中职直线与圆的方程单元测试题
(完整)中职单报高职《直线与圆的方程》真题
![(完整)中职单报高职《直线与圆的方程》真题](https://img.taocdn.com/s3/m/9cc24987580216fc710afd04.png)
(2008)已知直线I 过圆x 2 y 2 2x 4y 0的圆心和坐标原点,则直线 |的斜率 ()A -2B 、-1C 、1D 、2 (2008)若原点到直线ax y 10的距离为二2,则a ()2A 、1B 、 2C 、2D 、 1(2008)若直线I 过点2, 3,且与直线x 3y 10平行,则直线I 的方程为 _____(2008)求以点C 0, 1为圆心,且与直线I 3x 4y 16 0相切的圆的方程A 、 60B 、 120C 、 30D 、 150(2009)过点A 1,2和点B 2,4的直线方程为 ()A > 2x 3y 80 B > 3x 2y 80 C 、 2x 3y 80 D > 3x 2y 8(2011)圆(x1)2 (y 1)2 2的圆心和半径分别为();A 、(1, -1) ,2B 、(1, -1 ), •、2C 、(-1 , 1), 、 2D 、(-11),2(2011)直线 l :2x 3y 6 0的斜率是();A 3 c322A 、一 B、C、一 D 、2233(2011)直线 l :3x 4y 25 0与圆C : x 2y 225的位置关系是(); A > 相交 B 、 相切C 、相离D 、都不是(2011)已知直线 l 的倾斜角为45。
,且过点(-1,-3 ),则直线 l 的方程是(2009)直线 y 2x 5 0 与圆 x 2 y 2 2x 2y 20之间的关系是A 、相离B 、相切C 、相交且直线不过圆心D 、相交且直线过圆心(2009)直线 y.3x 31的倾斜角是A 、( -1,0),4B 、( 1,0),2 C(1, 0),4 D 、( -1,0),2( ); A x y 20 B 、 x y 20 C 、x y 4(2011)过点M ( 1 , -2 )且与直线2x y 1 是 _______________________ ;(2011)求以点C (2, -1 )为圆心,且与直线l :3x 4y 5 0相切的圆的方程;(2015)圆(x 1)2 y 2 4的圆心和半径分别为( ); A 、( 1,0),2 B 、( 1,0),4 C 、( 0,1),2 D 、(0,1),4(2015)直线x y 2 0的纵截距是()311A -2B 、3 C 、 1 D 、122 2(2015)已知直线I 的倾斜角为45,且过点(0,0 ),则该直线I 的方程是()A x y 0B 、x y 0C 、x y 1 0D 、x y 1 0(2015)求以点A ( 2,-1 )为圆心,且与直线x 2y 1 0平行的直线的方程;(2014)圆 x 2 (y 1)2 9的圆心和半径分别为( ); A 、( 0,-1 ),9 B 、(0,1),3 C 、 (0, 1),9 D 、(0,-1 ),3(2014)直线 x 2y 1 0的纵截距是()1A -2B 、1 1C 、1D 、222(2014)已知直线I 的倾斜角为45,且过点( 1,2 ),则该直线I 的方程是()(2014)求以点A ( 2, -3 )为圆心,且与直线3x 6y (2013)圆(x 1)2 y 24的圆心和半径分别为( );0平行的直线方程A x y 1 0B 、 2x y 1 0C x y 1 0D 、x y 1 0 2 0垂直的直线的方程;(2013)直线2x y 1 0的纵截距是()A -2B 、-1C 、-1D 、2(2013)已知直线I 的倾斜角为30,且过点(-,3,-1 ),则该直线I 的方程是 () (2012)圆x 2 (y 1)2 3的圆心和半径分别为( );A 、( 0,-1), ,3B 、( 0,1), ,3C 、( 0,-1),3D 、( 0,1),3(2012)直线l :3x y 1 0的斜率是( );A 、 -3B 、1C 、-1D 、3(2013)已知直线I 的倾斜角为135,且过点(-1,-1 ),则该直线I 的方程是()B 、 x y 2 0 B 、x y 2 0C 、 x y 2 0D、x y 4 0(2012)求以点A (-3,5)为圆心,且与直线4x 3y 7 0垂直的直线的方程是 ______ ;(20⑵求以点C (0, -1 )为圆心,且与直线l :3x 4y 16 0相切的圆的方 程;A 、.. 3x 3y 0C 、 、3x 3y 1B > . 3x y 2 0、,3x 3y 1 0。
中职数学:第八章直线与圆测试题
![中职数学:第八章直线与圆测试题](https://img.taocdn.com/s3/m/56270823a517866fb84ae45c3b3567ec102ddc30.png)
第八章:直线与圆测试题一、选择题(本大题共l0小题,每小题3分,共30分)1.点()1,2M 与点()1,5-N 的距离为 ( )A 、13B 、14C 、15D 、42.在平面内,一条直线倾斜角的范围是 ( )A 、⎥⎦⎤⎢⎣⎡2,0πB 、)[π,0C 、[]0,π-D 、[]ππ,-3. 直线x=3的倾斜角是 ( )A 、00B 、 300C 、900D 、不存在4.已知 A (-5,2),B (0,-3)则直线AB 斜率为 ( )A 、 -1B 、1C 、 31 D 、0 5.如图直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k 则 ( )A 、1k >2k >3kB 、2k >1k >3kC 、3k >2k >1kD 、2k >3k >1k6.经过点(1,2)且倾斜角为450的直线方程为 ( )A 、1+=x yB 、x y 2=C 、3+-=x yD 、x y 2-=7.直线062=+-y x 与两坐标轴围成的三角形面积为 ( )A 、12B 、18C 、9D 、68. 直线02=+x 和01=+y 的位置关系是 ( )A 、相交B 、平行C 、重合D 、以上都不对9.过点(2,1)A ,且与直线0102=-+y x 垂直的直线l 的方程为 ( )A 、20x y +=B 、20x y -=C 、02=-y xD 、20x y +=10.圆心为(-1,4),半径为5的圆的方程为 ( )A 、25)4()1(22=++-y xB 、25)4()1(22=-++y xC 、5)4()1(22=++-y xD 、5)4()1(22=-++y x二、填空题(本大题共8小题,每小题3分,共24分)11.已知A (7,4),B (3,2),则线段AB 的中点坐标是 . 12.直线013=++y x 的倾斜角为 ___ 13.经过点(1,3),(5,11)的直线方程为_____________________14.直线1+=kx y 经过(2,-9),则k =____________________15.直线06=-+y mx 与直线0632=--y x 平行,则m =___ ___ 16.原点到直线0834=+-y x 的距离为____________17.已知圆的方程为04222=+-+y x y x ,则圆心坐标为__________,半径为____18.直线与圆最多有多少个公共点______ _ 三、解答题(本大题共6小题,共46分,解答应写出文字说明、证明过程或演算步骤)19.已知三角形的顶点是A(1,5),B(1,1), C(6,3),求证:ABC ∆是等腰三角形。
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案
![中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案](https://img.taocdn.com/s3/m/ffa219b58e9951e79a892791.png)
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
成都四川省成都市中和职业中学选修一第二单元《直线和圆的方程》测试卷(答案解析)
![成都四川省成都市中和职业中学选修一第二单元《直线和圆的方程》测试卷(答案解析)](https://img.taocdn.com/s3/m/53d59828f61fb7360b4c65f5.png)
一、选择题1.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 1632.如果直线:5l y kx =-与圆22240x y x my +-+-=交于M 、N 两点,且M 、N 关于直线20x y +=对称,则直线l 被圆截得的弦长为( ) A .2B .3C .4D .233.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( ) A .点在圆外B .点在圆内C .点在圆上D .不能确定4.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .45.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( ) A .4B .2C .22D 26.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .167.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[22,22]-D .2222⎡-⎢⎣⎦8.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC 的周长为423+k 的值为( ) A .32B .32-C .32±D .12±9.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条10.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .22⎡-⎢⎣⎦D .2⎡⎢⎣⎦二、填空题13.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线一般式方程是___________14.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为,则m =______.15.已知M ,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则线段MN 的长度为______.16.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.17.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.18.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个19.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.已知点A (8,0),点B (4,0),动点M (x ,y )满足:|MA |MB |. (1)求点M 的轨迹方程;(2)点P (0,6),在直线OP (O 为坐标原点)上存在定点E (不同于点P ),满足对于圆M 上任意一点N ,都有NENP为常数,试求所有满足条件的点E 的坐标.22.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.23.在平面直角坐标系中,圆C 过点()1,0E 和点()0,1F ,圆心C 到直线0x y +=的距.(1)求圆C 的标准方程;(2)若圆心C 在第一象限,M 为圆C 外一点,过点M 作圆C 的两条切线,切点分别为A 、B ,四边形MACB ,求点M 的轨迹方程.24.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB 的面积为(1)求直线l 的方程;(2)直线:l y x =',点P 在l '上,求PA PB +的最小值. 25.我们定义一个圆的圆心到一条直线的距离与该圆的半径之比,叫做直线关于圆的距离比,记作λ.已知圆1C :221x y +=,直线:340l x y m -+=. (1)若直线l 关于圆1C 的距离比2λ=,求实数m 的值;(2)当0m =时,若圆2C 与y 轴相切于点()0,3A ,且直线l 关于圆2C 的距离比65λ=,试判断圆1C 与圆2C 的位置关系,并说明理由 26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值. 【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系, 因为2AB BP ==,所以()3,0P,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-,整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,3y =此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP 的面积最大为11834223333QAPS AP =⨯=⨯==, 故选:B 【点睛】关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.2.C解析:C 【分析】由题意推出圆心在直线上,求出m ,求出圆的半径与弦心距,利用圆心距、半径、半弦长满足勾股定理,求出弦长.因M 、N 关于直线20x y +=对称,故圆心(1,)2m-在直线20x y +=上,4m ∴=. 又因为直线20x y +=与:5l y kx =-垂直,21K ∴-⨯=-,12K ∴=, 设圆心(1,2)-,到直线1502x y --=的距离为d ,d ∴==圆的半径为3r ==.4MN ∴==.故选:C . 【点睛】关键点点睛:本题的关键是利用对称性可知圆心在直线20x y +=上.3.A解析:A 【分析】直线1ax by +=与圆221x y +=||1<,即为1>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点,||1<,1>,因为点(,)b a 与221x y +=圆224x y +=的半径为1,所以点P 在圆外. 故选:A. 【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来.4.B解析:B根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B. 【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.5.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.6.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果.因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d = 所以四边形PAOB的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.7.C解析:C 【分析】在OMN=,从而得到M y =ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,ON =12==整理得M y =由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,M y 取值最值,所以22,22M y ⎡⎤∈-⎣⎦故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;8.A解析:A 【分析】先根据半径和周长计算弦长23AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC 的周长为423+2423r AB +=+23AB =又直线与圆相交后的弦心距2243144k k d k k +-+==++,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离22000245(1)3,41x x x d ---+==+∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.或【分析】当纵截距为时设直线方程为代入点求得的值得解当纵截距不为时设直线的截距式方程代入点求得直线的方程【详解】当轴上的截距时设直线方程为点代入方程得即当时设直线的方程为点代入方程解得即直线方程为即解析:290x y +-=或250x y -=【分析】当纵截距为0时,设直线方程为y kx =,代入点()5,2求得k 的值得解,.当纵截距不为0时,设直线的截距式方程,代入点()5,2求得直线l 的方程.【详解】当y 轴上的截距0b =时,设直线方程为y kx =,点()5,2代入方程,得25y x =,即250x y -=.当0b ≠时,设直线的方程为12x y b b +=,点()5,2代入方程,解得92b =,即直线方程为1992x y +=,即290x y +-=.故答案为:250x y -=或290x y +-=【点睛】讨论截距为0或截距不为0是解题关键,否则会漏解,属于基础题.14.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线 解析:1【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案. 【详解】根据题意,圆()222:2400C x y mx y m m +--+=>, 即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r ,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l的距离d == 圆心到直线l的距离d ==,则有=1m =或-3(舍),故1m =,故答案为:1.【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.15.【分析】利用两个圆的方程求出公共弦所在直线方程然后求出点到直线的距离再根据勾股定理可求得弦长【详解】由两圆方程相减消去二次项可得两圆公共弦所在直线方程为:又圆的圆心半径所以点到直线的距离所以故答案为 解析:2 【分析】 利用两个圆的方程求出公共弦所在直线方程,然后求出点A 到直线MN 的距离,再根据勾股定理可求得弦长.【详解】由两圆方程相减,消去二次项可得两圆公共弦MN 所在直线方程为:0x y -=, 又圆22:20A x y x +-=的圆心(1,0)A ,半径R =1,所以点A 到直线MN 的距离211d ==+, 所以221||22122MN R d =-=-=. 故答案为:2【点睛】关键点点睛:利用两个圆的方程求出公共弦所在直线方程是解题关键. 16.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为: 解析:473【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可.【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r .要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==,所以当||PM 最小时,||MN 最小因为PM =∣,所以当||PC 最小时,||MN 最小.因为min ||PC ==,所以cos3MCP ∠==,所以sin 3MCP ∠=, 由于1in 2s 2MCP MN ∠=所以min ||MN =.. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||PC =.考查化归转化思想和运算能力,是中档题. 17.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.故答案为:x +4y -4=0.【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.18.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点 解析:7【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=± ∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=, 共7个,故答案为:7.【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.19.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果.【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1. 设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆.由题意得圆C 和点M 的轨迹有公共点,∴13≤≤, 解得03a ≤≤.∴实数a 的取值范围是[]0,3.【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果. 20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是 解析:3【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值.【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP 应当最大,∴OP 应当最小,当且仅当OP 与直线136x y +=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离d == 设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max ||OQ ==故答案为:53. 【点睛】 本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)2232x y +=;(2)160,3⎛⎫ ⎪⎝⎭E . 【分析】(1)直接用坐标表示出已知等式,化简后可得方程; (2)点(0,)E m ,(,)N x y ,由NE t NP=2222()(6)x y m t x y +-=+-与圆方程联立方程组消去x 后得关于y 的恒等式,由此可求得m ,t .【详解】 解:22222,(8)2(4),=∴-+=-+MA MB x y x y2232x y ∴+=,即点M 的轨迹方程是2232x y +=.(2)设点(0,)E m ,(,)N x y ,,=NE t NP2222()(6)∴+-=+-x y m t x y又∵2232x y +=②,由①②整理,得222(122)32680-++-=t m y m t ,即2221220,32680,t m m t ⎧-=⎨+-=⎩解得16,63m m ==(舍),3=t ∴满足条件的点E 的坐标为16(0,)3E . 【点睛】本题考查直接法求轨迹方程,考查圆中的定点问题.求定点方法:设定点坐标(0,)E m ,动点坐标(,)N x y ,NE NP为常数t ,把常数t 的等式用动点坐标表示,同时结合圆的方程,得出关于变量x 或y 的恒等式,由恒等式知识求得常数及定点坐标.22.(1)22(2)3x y -+=;(2)【分析】(1)设动点坐标为(,)x y ,由两点间距离公式得等式,化简后可得轨迹方程;(2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-,设直线:CD y x t =-+,可得22(,)22t t P +-,利用圆的几何性质得12NP CD ==0t =或3t =,确定直线:CD y x =-,可得,C D 坐标,然后求得,A B 两点坐标,得弦长AB .【详解】解:(1)设曲线E 上任意一点坐标为(,)x y ,=,整理得22410x y x +-+=,即22(2)3x y -+=.(2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-, 设直线:CD y x t =-+,由2y x y x t=-⎧⎨=-+⎩得点22(,)22t t P +-,由圆的几何性质得12NP CD ==而22222222(1)(),3,22t t NP ED EP +-=-+==, 解得0t =或3t =,又,C D 两点均在x 轴下方,所以直线:CD y x =-,由22410x y x y x ⎧+-+=⎨=-⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩或11x y ⎧=⎪⎪⎨⎪=⎪⎩,不失一般性,设(11),(11)2222C D --+--, 由22410(1)x y x y u x ⎧+-+=⎨=-⎩,消去y 得2222(1)2(2)10u x u x u +-+++=①方程①的两根之积为1,所以点A 的横坐标2A x =又因为点C (11)22--在直线1:10l x my --=上,解得1m ,直线1:1)(1)l y x =-,所以(2A +,同理可得(2B -,所以线段AB 的长为【点睛】关键点点睛:本题考查求圆的轨迹方程,考查求圆中弦长.本题求弦长方程是求出交点坐标,再得弦长,而解题关键是由直线12l l ⊥,且交点为定点(1,0)N ,设出CD 方程,CD中点P ,由圆的性质得12NP CD ==求得CD 方程,得出,C D 两点坐标,再得,A B 两点坐标,得弦长. 23.(1)()()22111x y -+-=或()()22115x y +++=;(2)()()22114x y -+-=.【分析】(1)由题意可知,圆心C 在线段EF 的垂直平分线y x =,可设圆心(),C a a ,由圆心C到直线0x y +=可求得实数a 的值,进而可求得圆C 的标准方程; (2)推导出Rt CAM Rt CBM ≅△△,可得出四边形MACB 的面积2CAM S S CA AM ==⋅=2CM =,可得出点M 的轨迹是以C 为圆心,半径为2的圆,进而可求得点M 的轨迹方程.【详解】(1)直线EF 的斜率为01110EF k -==--,线段EF 的中点为11,22P ⎛⎫ ⎪⎝⎭, 所以,线段EF 的垂直平分线的方程为1122y x -=-,即y x =, 因为圆C 过点()1,0E 和点()0,1F ,所以圆心C 在线段EF 的垂直平分线y x =上, 所以可设圆心为(),C a a ,因为圆心C 到直线0x y +==1a =±,当1a =时,圆心为()1,1,半径1r EC ==,圆C 的方程为:()()22111x y -+-=;当1a =-时,圆心为()1,1--,半径r EC ==C 的方程为:()()22115x y +++=.所以圆C 的标准方程为()()22111x y -+-=或()()22115x y +++=;(2)由题知CA MA ⊥,CB MB ⊥,CA CB =,CM CM =,90CAM CBM ∠=∠=,所以,Rt CAM Rt CBM ≅△△, 所以四边形MACB 的面积23CAM S S CA AM ==⋅=因为1CA =,所以3AM =2224CM CA AM =+=, 所以2CM =,点M 的轨迹是以C 为圆心,半径为2的圆,所以点M 的轨迹方程为:()()22114x y -+-=.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.24.(1)343y x =-+;(2)7 .【分析】(1)求出直线l 的斜率,设直线l 的方程为:3y x b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A ,(0,43B ,求出点()4,0A 关于直线3:l y x ='的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值.【详解】(1)由题意可得:直线l的斜率2πtan3k ==, 设直线l的方程为:y b =+. 可得直线l与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b >.12OAB S b ∴=⨯=△b =, ∴直线l的方程为:y =+.(2)由(1)可得:()4,0A,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则044232n m n m -⎧=⎪-⎪⎨+⎪=-⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-. PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】 关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.25.(1)10±;(2)外切或相离,答案见解析.【分析】(1)根据新定义的要求即可求出m 的值;(2)先设圆2C 的方程222()(3)x a y a -+-=,然后根据新定义可求出a 的值,再根据a的值判断两圆的位置关系.【详解】(1)由直线关于圆的距离的比的定义得25m=,所以10m =±(2)当0m =时,直线:340l x y -=圆2C 与y 轴相切点于(0,3)A所以可设2C :222()(3)x a y a -+-=3126545a a a -=⇒=-或43 ①当4a =-时,2C :22(4)(3)16x y ++-=两圆的圆心距5d =,两圆半径之和为145+=,因此两圆外切②当43a =时,2C :22416()(3)39x y -+-= 两圆的圆心距48433d =-+=大于两圆的半径之和47133+=,因此两圆外离 【点睛】关键点点睛:本题的关键点是利用新定义圆的圆心到一条直线的距离与该圆的半径之比,叫做直线关于圆的距离比,可求出m 的值,利用圆2C 与y 轴相切于点()0,3A 设出其方程为222()(3)x a y a -+-=根据新定义可求出a 的值,再比较圆心距与半径之和、差,可判断两圆的位置关系.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
![中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案](https://img.taocdn.com/s3/m/e568a9694a7302768f993906.png)
中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)题号12345678910答案1.已知A(2,-3),B(0,5),则直线AB的斜率是()A.4B.-4C.3D.-32、设A(-1,3),B(1,5),则直线AB的倾斜角为()A.30︒B.45︒C.60︒D.90︒3.下列哪对直线互相垂直A.l1:y=2x+1;l2:y=2x-5 B.l1:y=-2;l2:y=5C.l1:y=x+1;l2:y=-x-5 D.l1:y=3x+1;l2:y=-3x-54.以A(1,2),B(1,6)为直径两端点的圆的方程是()A.(x+1)2+(y-4)2=8B.(x-1)2+(y-4)2=4C.(x-1)2+(y-2)2=4D.(x+1)2+(y-4)2=165.若P(-2,3),Q(1,x)两点间的距离为5,则x的值可以是()A.5B.6C.7D.86.方程为x2+y2-2x+6y-6=0的圆的圆心坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为()A.3x+y-2-3=0B.3x-y+2+3=0C.x-y+3=0D.x+y+3=08.下列哪对直线互相平行()A.l y=-2,l:x=5B.l y=2x+1,l:y=2x-51:21:2C.l y=x+1,l:y=-x-5D.l y=3x+1,l:y=-3x-51:21:29.下列直线与直线3x-2y=1垂直的是()A.4x-6y-3=0B.4x+6y+3=0C.6x+4y+3=0D.6x-4y-3=010.过点A(2,3),且与y轴平行的直线方程为()A.x=2B.y=2C.x=3D.y=3二.填空题(4分*8=32分)11.直线3x-2y-6=0的斜率为,在y轴上的截距为12.方程x2+y2-6x+2y-6=0化为圆的标准方程为13.两直线x+2y+3=0,2x-y+1=0的位置关系是________14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为16.直线2x+3y+1=0与圆x2+y2=1的位置关系是_____17.若方程x2+y2-3x+4y+k=0表示一个圆,则k的取值范围是________18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为___________三.解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB的中点,求m+n。
中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案
![中职数学基础模块下册第八章《直线和圆的方程》单元检测试题及参考答案](https://img.taocdn.com/s3/m/a6d68f552e3f5727a5e962fc.png)
中职数学第八章《直线和圆的方程》单元检测(满分100分,时间:100分钟)一.选择题(3分*10=30分)1.已知A(2,-3),B(0,5),则直线AB 的斜率是( )A.4B.-4C.3D.-3 2、设A(-1,3),B(1,5),则直线AB 的倾斜角为( )A.30︒B.45︒C.60︒D.90︒ 3. 下列哪对直线互相垂直A. 52:;12:21-=+=x y l x y lB. 5:;2:21=-=y l y lC. 5:;1:21--=+=x y l x y lD. 53:;13:21--=+=x y l x y l 4.以A(1,2),B(1,6)为直径两端点的圆的方程是( ) A.(x+1 )2 +(y-4)2 =8 B.(x-1 )2 +(y-4)2 =4C.(x-1 )2 +(y-2)2 =4D.(x+1 )2 +(y-4)2 =16 5.若P(-2,3),Q(1,x)两点间的距离为5,则x 的值可以是( ) A. 5 B. 6 C. 7 D. 8 6.方程为x 2+y 2-2x+6y-6=0的圆的圆心坐标是( ) A.(1,3) B.(-1,3) C.(1,-3) D.(2,1)7.过点A(-1,2),且,倾斜角是60︒的直线方程为 ( )20y +-=20y -++= C. 30x y -+= D. 30x y ++= 8.下列哪对直线互相平行( )A.5:,22:1=-=x l y lB.52:,122:1-=+=x y l x y lC.5:,12:1--=+=x y l x y lD.53:,132:1--=+=x y l x y l9.下列直线与直线123=-y x 垂直的是( )A.0364=--y xB.0364=++y xC.0346=++y xD.0346=--y x 10.过点)3,2(A ,且与y 轴平行的直线方程为( ) A.2=x B.2=y C.3=x D.3=y二.填空题(4分*8=32分)11.直线0623=--y x 的斜率为 ,在y 轴上的截距为 12.方程062622=-+-+y x y x 化为圆的标准方程为 13.两直线230,210x y x y ++= -+=的位置关系是________ 14.点(1,3)到直线y=2x+3的距离为____________15.平行于直线x+3y+1=0,且过点(1,2)的直线方程为 16.直线2x+3y+1=0与圆x 2+y 2=1的位置关系是_____17.若方程x 2+y 2-3x+4y+k=0 表示一个圆,则k 的取值范围是 ________ 18.过A(-1,2),B(2,1),C(3,2)三点的圆方程为 ___________三. 解答题(共6题,共计38分)19.已知两点A(2,6),B(m,-4)其中M(-1,n)为AB 的中点,求m+n 。
中职数学第八章直线与圆测试题
![中职数学第八章直线与圆测试题](https://img.taocdn.com/s3/m/8ff5cb28b5daa58da0116c175f0e7cd18425188c.png)
第八章:直线与圆测试题一、选择题(本大题共l0 小题,每题 3 分,共 30 分)1. 点M 2,1 与点N5, 1 的距离为()A、13 B 、14 C 、15 D 、42. 在平面内,一条直线倾斜角的范围是()A、0,B、0,C、,0D、,23. 直线 x=3 的倾斜角是( )A 、00B 、 300C 、 900D 、不存在4. 已知 A (- 5,2), B( 0,- 3)则直线 AB斜率为()A、-1 B 、1 C 、1D 、0 35. 如图直线 l1 , l 2, l 3 的斜率分别为 k1, k2, k3则()A、k1>k2>k3B、k2>k1>k3C、k3>k2>k1D、k2>k3>k16. 经过点( 1,2)且倾斜角为450的直线方程为()A、y x 1 B 、y 2x C 、y x 3 D 、y 2x7. 直线 2 x y 6 0 与两坐标轴围成的三角形面积为( )A、12 B 、 18 C 、 9 D 、68. 直线 x 2 0 和y 1 0 的地点关系是()A、订交 B 、平行 C 、重合 D 、以上都不对9. 过点A(2,1),且与直线2x y 10 0 垂直的直线l的方程为( )A 、x 2 y 0B 、 2x y 0C 、x 2 y 0 D、 2x y 010. 圆心为( -1,4 ),半径为 5 的圆的方程为( )A、( x 1)2 ( y 4)2 25 B 、 ( x 1) 2 ( y 4) 2 25C、( x 1)2 ( y 4)2 5 D 、 ( x 1) 2 ( y 4) 2 5二、填空题(本大题共8 小题,每题 3 分,共 24 分)11. 已知 A(7,4 ),B(3,2 ),则线段 AB的中点坐标是.12. 直线 3x y 1 0 的倾斜角为 ___13. 经过点( 1, 3),( 5, 11)的直线方程为 _____________________14. 直线 y kx 1经过(2,-9),则k =____________________15. 直线 mx y 6 0 与直线 2x 3y 6 0平行,则 m =___ ___16. 原点到直线 4x 3y 8 0 的距离为____________17. 已知圆的方程为x2 y 2 2x 4y 0 ,则圆心坐标为__________,半径为____18.直线与圆最多有多少个公共点 ______ _三、解答题(本大题共 6 小题,共 46 分,解答应写出文字说明、证明过程或演算步骤)19. 已知三角形的极点是A(1 ,5),B(1 ,1), C(6 ,3), 求证:ABC 是等腰三角形。
中职数学直线与圆的方程单元测试卷(2020年整理).pptx
![中职数学直线与圆的方程单元测试卷(2020年整理).pptx](https://img.taocdn.com/s3/m/9abe8136caaedd3383c4d389.png)
A 、 y x 1 B 、 y 2x
C 、 y x 3 D 、 y 2x
4、直线 3x y 1 0 的倾斜角为( )
A 、 300 B 、 1500 C 、 60 0 D 、 1200
5、已知直线 ax-y+3=0 与 2x-3y=0 平行,则 a=( )
Байду номын сангаас
A、 2
B、 3
3
C、
2
2
D、
一、 选择题(每小题 5 分,共 30 分):
1、直线 x y 6 0 与直线 x y 0 的交点坐标为( ) A、
(-3,3) B、 (3,-3) C、(4,2) D、(3,3)
2、已知 A(-5,2)B(0,-3)则直线 AB 斜率为( )
A 、 -1
B 、1
1
C、 D、0
3
3、经过点(1,2)且倾斜角为 1350的直线方程为( )
直线方程?
13、求两条平行直线 4x 3y 1 0 和 8x 6y 1 0 的距离?
14、三角形的三个顶点是A(2,0),B(3,5),C(0,3),求经过A、B、C 三点的圆。
1
3
6、直线 2x y 6 0 与两坐标轴围成的三角形面积为( )
A、12 B、18 C、 9 D、6 二、填空(每小题 5 分,共 20 分):
7、经过点(1,3)、(5,11)的直线方程为 8、过点 A(1,-1)且与x 轴平行的直线方程为
9、若直线l 垂直于直线 x 2y 1 0 且它与直线 2x y 4 0 交于 y 轴上同一点,则直线l 的方程
为
10、点 P(m,-m+1)到直线3x 4y 4 0 的距离为 7,则 m 的值为
中职数学直线与圆的方程单元测试含参考答案
![中职数学直线与圆的方程单元测试含参考答案](https://img.taocdn.com/s3/m/1215cc5343323968001c9240.png)
中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。
A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。
(完整版)中职数学:第八章直线与圆测试题(可编辑修改word版)
![(完整版)中职数学:第八章直线与圆测试题(可编辑修改word版)](https://img.taocdn.com/s3/m/f350d4bbf424ccbff121dd36a32d7375a417c637.png)
(完整版)中职数学:第八章直线与圆测试题(可编辑修改word版)第八章:直线与圆测试题一、选择题(本大题共 l 0 小题,每小题 3 分,共 30 分)1.点M (2,1)与点 N (5,-1)的距离为()A 、 13B 、 14C 、 15D 、42.在平面内,一条直线倾斜角的范围是()A 、 ?0,?B 、[0,)C 、[-,0]D 、[-,]2 ??3. 直线 x =3 的倾斜角是 ()A 、00B 、 300C 、900D 、不存在4.已知 A (-5,2),B (0,-3)则直线 A B 斜率为()A 、-1B 、1C 、13D 、05. 如图直线l 1 , l 2 , l 3 A 、k 1 > k 2 > k 3的斜率分别为k 1 , k 2 , k 3 则Y()B 、k 2 > k 1 > k 3C 、k 3 > k 2 > k 1 XD 、k 2 > k 3 > k 16. 经过点(1,2)且倾斜角为 450 的直线方程为()A 、 y = x + 1B 、 y = 2xC 、 y = -x + 3D 、 y = -2x7. 直线2x - y + 6 = 0 与两坐标轴围成的三角形面积为()A 、12B 、18C 、9D 、68. 直线 x + 2 = 0 和 y + 1 = 0 的位置关系是()A 、相交B 、平行C 、重合D 、以上都不对9.过点A(2,1) ,且与直线2x +y -10 = 0 垂直的直线l 的方程为( )A、x + 2 y= 0B、2x -y = 0C、x - 2 y = 0D、2x +y = 010.圆心为(-1,4),半径为5的圆的方程为()A、(x -1)2+ ( y+ 4)2= 25B、(x +1)2+ ( y - 4)2= 25C、(x -1)2+ ( y + 4)2= 5D、(x +1)2+ ( y - 4)2= 5二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)11.已知A(7,4),B(3,2),则线段A B的中点坐标是.12.直线3x +y +1= 0 的倾斜角为13.经过点(1,3),(5,11)的直线方程为14.直线y =kx +1经过(2,-9),则k =15.直线mx +y - 6 = 0 与直线2x - 3y - 6 = 0 平行,则m =16.原点到直线4x - 3y + 8 = 0 的距离为17.已知圆的方程为x 2+y 2- 2x + 4 y = 0 ,则圆心坐标为,半径为18.直线与圆最多有多少个公共点_三、解答题(本大题共 6 小题,共 46 分,解答应写出文字说明、证明过程或演算步骤)19.已知三角形的顶点是A(1,5),B(1,1),C(6,3),求证:?ABC 是等腰三角形。
(完整版)中职直线与圆的方程单元测试题
![(完整版)中职直线与圆的方程单元测试题](https://img.taocdn.com/s3/m/19f5b7535ef7ba0d4b733b27.png)
A. A l,l B. A l,l C. A l,l D. A l,l
16.空间中可以确定一个平面的条件是
A. 两条直线 B.一点和一直线 C. 一个三角形 D. 三个点
17. 如果a b,那么a与b
A. 一定相交 B. 一定异面 C. 一定共面 D. 一定不平行
18.“a, b是异面直线”是指:
C. 4x 3y 11 0
D. 4x 3y 10 0
4. 过直线x y 2与x y 0的交点且与直线3x 2 y 5 0垂直的直线方程为
A. - 3x 2 y 1 0
B. 3x 2 y 1 0
C. 2x 3y 1 0
D. 2x 3y 1 0
5. 直线4x 5y 10 0的斜率和在y轴上的截距分别为
C. (x2)2 ( y-3)2 4
D. (x2)2 ( y-3)2 9
14. 过点(3,1),且与直线2x 3y 7 0平行的. 2x 3y 9 0
C. 2x 3y 9 0
D. 3x 2 y 9 0
15. 用符号表示“点A在直线l上,l在平面外”正确的是
1. 已知A(5,2),B(0, 3),则直线AB的斜率为
A.-1
B.1
C. 2
D.2
3
2.
已知直线l的一个方向向量为
AB
(2,- 1),则它的斜率为
A. 1 2
B. 1
C. 2
D.-2
2
3. 过点P(2,1),且与向量 v
(3,- 4)平行的直线方程为
A. x 3y 14 0
B. x 3y 14 0
A. 相交 B. 平行 C. 异面 D. 相交或异面
20. A A1是长方体的一条棱,这个长方体中与 A A1异面的棱共有
中职数学基础模块下册直线和圆的方程章末测试题(附答案)
![中职数学基础模块下册直线和圆的方程章末测试题(附答案)](https://img.taocdn.com/s3/m/44aa4caa8662caaedd3383c4bb4cf7ec4afeb61e.png)
直线与圆的方程第I 卷(选择题)一、单选题1.已知直线的倾斜角是π3,则此直线的斜率是( )AB .CD .2.已知直线斜率等于1−,则该直线的倾斜角为( ) A .30︒B .45︒C .120︒D .135︒3.已知直线1:210l ax y ++=与直线2:(1)10l x a y +++=平行,则实数a 的值为( ) A .2−B .23−C .1D .1或2−420y −+=的倾斜角为( ) A .30B .45C .60D .1205.已知直线l 经过点()2,4M ,且与直线240x y −+=垂直,则直线l 的方程为( ) A .210x y −+= B .210x y −−= C .220x y −+=D .280x y +−=6.直线2330x y +−=的一个方向向量是( ) A .()2,3−B .()2,3C .()3,2−D .()3,27.若直线1l :430x y −−=与直线2l :310x my −+=(m ∈R )互相垂直,则m =( )A .34B .34−C .12D .12−8.经过(1,A −−,(B 两点的直线的倾斜角为( ) A .30°B .60°C .120°D .150°9.“1a =±”是“直线0x y +=和直线20x a y −=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件10.已知直线:8l y x =−.则下列结论正确的是( ) A .点()2,6在直线l 上 B .直线l 的倾斜角为4π C .直线l 在y 轴上的截距为8D .直线l 的一个方向向量为()1,1v =−11.已知圆C :2225x y +=与直线l :()3400x y m m −+=>相切,则m =( ) A .15B .5C .20D .2512.已知两圆2210x y +=和()()221320x y −+−=相交于A ,B 两点,则AB =( )A .B .CD .13.圆2220x y x y ++−=的圆心坐标为( ) A .11,2⎛⎫− ⎪⎝⎭B .11,2⎛⎫−− ⎪⎝⎭C .11,2⎛⎫⎪⎝⎭D .11,2⎛⎫− ⎪⎝⎭14.已知圆C 的圆心为()10,,且与直线2y =相切,则圆C 的方程是( ) A .()2214x y −+= B .()2214x y ++= C .()2212x y −+=D .()2212x y ++=15.已知圆221:1C x y +=与圆()()()2222:221C x y r r −+−=>有两个交点,则r 的取值范围是( )A .()1 B .()1,1C .(1⎤⎦D .1,1⎡⎤⎣⎦16.在平面直角坐标系xOy 中,圆221:1C x y +=与圆222:6890C x y x y +−++=,则两圆的位置关系是( ) A .外离B .外切C .相交D .内切17.关于x 、y 的方程220Ax Bxy Cy Dx Ey F +++++=表示一个圆的充要条件是( ). A .0B =,且0A C =≠ B .1B =,且2240D E AF +−>C .0B =,且0A C =≠,2240DE AF +−≥ D .0B =,且0A C =≠,2240D E AF +−> 18.圆222410x y x y +−++=的半径为( )A .1BC .2D .419.已知圆的一条直径的端点分别为()12,5P ,()24,3P ,则此圆的标准方程是( ) A .()()22348x y +++= B .()()22348x y −+−= C .()()22342x y +++=D .()()22342x y −+−=20.已知圆C :22430x y y +−+=,则圆C 的圆心和半径为( ) A .圆心(0,2),半径1r = B .圆心(2,0),半径1r = C .圆心(0,2),半径2r =D .圆心(2,0),半径2r =第II 卷(非选择题)二、填空题21.直线l 1:10x y +−=与直线l 2:30x y ++=间的距离是___________. 22.直线l 过点()2,1,若l 的斜率为3,则直线l 的一般式方程为______. 23.圆225x y +=的过点(2,1)M 的切线方程为___________.24.圆()()22:211C x y −+−=关于直线1y x =+对称的圆C '的标准方程为______. 25.赵州桥又名安济桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵县古称赵州而得名.赵州桥始建于隋代,是世界上现存年代最久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是40米,拱顶离水面5米;当水面上涨4米后,桥在水面的跨度为______米;三、解答题26.已知直线l :3450x y +−=,点()1,1P −. (1)求过点P 且与l 平行的直线方程; (2)求过点P 且与l 垂直的直线方程. 27.a 为何值时,(1)直线1:210l x ay +−=与直线()2:3110l a x ay −−−=平行? (2)直线3:22l x ay +=与直线4:21l ax y +=垂直?28.已知三角形ABC 的顶点坐标为()1,5A −,()2,1B −−,()4,3C ,M 是BC 边上的中点.(1)求AB 边所在的直线方程; (2)求中线AM 的方程.29.求直线l :3x +y -6=0被圆C: x 2+y 2-2y -4=0截得的弦长.30.圆C 的圆心为()2,0C ,且过点32A ⎛ ⎝⎭.(1)求圆C 的标准方程;(2)直线:10l kx y ++=与圆C 交,M N 两点,且MN =k .参考答案:1.C 2.D 3.A 4.C 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.D 13.D 14.A 15.B 16.B 17.D 18.C 19.D 20.A21.22.350x y −−= 23.250x y +−= 24.()2231x y +−=25.26.(1)3410x y +−= (2)4370x y −+=.27.(1)当16a =或0时,两直线平行 (2)当a =0时,两直线垂直28.(1)6110x y −+= (2)230x y +−=2930.(1)()2221x y −+= (2)1k =−或17−。
中职数学:第八章直线与圆测试题(可编辑修改word版)
![中职数学:第八章直线与圆测试题(可编辑修改word版)](https://img.taocdn.com/s3/m/1e29bfad67ec102de3bd890b.png)
YX第八章:直线与圆测试题一、选择题(本大题共l0小题,每小题3分,共30分)1.点与点的距离为 ( )()1,2M ()1,5-N A 、 B 、 C 、 D 、41314152.在平面内,一条直线倾斜角的范围是 ( )A 、B 、C 、D 、⎥⎦⎤⎢⎣⎡2,0π)[π,0[]0,π-[]ππ,-3. 直线x=3的倾斜角是 ( )A 、00B 、 300C 、900D 、不存在4.已知 A (-5,2),B (0,-3)则直线AB 斜率为 ( )A 、 -1B 、1C 、D 、0315.如图直线,, 的斜率分别为,,则 ( )1l 2l 3l 1k 2k 3k A 、>>1k 2k 3k B 、>>2k 1k 3k C 、>>3k 2k 1k D 、>>2k 3k 1k 6.经过点(1,2)且倾斜角为450的直线方程为 ( )A 、B 、C 、D 、1+=x y x y 2=3+-=x y xy 2-=7.直线与两坐标轴围成的三角形面积为 ( )062=+-y x A 、12 B 、18 C 、9 D 、68. 直线和的位置关系是 ( )02=+x 01=+y A 、相交 B 、平行 C 、重合 D 、以上都不对9.过点,且与直线垂直的直线的方程为 ( )(2,1)A 0102=-+y x l A 、 B 、 C 、 D 、20x y +=20x y -=02=-y x 20x y +=10.圆心为(-1,4),半径为5的圆的方程为 ( )A 、B 、25)4()1(22=++-y x 25)4()1(22=-++y x C 、 D 、5)4()1(22=++-y x 5)4()1(22=-++y x 二、填空题(本大题共8小题,每小题3分,共24分)11.已知A (7,4),B (3,2),则线段AB 的中点坐标是 .12.直线的倾斜角为 ___013=++y x 13.经过点(1,3),(5,11)的直线方程为_____________________14.直线经过(2,-9),则=____________________1+=kx y k 15.直线与直线平行,则=___ ___06=-+y mx 0632=--y x m 16.原点到直线的距离为____________0834=+-y x 17.已知圆的方程为,则圆心坐标为__________,半径为04222=+-+y x y x ____18.直线与圆最多有多少个公共点______ _三、解答题(本大题共6小题,共46分,解答应写出文字说明、证明过程或演算步骤)19.已知三角形的顶点是A(1,5),B(1,1), C(6,3),求证:是等腰三角ABC ∆形。
【中职专用】高考数学总复习——第八章直线和圆的方程(单元测试)
![【中职专用】高考数学总复习——第八章直线和圆的方程(单元测试)](https://img.taocdn.com/s3/m/4473008982d049649b6648d7c1c708a1284a0a3e.png)
第八章单元测试一、选择题1.直线ι过点P (-1,3),倾斜角的正弦是54,则直线ι的方程是( ) A .4x+3y-5=0 B.4x-3y+13=0或4x+5y-5=0C.4x+5y-5=0D.4x-3y+13=0或4x+3y-5=02.过点M (-3,2)与直线x+2y —9=0平行的直线方程是( )A.x-2y+7=0B.2y+x-1=0C.2x+y+8=0D.x+2y+4=03.过点(1,1),与直线x-2y+1=0垂直的直线方程是( )A .2x+y-3=0 B.2y-x-1=0 C.y+2x+1=0 D.y+2x-3=04.若直线3x+4y+k=0与圆x ²+y ²-6x+5=0相切,则k 等于( )A.1或-19B.10或-10C.-1或-19D.-1或-195.圆x ²+y ²-4x+4y+6=0 截直线x-y-5=0所得的弦长为( ) A.6 B.225 C.1 D.5 6.已知圆的圆心是点(-5,3),且与y 轴相切,则圆的方程是()A.(x-5)²+(y+3)²=5²B.(x-5)²+(y+3)²=3²C.(x+5)²+(y-3)²=5²D.(x+5)²+(y-3)²=3²7.以y=x 2±为渐近线,一个焦点为F(0,3)的双曲线的方程为( ) A .1222=-y x B.1222=-x y C .16322=-y x D .13622=-x y 8.已知椭圆的方程是125222=+y a x (a>5),它的两个焦点分别为F 1 ,F 2,且丨F 1F 2丨=8弦AB 过F 1,则△ABF 2的周长( ).A .10B .20C .412 D.4149.椭圆的一个顶点与两个焦点构成等边三角形,此椭圆的离心率为( ) A.51 B.43 C.33 D.21 10.以抛物线y 2=20x 的焦点为圆心,且与双曲线191622=-x y 的渐近线相切的圆的方程为( ) A.x 2+y 2+10x+9=0 B.x 2+y 2-10x+9=0 C.x 2+y 2—10x+16=0 D.x 2+y 2-10-9=011.双曲线的离心率为2,则双曲线 的两条渐近线的夹角是( )A. 45°B.30°C.60°D.90°12.直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2垂直,则a 的值为( ) A.23-或0 B.-3或1 C.-3 D.1 13.以C (1,3)为圆心,且与直线3x-4y-7=0相切的圆的方程是_________14.若椭圆的短轴长,焦距,长轴长依次成等差数列,则这个椭圆的离心率是__________15.渐近线方程为y=x 23±,且经过点M (29,-1)的双曲线的方程是 _________ 16.渐近线方程为3x ±2y=0,则该双曲线的离心率是________17.已知 双曲 线 与 椭 圆1244922=+y x 共焦点,且以y=x 34±为渐近线,则该双曲线的方程为________ 18.点P (2,5)关于直线x+y=0的对称点的坐标是_________19.已知直线了的斜率为61,且和两坐标轴围成的面积为3的三角形,则了的方程为 _________ 三.解答题 20.F 1 ,F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠ F 1P F 2=90°,求△F 1P F 2的面积 .21.已知直线了经过点A (1,3)、B (2,2),解答下列问题。
直线与圆的方程测试卷(含答案)
![直线与圆的方程测试卷(含答案)](https://img.taocdn.com/s3/m/d7e7aad2dd36a32d7275814e.png)
单元检测(七) 直线和圆的方程 (总分值:150分 时间:120分钟)一、选择题(本大题共12小题,每题5分,共60分)1.假设直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a 的值为( )A.2B.-3或1C.2或0D.1或0 解析:当a=0时,显然两直线垂直;a≠0时,则1321-=-•-a a a ,得a=2.故选C. 答案:C2.集合M={(x,y)|y=21x -,x 、y ∈R },N={(x,y)|x=1,y ∈R },则M∩N 等于( ) A.{(1,0)} B.{y|0≤y≤1} C.{1,0} D.解析:y=21x -表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).答案:A3.菱形ABCD 的相对顶点为A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是 …( ) A.3x+y+4=0 B.3x+y-4=0 C.3x-y+1=0 D.3x-y-1=0解析:由菱形的几何性质,知直线BD 为线段AC 的垂直平分线,AC 中点O )25,21(--在BD 上,31=AC k ,故3-=BD k ,代入点斜式即得所求. 答案:A 4.假设直线1=+bya x 经过点M(cosα,sinα),则 ……( ) A.a 2+b 2≤1 B.a 2+b 2≥1C.11122≤+b a D.11122≥+b a 解析:直线1=+bya x 经过点M(cosα,sinα),我们知道点M 在单位圆上,此问题可转化为直线1=+bya x 和圆x 2+y 2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有.111111|1|2222≥+⇒≤+-b a b a答案:D5.当圆x 2+y 2+2x+ky+k 2=0的面积最大时,圆心坐标是( )A.(0,-1)B.(-1,0)C.(1,-1)D.(-1,1)解析:r 2=222431444k k k -=-+, ∴当k=0时,r 2最大,从而圆的面积最大.此时圆心坐标为(-1,0),故选B.答案:B6.过直线y=x 上的一点作圆(x-5)2+(y-1)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y=x 对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90° 解析:由已知,得圆心为C(5,1),半径为2,设过点P 作的两条切线的切点分别为M,N,当CP 垂直于直线y=x 时,l 1,l 2关于y=x 对称,|CP|为圆心到直线y=x 的距离,即|CP|=2211|15|=+-,|CM|=2,故∠CPM=30°,∠NPM=60°. 答案:C7.在如下图的坐标平面的可行域(阴影部分且包括边界)内,假设是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a 的值等于( )A.31B.1C.6D.3 解析:将z=ax+y 化为斜截式y=-ax+z(a>0),则当直线在y 轴上截距最大时,z 最大. ∵最优解有无数个,∴当直线与AC 重合时符合题意.又k AC =-1, ∴-a=-1,a=1. 答案:B8.已知直线l 1:y=x,l 2:ax-y=0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.)3,33(C.(33,1)∪(1,3) D.(1,3)解析:结合图象,如右图,其中α=45°-15°=30°,β=45°+15°=60°. 需a ∈(tan30°,1)∪(1,tan60°), 即a ∈(33,1)∪(1,3). 答案:C9.把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x 2+y 2+2x-4y=0相切,则实数λ的值为( )A.3或13B.-3或13C.3或-13D.-3或-13 解析:直线x-2y+λ=0按a=(-1,-2)平移后的直线为x-2y+λ-3=0,与圆相切,则圆心(-1,2)到直线的距离55|8|=-=λd ,求得λ=13或3. 答案:A10.如果直线y=kx+1与圆x 2+y 2+kx+my-4=0交于M 、N 两点,且M 、N 关于直线x+y=0对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0,0,01y m y kx y kx 表示的平面区域的面积是( )A.41B.21C.1D.2 解析:由题中条件知k=1,m=-1,易知区域面积为41.答案:A 11.两圆⎩⎨⎧+=+-=ββsin 24,cos 23y x 与⎩⎨⎧==θθsin 3,cos 3y x 的位置关系是( )A.内切B.外切C.相离D.内含解析:两圆化为标准式为(x+3)2+(y-4)2=4和x 2+y 2=9,圆心C 1(-3,4),C 2(0,0). 两圆圆心距|C 1C 2|=5=2+3.∴两圆外切. 答案:B12.方程29x -=k(x-3)+4有两个不同的解时,实数k 的取值范围是( ) A.)247,0( B.(247,+∞) C.(32,31) D.]32,247(解析:设y=29x -,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线y=k(x-3)+4与半圆y=29x -有两个交点时,32247≤<k . ∴选D.答案:D二、填空题(本大题共4小题,每题5分,共20分)13.假设x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,30,03,0x y x y x 则z=2x-y 的最大值为__________.解析:作出可行域如下图.当直线z=2x-y 过顶点B 时,z 到达最大,代入得z=9. 答案:914.在y 轴上截距为1,且与直线2x-3y-7=0的夹角为4π的直线方程是_________. 解析:由题意知斜率存在,设其为k,则直线方程为y=kx+1.则|321||32|4tan k k +-=π.解得k=5或51-. ∴直线方程为y=5x+1或y=151+-x ,即5x-y+1=0或x+5y-5=0. 答案:5x-y+1=0或x+5y-5=015.设A(0,3),B(4,5),点P 在x 轴上,则|PA|+|PB|的最小值是________,此时P 点坐标是_______. 解析:点A 关于x 轴的对称点为A′(0,-3), 则|A′B|=45为所求最小值.直线A′B 与x 轴的交点即为P 点,求得P(23,0). 答案:45 (23,0) 16.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题: ①对任意实数k 与θ,直线l 和圆M 相切; ②对任意实数k 与θ,直线l 和圆M 有公共点;③对任意实数θ,必存在实数k,使得直线l 和圆M 相切; ④对任意实数k,必存在实数θ,使得直线l 和圆M 相切.其中真命题的序号是.(写出所有真命题的序号) 解析:圆心M(-cosθ,sinθ)到直线l:kx-y=0的距离1|sin cos |1|sin cos |22++=+--=k k k k d θθθθ1|)sin(1|22+++=k k θϕ=|sin(φ+θ)|(其中tanφ=k) ≤1=r,即d≤r,故②④正确. 答案:②④三、解答题(本大题共6小题,共70分)17.(本小题总分值10分)已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求: (1)AC 边上的高BD 所在直线的方程; (2)BC 的垂直平分线EF 所在直线的方程; (3)AB 边的中线的方程.解:(1)易知k AC =-2,∴直线BD 的斜率k BD =21.又BD 直线过点B(-4,0),代入点斜式易得直线BD 的方程为x-2y+4=0.(2)∵k BC =34, ∴k EF =43-.又线段BC 的中点为(25-,2), ∴EF 所在直线的方程为y-2=)25(43+-x . 整理得所求的直线方程为6x+8y-1=0.(3)∵AB 的中点为M(0,-3), ∴直线CM 的方程为1343-=++xy . 整理得所求的直线方程为7x+y+3=0(-1≤x≤0).18.(本小题总分值12分)已知圆C 与y 轴相切,圆心C 在直线l 1:x-3y=0上,且截直线l 2:x-y=0的弦长为22,求圆C 的方程. 解:∵圆心C 在直线l 1:x-3y=0上, ∴可设圆心为C(3t,t). 又∵圆C 与y 轴相切, ∴圆的半径r=|3t|. ∴222||3)2()23(t t t =+-,解得t=±1. ∴圆心为(3,1)或(-3,-1),半径为3.∴所求的圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.19.(本小题总分值12分)已知等边△ABC 的边AB 所在的直线方程为3x+y=0,点C 的坐标为(1,3),求边AC 、BC 所在的直线方程和△ABC 的面积.解:由题意,知直线AC 、BC 与直线AB 均成60°角,设它们的斜率为k,则3|313|=---kk,解得k=0或k=3.故边AC 、BC 所在的直线方程为y=3,y=3x,如下图,故边长为2,高为3. ∴S △ABC =33221=⨯⨯. 20.(本小题总分值12分)圆C 经过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C 在P 点的切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx+Ey+F=0.将P 、Q 、R 的坐标代入,得⎪⎩⎪⎨⎧=++=-=+.01,2,2F E F k D k∴圆的方程为x 2+y 2-(k+2)x-(2k+1)y+2k=0,圆心为)212,22(++k k . 又∵k CP =-1,∴k=-3.∴圆的方程为x 2+y 2+x+5y-6=0.21.(本小题总分值12分)过点P(2,4)作两条互相垂直的直线l 1、l 2,假设l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解法一:设点M 的坐标为(x,y), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y). ∵l 1⊥l 2,且l 1、l 2过点P(2,4), ∴PA ⊥PB,k PA ·k PB =-1. 而k PA =,2204x --k PB =0224--y(x≠1),∴11212-=-•-y x (x≠1). 整理,得x+2y-5=0(x≠1).∵当x=1时,A 、B 的坐标分别为(2,0)、(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x+2y-5=0. 综上所述,点M 的轨迹方程是x+2y-5=0.解法二:设M 的坐标为(x,y),则A 、B 两点的坐标分别是(2x,0)、(0,2y),连结PM, ∵l 1⊥l 2,∴2|PM|=|AB|.而|PM|=22)4()2(-+-y x ,|AB|=,)2()2(22y x +∴.44)4()2(22222y x y x +=-+-化简,得x+2y-5=0,即为所求的轨迹方程.解法三:设M 的坐标为(x,y),由l 1⊥l 2,BO ⊥OA,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点.∵k OP =20204=--,线段OP 的中点为(1,2), ∴y-2=21-(x-1),即x+2y-5=0即为所求.22.(本小题总分值12分)实系数方程f(x)=x 2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.解:由题意⎪⎩⎪⎨⎧>++<++>⎪⎩⎪⎨⎧><>.02,012,0.0)2(,0)1(,0)0(b a b a b f f f 即易求A(-1,0)、B(-2,0).由⎩⎨⎧=++=++,02,012b a b a ∴C(-3,1).(1)记P(1,2),k PC <12--a b <k PA ,即12--a b ∈(41,1). (2)|PC|2=(1+3)2+(2-1)2=17,|PA|2=(1+1)2+(2-0)2=8,|PB|2=(1+2)2+(2-0)2=13.∴(a-1)2+(b-2)2的值域为(8,17). (3)令u=a+b-3,即a+b=u+3. -2<u+3<-1,即-5<u<-4. ∴a+b-3的值域为(-5,-4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的方程单元测试题
卷一(选择题,共60分)
一、 选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的 四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出,填在答题卡上)
1. ()的斜率为,则直线,,,
已知AB B A )30()25(-- A.-1 B.1 C.
3
2
D.2 2.
()),则它的斜率为
,(的一个方向向量为已知直线1-2=→
AB l A. 2
1
- B.21 C. 2 D.-2
3.())平行的直线方程为,(),且与向量,
(过点4-312=→
v P A.0143=-+y x B.0143=--y x C. 01134=-+y x D.01034=--y x
4.()垂直的直线方程为的交点且与直线与过直线052302=++=-=+y x y x y x A.012x 3-=++y B.0123=+-y x C.0132=++-y x D.0132=+-y x
5.()轴上的截距分别为的斜率和在直线y y x 01054=--
A.454,-
B.5-45,
C.2-54,
D.54
5
-,
6.(),则有经过第一、二、三象限若直线01=-+by ax
A.0,0<<b a
B.0,0>>b a
C.0,0<>b a
D.0,0><b a
7.()的值为),则,过点(已知直线k x k y 2-2-)5(3-=- A.
74 B. 75 C. 47 D. 5
7
8.()平行的条件是与直线122+=++=+a y ax a ay x A. 21=
a B. 2
1
-=a C. 1=a D. 1-=a 9.()等于,则的距离为与直线直线C y x C y x 502202=+-=+- A. 7 B. -3 C. -3或7 D. -7或3 10.(),则的距离等于)到直线,(点402432=--y x m A
A. 46-==m m 或
B. 46==m m 或
C. 6=m
D. 4-=m 11.()),则圆的半径为,的圆心为(圆21-042
2
=-+++
Ey Dx y
x
A. 6
B. 9
C. 2
D. 3
12.()的值为轴上,那么的交点在和如果两条直线k y ky x k y x 012032=+-=-+ A. -24 B. 6 C. 6± D. 24
13.()轴相切,则圆的方程为),且与,已知圆心在(y 32-
A. 4)3()2(2
2
=++-y x B. 9)3()
2(2
2
=++-y x C.
4)3-()
2(2
2
=++y x D.
9)3-()
2(2
2
=++y x
14.()平行的直线方程为),且与直线,
过点(073213=-+y x A. 0932=++y x B. 0932=-+y x C. 0932=+-y x D. 0923=--y x 15.()外”正确的是在平面上,在直线用符号表示“点αl l A
A. α∉∈l l A ,
B. α⊄∈l l A ,
C. α⊄⊂l l A ,
D. α∉⊂l l A , 16.()面的条件是空间中可以确定一个平
A. 两条直线
B.一点和一直线
C. 一个三角形
D. 三个点 17.()b a b a 与,那么如果⊥
A. 一定相交
B. 一定异面
C. 一定共面
D. 一定不平行 18. 是异面直线”是指:“b a ,
()
上述结论中,正确的是成立平面,平面,能使)不存在平面(;
平面,平面)(;,且平面,平面)(;
不平行于且)(.
4321αααβαβα⊂⊂⊄⊂∅=⋂⊂⊂∅=⋂b a a a b a b a b a b a
A. (1)(2)
B. (1)(3)
C. (1)(4)
D. (4)(2) 19.()的位置关系为与相交,那么与,中,三条直线c a c b b a c b a //,, A. 相交 B. 平行 C. 异面 D. 相交或异面 20.()异面的棱共有个长方体中与是长方体的一条棱,这
A A A A
1
1
A. 3条
B. 4条
C. 5条
D.6条
卷二(非选择题,共60分)
二、填空题(本题共5个小题,每题6分,共30分,请将答案填在答题卡上)
21..____________________2
1
-2-6的直线的一般式方程),斜率为,经过点(
22..__________________01231平行的直线方程为)且与直线,(
过点=+-y x P 23..
_____05y )1(02321的值为垂直,则:与直线:直线m x m my x l l =+++=+-
24..____________253-2为的距离)到直线,
(点d x y A -=
25..__________________301的圆的标准方程为),半径为,
圆心为(
三、解答题(本大题共3小题,每题10分,共30分,请将答案写在答题卡上) 26..
43252
2
)的圆的切线方程,(,求经过圆上一点已知圆的方程是
P y
x =+
27..4-3-2-150)三点的圆的方程,(),,(),,
(求过C B A
28.)相交,,(:与圆:为何值时,直线当实数1250432
2
=+
=-+y
x O m y x l m
.
32)相离)相切,((。