对加法运算具有封闭性,
即 , V,有 V
[理学]第四章 n 维向量空间_OK
,
,
,
线性相关
ar1 ar2
arn
21
即向量组1
,
2
,
,
线性相关
m
推论(2)
若干n维向量组1,2, ,m线性无关,则 把每个向量任意添加 s 个分量后,
所得向量组 '1, '2, , 'm 线性无关
证:反证法。设 '1, '2, , 'm 线性相关,
则去掉每个向量的s个分量后得到的
即:rank(α1,α2 , ,αm ) rank(α1,α2 , ,αm , )
(2) β可由向量α1 ,α2 , ,αm惟一地线性表示
存在m个惟一的数x1, x2 , , xm,使得
xα1 1 x2α2 xmαm
方程组 AX 有惟一解
其中A (α1 ,α2 , ,αm ), X (x1 ,x2 , ,xm )T
向量组线性相关,
则整个向量组也必定线性相关,引起矛盾.
所以,它的任意一个部分向量组也必线性无关. 15
定理4.3 向量组1,2 , ,m线性相关 方程x11 x22 xmm O有非零解 rank(1,2 , ,m ) r m
向量组1,2 , ,m线性无关 方程x11 x22 xmm O只有零解 rank(1,2 , ,m ) m
3 (1, 3, 6,3)T ,4 (2, 1,3, 4)T
问:
4是否可由1,
2,
线性表示?
3
1 5 1 2 1 5
解:1,
2,
3,
4
2 3
5 12
3 6
1
0
3 0
3 0
1
11
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 4.1 线性方程组有解的条件
4.1.1 线性方程组的基本概念 4.1.2 线性方程组有解的条件
§ 4.1 线性方程组有解的条件
4.1.1 线性方程组的基本概念
设含有m个变量n个未知数的线性方程组
a11x1 a12 x2
a21 x1
a22 x2
am1x1 am2 x2
a1n xn b1, a2n xn b2 ,
a x a x a x b (i 1, 2, , m)
i1 1
i2 2
in n
i
变成恒等式
a k a k
i1 1
i2 2
a k b (i 1, 2,
in n
i
, m)
的一个有序数组 (k , k , , k )叫做方程组(4.1.1)的一个解.
12
n
有解的线性方程组叫做相容方程组;无解的线性方程组叫做矛盾方程组.
对于n元齐次线性方程组Ax=0,显然有R(A,0)=R(A), 即齐次线性方程组永远有解.
推论4.1 n元齐次线性方程组 Ax 0有非零解的充要条件 R( A) n.
§ 4.1 线性方程组有解的条件
综合上述讨论得到 求解线性方程组的方法:对于齐次线性方程组,只要将系数矩阵用初等行
变换化成简化行阶梯形矩阵,便可写出其通解;对于非齐次线性方程组,先将 增广矩阵用初等行变换化成行阶梯形矩阵,便可判断其是否有解。若有解,则 继续用初等行变换把增广矩阵化成简化行阶梯形矩阵,便能写出其通解。
例4.1
2x 1
x 2
x 3
+x4
2,
解线性方程
x 1
x 2
2x 3
x4
4,
4x1 6x2 2x3 2x4 4,
3x 1
6x 2
9x 3
7 x4
9.
(4.1.3)
2x 1
x 2
x 3
+x4
2,
①
x 1
x 2
2x 3
x4
4,
①
解
x 1
x 2
2x 3
x4
4,
4x1 6x2 2x3 2x4 4,
a mn
xn
b1
b2
bm
则方程组可以表示成 Ax
(4.1.2)
称矩阵A为方程组的系数矩阵,β为方程组的常数项矩阵,x为n元未
知量矩阵.方程(4.1.2)称为线性方程组的矩阵形式,也称之为向量方程.
§ 4.1 线性方程组有解的条件
我们把方程组的系数矩阵A和常数项矩阵β放在一起构成一个m行n+1列矩阵
§ 4.1 线性方程组有解的条件
例4.2
解下列方程组
5
x 1
x 2
2x 3
x 4
7,
2
x 1
x 2
4x 3
2x 4
1,
x 1
3x 2
6x 3
5x 4
0.
5 1 2 1 7 1 3 6 5 0 1 3 6 5 0
解
(A
)
2 1
1 3
4 6
2 5
1 0
2 5
1 1
4 2
② ③
①③② 2
2x 1
x 2
x 3
+x4
2,
2x1 3x2 x3 x4 2,
② ③
3x 1
6x 2
9x 3
7 x4
9.
④
3x1
6x 2
9x 3
7 x4
9.
④
§ 4.1 线性方程组有解的条件
x 1
x 2
2x 3
x4
4,
③②--22①①
④-3①
3x 2
+3x 3
x4
5x2 5x3 3x4
(4.1.1a)
即线性方程组Ax=有解的充分必要条件是方程组(4.1.1a)有解.
§ 4.1 线性方程组有解的条件
定理4.1 n元线性方程组Ax 有解的充要条件是 R( A) R( A ) r .
特别,当 R( A) R( A ) r n 时,由线性方程组(4.1.1a)得到线性方程组
方程组的所有解的集合叫做方程组的解集(解集的元素都是有序数组). 矛盾方程组的解集是空集.
解集相同的两个方程组叫做同解方程组.
§ 4.1 线性方程组有解的条件
4.1.2 线性方程组有解的条件
在初等数学中,已学过用消元法解简单的线性方程组,这一方法也适用于求解一
般的线性方程组(4.1.1),并可用方程组增广矩阵的初等行变换表示其求解过程.
本章首先以矩阵为工具讨论线性方程组有解的条件及求解方法,其次引入n维 向量与向量空间的概念,在向量组、矩阵与线性方程组之间建立联系,然后以向 量组、矩阵为工具,讨论线性方程组有无穷多个解时,线性方程组的解的结构.
第4章 线性方程组与n维向量空间
§4.1 线性方程组有解的条件 §4.2 n维向量空间的概念 §4.3 向量组的线性相关性 §4.4 向量组的秩 §4.5 线性方程组解的结构
第4章 线性方程组与n维向量空间
线性方程组在数学许多分支以及其它领域中都有广泛的应用,求解线性方 程组是代数学讨论的核心问题之一. 在第一章中介绍过利用克拉默法则求解线性方 程组的方法, 但它要求线性方程组中方程个数与未知数个数相等,且方程组的系数 行列式不等于零. 然而,实际问题中所遇到的线性方程组在很多情形并不满足克拉 默法则的条件,因此需要寻找求解线性方程组的其它方法.
6, 6,
3x 2
3x 3
4x4
3.
①
x 1
x 2
2x 3
x4
4,
①
② ③
③-5②
④ +3②
④
3x +3x
2
3
x4
6,
4 3 x4 4,
3x4 9.
② ③ ④
x 1
x 2
2x 3
x4
4,
①
③(- 3)
④14 3
3x +3x
2
3
x4
6,
x4 3,
② ③
x4 3. ④
x 1
x 2
4
r r
1
2
r 1
32
2 2
1 3
1 1
1 1
2
2
3 6 9 7 9
3 6 9 7 9
1 1 2 1 4
0 r +r (-2) 2 1 r +r (-2) 0 r3 +r1 (-3)
3 5
3 5
1
6
3 6
41
0 3 3 4 3
1 1 2 1 4
r +r (- 5)
a11 a12
(A
)
a21
a22
am1 am2
a1n
b1
a2 n
b2
amn bm
则称矩阵(A β)为方程组的增广矩阵.
一个含m个方程n个未知量的线性方程组与其m(n+1)阶增广矩阵之间存在 一一对应关系,即可用方程组的增广矩阵完全代表该线性方程组.
§ 4.1 线性方程组有解的条件
使方程组(4.1.1)的每个方程
由例4.1的求解过程可见,用消元法解线性方程组的过程中,始终把方程组看作 一个整体,用到三种变换:交换第i个方程与第j个方程的次序(方程i与方程j相互 交换);用不等于零的数k乘以第i个方程(以i×k替换方程i);第i个方程加上第j个 方程的k倍(以i+kj替换方程i).由于这三种变换都是可逆的,即
ar' n dr
0
dr
1
0 0
0 0
§ 4.1 线性方程组有解的条件
于是线性方程组Ax=的同解方程组为
x1
a x ' 1,r 1 r 1
x2
a x ' 2,r 1 r 1
xr
a x ' r ,r 1 r 1
a1'n xn d1,
a2' n xn
d
,
2
ar'n xn
d
,
r
0 dr1.
1
r (-
2
1)
3
0
0
1 1 0
2 0 1 0 01
7
3
3
1
r +r (-1) 12
0
0
0 1 0
0
0
0
0
0
0
0
x 1
x +4, 3
由最后一个矩阵得到方程组的解
x 2
x +3, 3
x4 3,
1 0 4
1 0
3
0 1 3
0
0
0
其中x3可任意取值.
(4.1.4)
上述表明,用消元法解方程组的过程就是对方程组的增广矩阵作有限
令c为任意常数,方程组的解可记作
x1 c 4
x
x2
c
3
x3
c
x4 3
x1 1 4
x
x2
c
1
3
x3
1 0
x4 0 3
这表明方程组(4.1.3)有无穷多个解.
x 1
x +4, 3
x 2
x +3, 3
x4 3,
§ 4.1 线性方程组有解的条件
amn xn bm.
(4.1.1)
其中 x , x ,
1
2
,
x n
代表n个未知量;m是方程的个数,aij
(i 1, 2,