水厂自控系统建设方案设计
水厂自控系统方案设计
系统方案介绍1概述本工程是神华乌海能源公司西来峰工业园区供水工程,系统由配水泵站、调节池、调节泵站、水旋池、澄清池、排泥泵站、投药间、加压泵站等主要设备及工艺系统组成。
1.1工程主要原始资料1室外环境温度:多年平均气温 9.6℃极端最高气温(历年极端最高气温) 40.2℃极端最低气温(历年极端最低气温) -32.6℃2海拔高度:1124.35m3安装现场地震列度:VIII度4 室内环境湿度:最高100%,最低10%5污秽等级:III级(按Ⅳ设计)2 规范和标准应遵循的主要现行标准,但不仅限于下列标准的要求:NDGJ16-89 火力发电厂热工自动化设计技术规定CECS81:96 工业计算机监控系统抗干扰技术规范1998.09.30 火力发电厂热工仪表及控制装置技术监督规定GB 11920-98 电站电气部分集中控制装置通用技术条件GB 4720-84 低压电器控设备JB 616-84 电力系统二次电路用屏(台)通用技术条件TEC 144 低压开关和控制设备的外壳防护等级ANSI 488 可编程仪器的数字接口ISA --55.2 过程运算的二进制逻辑图ISA --55.3 过程操作的二进制逻辑图ISA --55.4 仪表回路图NEMA --ICS4 工业控制设备及系统的端子板NEMA --ICS6 工业控制设备及系统的外壳DL 5028 电力工程制图标准TCP/IP 网络通讯协议IEEE802 局域网标准05X101-2 地下通信线敷设HG/T20509-2000 仪表供电设计规范HG/T29507-2000 自动化仪表选型规定HG/T20513-2000 仪表系统接地HG/T 20508-2000 控制室设计规定HG/T 20700-2000 可编程控制系统工程设计规定GB50217-1994 电力工程电缆设计规定HG/T20505-2000 过程测量和控制功能标志及图形符号GB/T 50314—2000 智能建筑设计标准DB32/191-1998 建筑智能化系统工程设计标准CECS/119-2000 城市住宅建筑综合布线系统工程设计规范GB/T50311-2000 建筑与建筑群综合面线系统工程设计规范JGJ/T16-92 民用建筑电气设计规范GB/50198-94 民用闭路监视电视系统工程技术规范GB14050-93 系统接地的型式及安全技术要求GA/T75-94 安全防范工程程序与要求GA/T308-2001 安全防范工程验收规则GBJ 115 工业电视系统工程设计规范GA/74-94 安全检查防范系统通作图形符号GB/T 50314—2000 《智能建筑设计标准》DB32/191-1998 《建筑智能化系统工程设计标准》JGJ/T16-92 《民用建筑电气设计规范》安全标准UL/CSA (UL 1950, CSA22.2-950, IEC950)EMC FCC part 15 Class A, Industry,中国CCC认证加拿大工业等级 A, EN55022 Class A, EN55024, EN61000-3-2所有标准均会被修改,供货商在设备设计和制造中所涉及的各项规程、规范和标准必须遵循现行最新版本的中国国家标准和行业标准。
水厂自控系统升级改造建设方案
水厂自控系统升级改造建设方案本系统是基于现代先进控制思想的分布式计算机控制系统(即集散型控制系统),它集成了当代计算机技术、高性能PLC及智能化仪表的各自特点于一身,使其在水厂的运行控制、设备管理等方面发挥了巨大的作用。
采用这种结构可使生产过程中的信息能够集中管理,以实现整体操作、维护、管理和优化;同时,也使得控制危险分散,提高系统可靠性。
水厂自动化系统包括:通讯网络系统、中央计算机监控系统、PLC控制系统、检测仪表系统、防雷接地系统等。
通讯网络系统——分为管理网络系统和实时监控网络系统。
管理网络系统星型拓扑结构,连接厂内各个设备监控子系统和办公管理终端,提供全厂内部的信息管理结构、厂外信息交互接口和信息安全保护手段等。
实时监控网络系统为冗余光纤环网,连接中央控制室监控计算机与现场PLC控制站。
中央计算机管理系统——采用标准以太网连接,实现对全厂实施集中管理。
系统是开放的、灵活的,可以对控制系统进行监测、控制,具有动态画面显示功能、报警、报表输出功能、趋势预测功能、实时历史数据存储功能。
软件采用全中文操作模式,能够组态中文显示画面等功能。
具有使用方便、简单易学、软件组态灵活的特性,可确保用户可快速开发出实用、可靠、有效的自动控制系统。
同时中央计算机管理系统与其他系统要能够进行通讯,如与现场的各PLC 分站之间的通讯、与管理调度(调度室)系统之间的通讯、与第三方设备之间的通讯等等。
现场PLC控制系统——由分布在现场的可编程序控制器PLC及现场仪表组成的检测控制系统(分控站)组成,实现对水厂各个过程进行分散控制。
各分控站与中央控制室之间由光纤连接进行数据通讯。
检测仪表系统——由过程检测仪表和分析仪表组成,根据工艺要求配置。
防雷接地系统——整个防雷系统能够完善的防护雷电对电子设备的各种侵害。
防雷器在不影响系统正常运行的前提下,能够承受预期通过它们的雷电流和过电压。
1.2.控制模式水厂自动化系统是一个以PLC控制为基础的集散型控制系统,自动化水平为正常运行时现场无人职守,中心控制室集中管理。
水厂自控系统设计方案
水厂自控系统技术方案目录一、系统概述 (2)1.1 工程概况 (2)1.2 系统设计原则 (2)1.3 系统组成 (2)二、系统功能 (3)中控室功能 (3)通讯层功能 (6)PLC控制站功能 (6)测压终端 (7)视频监控系统 (7)xxx供水厂自控及视频监控系统框图 (10)三、我公司设计及施工遵循以下标准: (11)四、售后服务 (12)附:xxx供水厂增加自控设备清单 (13)一、系统概述1.1 工程概况本工程是xxx水厂自控系统改造工程,该工程改造后并入第三水厂自控系统,可有效地加强对整个xxx供水系统的管理,直观及时地监控现场设备运行情况,增强安全供水保障措施,如实地显示和记录各种数据。
在改造过程中,既借鉴了国内先进水厂的成功经验,又充分考虑了本水厂的特殊情况,并将水厂运行管理经验融合于自控系统改造设计中,力求使系统具有先进性和实用性。
1.2 系统设计原则结合xxx水厂供水系统特点,本系统设计主要遵循以下几个原则:➢选择成熟和先进的计算机控制系统,在供水过程中实现信息集中管理和科学操作的前提下,提高系统的的可靠性,现场各种数据通过PLC采集,并通过工业以太网传送到中央控制室,进行统一的监控和管理。
中央控制室可以通过以太网来下发指令对现场的PLC进行控制和管理。
➢现场PLC具有逻辑功能,控制现场测控仪表,完成现场、电气数据的采集和电气设备的控制,同时向中控室传送采集数据,报告运行状况,执行中控室的指令。
➢设计上以中控为主,现场以手控/自动控制为辅的原则,系统以水厂为监控中心,将底层的设备和控制权分散到现场的PLC中,便于系统的管理和维护。
➢选择成熟和先进的计算机控制系统,在供水过程中实现信息集中管理和科学操作;➢设计视频监控系统;➢系统本着低成本、高效益、高质量的原则进行设计。
1.3 系统组成根据实际情况,本套系统主要由自控系统和视频系统组成。
其中自控系统分为三部分:1.中控室部分;2.通讯层部分3. PLC控制站部分4.测压点终端;视频监控系统主要由高清晰摄像机和周边感应报警系统组成。
现代水厂自动化综合控制系统结构设计
现代水厂自动化综合控制系统结构设计摘要本文主要就现代水厂自动化综合控制系统结构设计相关问题进行了介绍,在分析水泵起停方式和恒压供水相关问题基础上,对系统进行了总体设计,并对其中主要设备选用进行了详细分析。
关键词水厂自动控制技术;体系设计;设备选用1 系统总体设计1.1 水泵起停方式1) 直接起动。
笼型交流异步电动机直接起动时将产生很大的起动电流,是电动机额定电流的5~8倍,转矩也会激增,仅适用于小功率电动机。
2)定子串电阻或电抗降压起动。
定子串电阻或电抗降压起动方式适用于轻载起动,能起到减小起动电流和增加起动平稳性的作用,但因起动损耗较大,经济性差,只在电机容量较小时使用。
3)自藕变压器降压起动。
自藕变压器降压起动有过载和失压保护,可以减小电动机电流对电网的影响,起动转矩较大,其缺点是结构复杂、体积大、故障率高、检修不方便、价格较高等。
4)星-三角起动。
星-三角降压起动方式适用于正常运行时定子绕组△接的异步电动机。
在电动机起动过程中,星-三角转换的同时将产生一个尖峰电流,会影响供电电源和电动机,这种起动方法常用于空载或轻载起动。
5)软起动器起动。
软起动器是指可控硅降压软起动器,其原理是利用可控硅的可控整流作用,通过改变可控硅的控制角,使电动机的电压按一定的规律升为全压后,短路旁路接触器,撤去可控硅的控制信号,即关断可控硅,软起动器即可退出运行,其用于水泵起动中,可以有效避免水锤效应的产生。
6)变频起动。
变频起动方案是用变频器带动电机从零速开始起动,逐渐升压升速,直至达到其额定转速。
采用电压/频率按比例控制方法,不会产生过电流,可提供等于额定转矩的起动力矩,变频起动有恒定的电压-频率关系,对机器、负载及电网的冲击很小,可以调速,但价格高,存在电磁兼容问题,适合于需重载或满载起动的设备。
1.2 恒压供水实现恒压供水就是要保持供水压力基本稳定,也就是要调节供水水量。
调节水量可以通过以下两种方法:1)水泵恒速转动,通过调节阀门的开度来调节供水水量;2)阀门开度一定,通过调节水泵转速继而调节供水水量。
2024年水厂自控系统建设方案范文(三篇)
2024年水厂自控系统建设方案范文____年水厂自控系统建设方案一、前言随着科技的不断发展,智能化自控系统已经成为现代水厂建设的重要组成部分。
在____年,水厂自控系统将更加智能化、高效化和可持续化,以提高水厂的运行效率、降低维护成本,并确保水质的安全和稳定供水。
本文将探讨____年水厂自控系统的建设方案。
二、背景分析目前,传统的水厂自控系统主要由人工操作和监控设备组成,存在人工操作复杂、运行效率低下、可靠性差等问题。
随着信息技术的快速发展,自动化、智能化的控制系统正在逐渐取代传统的方式,成为水厂自控的主流技术。
____年水厂自控系统建设需要着重解决以下问题:1.运行效率低下:传统的水厂自控系统依赖于人工操作,工作效率受到限制。
2.可靠性差:传统的水厂自控系统存在很多故障点,容易出现运行事故。
3.维护成本高:传统的水厂自控系统需要频繁的设备维护和人工巡检,成本较高。
三、建设目标基于以上问题,我们制定了以下建设目标:1.提高运行效率:建设智能化的自控系统,实现水厂的自动化运行,大幅提高运行效率。
2.增强可靠性:引入先进的监控技术,加强故障诊断和预防措施,提高系统的可靠性。
3.降低维护成本:采用可靠的设备和技术,减少设备维护频率,降低维护成本。
4.保证供水水质:建立完善的水质监测与控制系统,确保水质的安全和稳定供水。
四、建设方案1. 智能化自控系统的建设____年水厂自控系统建设将实现智能化运行,主要包括以下几个方面:(1)自动化控制:引入先进的自动化控制设备,实现水处理、供水和污水处理等过程的自动化操作。
(2)数据采集与传输:建立高效的数据采集和传输系统,实时监测各个环节的运行状态。
(3)数据分析和优化:通过大数据分析,对运行数据进行分析和优化,提高运行效率。
(4)远程监控与操作:建立远程监控平台,实现对水厂的远程监控和操作,提高工作效率。
2. 先进监控技术的应用(1)物联网技术:将物联网技术应用于自控系统中,实现设备的互联互通,提高系统的集成度和可靠性。
水厂自控系统改造方案
水厂自控系统改造方案1. 引言随着科技的不断进步,许多传统行业也开始逐步采用自动化控制系统来提高生产效率和质量。
水厂作为重要的公共设施,其自控系统的改造对于水质管理和供水效率的提升至关重要。
本文将介绍水厂自控系统改造方案,旨在完善水厂的运行管理和监控能力。
2. 系统概述水厂自控系统改造包括硬件设备更新和软件系统优化两个方面。
硬件设备更新主要包括监测仪器仪表、传感器、执行器等设备的更换或升级。
软件系统优化主要包括监控系统、数据分析系统、报警系统等软件的升级与集成。
3. 设备更新3.1 监测仪器仪表水厂自控系统改造的第一步是更新原有的监测仪器仪表。
新一代的监测仪器仪表具有更高的精度和稳定性,能够准确地监测水厂各个环节的水质参数。
常见的监测仪器仪表包括pH计、浊度计、溶解氧计等。
更新后的监测仪器仪表应能够实时采集数据,并通过网络与监控系统相连。
3.2 传感器除了监测仪器仪表外,水厂的自控系统还需要安装各种传感器来监测水压、水位、流量等参数。
传感器的更新需要考虑其精度、稳定性和适应性。
新一代的传感器应具有更高的精度和稳定性,能够适应不同水厂的运行条件。
3.3 执行器执行器用于控制水厂各个环节的阀门、泵站等设备。
更新执行器可以提高控制的精度和灵活性。
新一代的执行器应能够与监控系统相连,实现远程控制和自动化操作。
4. 软件系统优化4.1 监控系统水厂自控系统的监控系统是整个系统的核心。
监控系统应能够实时监测各个环节的运行状态,并能够远程操作和控制设备。
更新监控系统可以加强对水厂运行状态的监测和管理,并提高故障预警的能力。
4.2 数据分析系统随着水厂运行数据的不断积累,如何对这些数据进行分析和利用成为重要的课题。
更新数据分析系统可以提供更准确的数据分析和预测能力,帮助水厂管理人员做出更科学的决策。
4.3 报警系统报警系统是水厂自控系统中的重要组成部分。
更新报警系统可以提高对异常情况的监测和反应能力,及时发出警报并采取相应的措施。
水厂自控系统建设方案
徐圩水厂自控系统建设方案刘朋目录1.徐圩水厂自控系统的构成 (1)1.1自控系统结构与目标 (2)1.2控制方式 (2)2.中控室 (3)2.1运行监视 (3)2.2运行控制 (3)2.3数据管理 (3)2.4报警处理 (3)2.5报表及打印 (4)2.6 Web数据服务 (4)3.各子站控制 (4)3.1原水泵房控制站 (4)3.2 高效澄清池控制站 (5)3.3 翻板滤池控制站 (5)3.4 加药加氯间控制站 (7)3.5 臭氧活性炭间控制站 (7)3.6 送水泵房控制站 (8)3.7 污泥脱水间控制站 (8)1.徐圩水厂自控系统的构成徐圩水厂自控系统网络拓扑结构采用光纤以太环网结构,在这种网络结构下,每个子站都可以通过两条不同的通道与中控室进行通讯,即使网络中的一处光纤受到损伤,也不会影响中控室与主站之间的通讯。
徐圩水厂自控网络拓扑图1.1自控系统结构与目标徐圩水厂自控系统按照分散控制,集中管理的原则配置,全厂拥有一处中控室,管理整个生产过程,并且在取水泵站、高效澄清池、加药加氯间、滤池、活性炭处理间、送水泵房和污泥脱水间分别设置有PLC控制站,PLC控制站组成光纤以太环网,各控制站负责处理各站的数据采集和控制任务。
自控系统具有以下功能:1)在线实时显示各工艺环节的生产数据,并根据工艺的要求对生产过程中的异常数据进行不同方式的显示及报警提示;2)实时显示全厂生产过程中各重要设备的运行状态及参数,并对异常情况进行显示和报警提示;3)根据进水流量、出水浊度和加药配比值来实现加药系统的自控控制;4)采用自动调节实现滤池的恒水位过滤。
反冲洗根据滤池水位、滤层上下差压和阀门开度实现运行、反冲洗到再运行的全过程控制,同时也可实现在操作画面上进行人工强制反冲洗;5)系统可根据出水总管压力自动进行水泵的启停与调节。
1.2控制方式徐圩水厂所有电动设备均设集中控制和现场控制两种控制方式,其中集中控制由运行人员在中控室上位机上进行,现场控制则在就地控制箱上操作完成,并且拥有两种优先级,集中控制为最低优先级,而现场操作为最高优先级。
2024年水厂自控系统建设方案范本
2024年水厂自控系统建设方案范本____年水厂自控系统建设方案一、项目背景和目标近年来,水资源的供应和管理成为了一个持续关注的问题。
为了更好地管理和利用水资源,提高供水效率和质量,水厂自控系统建设成为了迫切需要解决的问题。
本项目的目标是通过建设水厂自控系统,实现水质自动监测、水压稳定控制、设备自动化运行等功能,提高水厂的运行效率和稳定性,提供优质的供水服务。
二、建设范围和内容1. 自动化监测系统- 安装水质分析仪器和传感器,实时监测水质指标,如pH 值、浊度、余氯、溶解氧等。
- 设立水质预警系统,及时发现异常情况并采取相应措施。
- 搭建数据采集和处理平台,确保数据的准确性和可靠性。
2. 控制系统- 建立水压稳定控制系统,通过水位和压力传感器对水压进行实时监测和调节。
- 设置水压控制的上下限,自动控制水泵的启停,保证供水压力恒定。
3. 设备自动化运行- 建立设备联动和自动控制系统,实现设备的自动运行和故障诊断。
- 安装智能控制器,实现对设备的远程监控和调节。
4. 数据管理和分析平台- 建立水厂数据管理平台,对采集到的数据进行存储和管理。
- 开发数据分析工具,提供水质、水量等相关指标的分析和报表。
三、项目实施步骤1. 确定需求和编制方案- 针对水厂的特点和需求,明确建设目标和内容。
- 编制建设方案和实施计划,包括工程量、投资估算、时间计划等。
2. 设备选型和采购- 根据方案需求,选择合适的水质分析仪器、传感器、水泵等设备。
- 联系供应商,进行设备采购和谈判。
3. 设备安装和调试- 安排专业人员进行设备的安装和调试工作。
- 测试仪器和设备的性能和稳定性,确保符合要求。
4. 系统集成和联调- 将各个子系统进行集成和联调,确保功能的正常运行。
- 进行系统的性能和稳定性测试,修复系统中存在的问题。
5. 数据平台建设和测试- 建设水厂数据管理平台,确保数据的采集和存储的完整性和准确性。
- 进行数据平台的测试,验证数据的记录和分析功能。
水厂自控系统建设与方案
水厂自控系统建设与方案XXX水厂自控系统建设方案XXX的XXX编写了徐圩水厂自控系统建设方案,该方案旨在提高水厂的自动化程度,实现更高效的运行和管理。
本文将介绍该方案的构成以及各子站的控制方式。
1.XXX水厂自控系统的构成1.1自控系统结构与目标XXX水厂的自控系统由中控室和各子站控制组成。
其目标是实现水厂设备的自动化控制,提高生产效率和水质稳定性。
1.2控制方式自控系统采用了PLC控制器、人机界面、传感器等多种控制方式,以实现对水厂设备的全面控制。
2.中控室2.1运行监视中控室能够实时监视水厂设备的运行情况,包括水泵、澄清池、滤池等各个环节的运行状态。
2.2运行控制中控室能够对水厂设备进行远程控制,包括开关机、调节运行参数等。
2.3数据管理中控室能够对水厂设备的数据进行管理,包括数据采集、存储、分析等。
2.4报警处理中控室能够对水厂设备的异常情况进行报警处理,及时处理故障。
2.5报表及打印中控室能够生成各种报表并进行打印,便于管理人员进行数据分析和决策。
2.6 Web数据服务中控室还能够通过Web数据服务将数据传输到云端,实现远程数据管理和共享。
3.各子站控制3.1原水泵房控制站原水泵房控制站能够对原水泵进行控制,包括开关机、调节运行参数等。
3.2高效澄清池控制站高效澄清池控制站能够对高效澄清池进行控制,包括开关机、调节运行参数等。
3.3翻板滤池控制站翻板滤池控制站能够对翻板滤池进行控制,包括开关机、调节运行参数等。
3.4加氯加药间控制站加氯加药间控制站能够对加氯加药间进行控制,包括开关机、调节运行参数等。
3.5臭氧活性炭间控制站臭氧活性炭间控制站能够对臭氧活性炭间进行控制,包括开关机、调节运行参数等。
以上是XXX水厂自控系统建设方案的构成和各子站的控制方式。
该方案可以提高水厂的自动化程度,实现更高效的运行和管理。
的功能和特点中控室是徐圩水厂自控系统的核心部分,主要负责全厂生产过程的监控和控制。
自来水厂自控系统施工方案
自来水厂自控系统施工方案一、引言自来水厂是为城市供应安全饮用水的重要设施之一。
随着科技的发展,自动化控制系统在自来水厂中的应用越来越广泛,能够提高生产效率和水质管理的精准性。
本文档旨在提供自来水厂自控系统的施工方案,确保系统的稳定运行和有效管理。
二、系统概述自来水厂自控系统是一个集中监控和控制自来水生产过程的系统。
其核心任务包括监测和调整水质指标、控制水泵运行、管网压力控制等。
系统主要包括硬件设备和软件系统两个部分。
2.1 硬件设备硬件设备包括传感器、执行器和控制器等。
传感器用于监测水质、水位、压力等指标;执行器用于控制水泵、阀门等设备的运行;控制器用于数据处理和控制命令的下发。
2.2 软件系统软件系统是整个自控系统的核心,包括数据采集、数据处理、监控界面等模块。
数据采集模块负责从传感器获取实时数据;数据处理模块负责对数据进行分析和处理;监控界面模块提供给操作人员实时监控和操作界面。
三、施工流程3.1 系统设计在施工前,需要进行系统设计,包括系统功能需求、硬件选型和软件开发等。
根据自来水厂的实际情况和需求,确定系统的功能模块和需求,并选择合适的硬件设备和软件系统。
在设计过程中,需要考虑系统的稳定性、可靠性和扩展性。
3.2 硬件设备安装在施工过程中,需要按照设计方案进行硬件设备的安装。
首先,根据设计方案确定传感器和执行器的安装位置,并进行固定;然后,根据控制器的要求,进行控制器的安装和连接。
硬件设备安装完成后,需要进行设备联调和测试,确保设备的正常工作。
3.3 软件系统开发软件系统开发是施工过程中的关键环节。
在开发过程中,需要按照设计方案进行数据采集、数据处理和监控界面的开发。
数据采集模块需要与传感器进行数据通信,并将数据传输给数据处理模块;数据处理模块负责对数据进行处理和分析,并生成控制命令;监控界面模块提供给操作人员实时监控和操作界面。
开发完成后,需要进行系统测试和调试,确保软件系统的正常运行。
水厂自动控制系统施工方案
水厂自动控制系统施工方案1. 引言本文档旨在提供水厂自动控制系统施工方案的详细信息。
水厂自动控制系统是为了提高水厂运营效率和水质监控而设计的。
本方案将包括系统的整体架构、施工流程及主要组成部分的功能和特点。
2. 系统概述水厂自动控制系统将采用现代化的控制技术和仪器设备,实现对水厂各个工艺单元的自动化控制和数据监测。
主要功能包括: - 水资源调度和供应管理 - 水质检测和监控 - 设备故障检测和报警 - 远程监控和运维管理3. 施工流程系统施工流程如下: 1. 调研与设计:根据水厂的实际运营情况和需求,进行系统的调研和设计工作,包括系统架构设计、功能需求分析等。
2. 采购与安装:根据设计方案,采购所需的控制设备和仪器,并进行设备的安装和调试工作。
3. 软件开发与调试:根据水厂的实际需求,进行自动控制系统的软件开发,并进行系统的调试和优化工作。
4. 集成与测试:将各个组件进行集成,并进行系统的整体测试和验证。
5. 培训与验收:对水厂运营人员进行系统使用培训,并进行系统的验收和交接工作。
4. 系统组成部分4.1 控制中心控制中心是整个水厂自动控制系统的核心部分,负责对各个工艺单元进行实时监控和控制。
主要功能包括: - 实时数据采集和监测 - 控制信号发出和调节 - 报警与故障处理4.2 数据采集设备数据采集设备用于采集水厂各个工艺单元的实时数据,并将数据传输到控制中心进行分析和处理。
主要功能包括: - 传感器和仪表设备 - 数据采集与传输设备4.3 监控与管理软件监控与管理软件用于对水厂自动控制系统进行参数配置、数据分析和系统管理。
主要功能包括: - 参数配置和调整 - 实时数据展示和趋势分析 - 报警与故障管理4.4 远程监控设备远程监控设备用于实现对水厂自动控制系统的远程监控和操作。
主要功能包括: - 远程数据显示和操作 - 远程报警和故障处理 - 远程运维和管理5. 施工注意事项在进行水厂自动控制系统的施工过程中,需要注意以下事项: - 设备选型:选用符合水厂实际需求和可靠性要求的控制设备和传感器,并确保设备与系统的互通性。
2023年水厂自控系统建设方案
2023年水厂自控系统建设方案一、背景介绍随着科技的不断发展和水资源的日益紧缺,水厂自控系统的建设变得越来越重要。
水厂自控系统可以使水处理设备实现智能化、自动化、远程化,提高水质的稳定性和水厂的运行效率。
本文将提出2023年水厂自控系统建设方案,以期达到提高水厂自动化程度、减少人工操作、降低生产成本、提高产品质量的目标。
二、自控系统建设目标1. 实现水处理过程的自动化操作,减少人工干预,提高操作效率。
2. 提高水质稳定性,降低水质波动,保证出厂水质量稳定。
3. 设备运行监控实时可视化,实现远程监控和控制。
4. 提高能源利用效率,减少能源消耗,降低生产成本。
5. 提高设备故障预警和自动诊断能力,减少停产时间,保证生产连续性。
三、自控系统建设方案1. 设备智能化改造对现有水处理设备进行智能化改造,包括仪器仪表自动化、设备操作自动化等。
通过安装传感器、执行器、PLC等设备,实现设备的远程监控和控制。
设备运行参数将实时反馈到自控系统中,以便对设备进行调整和优化。
2. 数据采集和传输系统建设建立数据采集和传输系统,实时采集和传输水厂数值和设备运行状态等数据。
该系统可以采用现场总线技术,如Modbus、Profibus等,实现设备与自控系统之间的数据通信。
同时,可以通过云平台实现数据的远程存储和共享,方便各个部门进行数据分析和决策。
3. 自控系统软件开发开发自控系统软件,实现对水厂全过程的监控和控制。
系统软件可以包括监控界面、数据分析模块、报警处理模块等。
监控界面可以实时显示设备运行状态和水质参数等,数据分析模块可以对历史数据进行分析和预测,报警处理模块可以实时报警并提供解决方案。
4. 远程监控和控制系统建设建立远程监控和控制系统,实现水厂设备的远程管理。
通过Internet和移动通信技术,实现对水厂设备的远程监控和控制。
操作人员可以通过手机、平板电脑等移动终端随时随地查看设备运行状态和水质数据,并进行远程操作和调整。
水厂自控系统建设设计方案
水厂自控系统建设方案目录一、某水厂自控系统的组成 (1)1.1 自动控制系统结构及目标 (2)1.2 控制方式 (3)2.中央控制室 (3)2.1 运行监控 (4)2.2 运行控制 (4)2.3 数据管理 (4)2.4 告警处理 (4)2.5 报告和打印 (5)2.6网络数据服务 (5)3、各变电站的控制 (5)3.1 原水泵房控制站 (5)3.2 高效澄清池控制站 (6)3.3 翻板过滤控制站 (7)3.4 加药加氯控制站 (9)3.5 臭氧活性炭室控制站 (10)3.6 水泵房控制站 (10)3.7 污泥脱水室控制站 (11)水泵房控制站错误!未定义书签。
一、某水厂自控系统的组成某水厂自控系统网络拓扑采用光纤以太网环网结构。
在这种网络结构下,每个变电站可以通过两个不同的通道与中央控制室进行通信。
即使网络中的一根光纤损坏,也不会影响中控室与主站的通信。
某水厂自控网络拓扑图1.1 自动控制系统结构及目标某水厂自控系统按照分散控制、集中管理的原则配置。
全厂设有中央控制室,管理整个生产过程,房内分别设有水泵站、高效澄清池、加药氯化室、滤池、活性炭处理PLC控制站、供水泵房和污泥脱水房。
PLC控制站组成一个光纤以太网环网,每个控制站负责处理每个站的数据采集和控制任务。
自动控制系统具有以下功能:1)在线实时显示各工艺环节的生产数据,并根据工艺要求,以不同方式对生产过程中的异常数据进行显示和报警;2)实时显示全厂生产过程中所有重要设备的运行状态和参数,异常情况显示和报警提示;3)根据进水流量、出水浊度和投加比实现加药系统的自动控制;4)通过自动调节实现滤池的恒定水位过滤。
反冲洗根据滤池水位、上下滤层压差和阀门开度实现运行、反冲洗、再运行的全过程控制,也可实现人工强制反冲洗。
操作画面;5)系统可根据出口主管压力自动启动、停止和调节水泵。
1.2 控制方式某水厂所有电气设备均采用集中控制和现场控制两种控制方式。
水厂自控系统建设方案
水厂自控系统建设方案一、项目背景随着我国经济的快速发展,城市化进程的加快,水资源的需求日益增长。
为确保水厂生产过程的稳定、高效和安全,提高水质监测与控制水平,降低运营成本,提升水厂自动化程度,本项目旨在建设一套先进、可靠、实用的水厂自控系统。
二、项目目标1.提高生产效率:通过自动化控制系统,实现生产过程的实时监控,降低人工干预,提高生产效率。
2.确保水质安全:实时监测水质指标,及时发现并处理水质异常情况,确保水质安全。
3.节约能源:优化设备运行,降低能源消耗,提高能源利用效率。
4.减少运营成本:通过自动化控制,降低人工成本,提高设备运行效率,降低维修费用。
5.提升管理水平:实时掌握生产数据,为管理层决策提供有力支持。
三、系统架构1.硬件架构:主要包括传感器、执行器、数据采集卡、通信设备、服务器等。
2.软件架构:主要包括数据采集与处理、监控与报警、数据分析与优化、系统管理等功能模块。
四、系统功能1.数据采集与处理:实时采集生产过程中的各种参数,如流量、压力、水质指标等,并进行数据处理,实时曲线、历史数据等。
2.监控与报警:实时监控生产过程中的关键参数,发现异常情况及时发出报警,通知相关人员处理。
3.数据分析与优化:对采集到的数据进行分析,找出生产过程中的问题点,制定优化方案,提高生产效率。
4.系统管理:对系统进行配置、维护、升级等操作,确保系统稳定可靠运行。
五、实施方案1.设备选型:根据生产需求,选择合适的传感器、执行器、数据采集卡等设备。
2.网络搭建:采用有线或无线通信方式,将设备与服务器连接起来,实现数据传输。
3.软件开发:根据实际需求,开发符合生产流程的监控软件,实现数据采集、处理、监控等功能。
4.系统调试:在设备安装完成后,进行系统调试,确保各项功能正常运行。
5.培训与交付:对操作人员进行培训,确保他们能够熟练使用系统,将系统交付给用户。
六、项目进度安排1.项目启动:进行项目调研,明确需求,制定实施方案。
现代水厂自动化综合控制系统结构设计
现代水厂自动化综合控制系统结构设计摘要:随着科技的不断进步和人们对生活质量的日益追求,现代化水厂的自动化程度也在不断加强。
相对于国外,我国的自动化水厂技术起步相对较晚,存在一些不足之处。
随着工业自动化技术的日益发展,自动化水厂也得到了很大的发展,本文详细分析了我国现代化水厂自动化现状,介绍了笔者在工作中的一些相关经验。
关键词:自动化;结构设计;控制系统目前,自动化控制系统已经有了比较成熟的发展系统,现代水厂虽然已经采用了自动化技术,但距离完全自动化还有很大的差距。
[1]水厂的控制系统还不够完善,不能实现全面的自动化控制,因此,要想实现水厂的完全自动化,还需要进一步的技术创新和设备更新,提高生产效率,为人们的生活提供更好的水源保障。
自来水厂的自动控制系统主要包括配电系统、源水泵房、出水泵房、沉淀池以及滤池、加药间等单元,一般包括取水、配药、加药、混凝、沉淀、过滤、消毒和送水等环节。
这些单元通过控制室的生产SCADA系统统一调度、管理。
下面,笔者就自来水厂的的自动化控制系统各项功能进行简要介绍。
一、现代水厂自动控制系统的总体结构概述随着工业自动化的不断发展,基于PLC的自动控制系统已成为现代水厂中广泛使用的一种技术。
这种系统采用分布式控制结构,按不同层级进行管理,包括设备层、控制层和监管层等级管理。
设备层主要管控对象为变频器、水泵机组、水质在线仪表、各类型传感器等;控制层则主要针对控制核心和制水工艺进行控制;监管层则涵盖操作监控系统和信息管理系统。
在使用PLC作为控制层的主要控制设备时,可以通过使用工业以太网来将监管层的工控机、服务器与控制层的PLC站连接构成一个完备的控制系统,与设备层各生产设备及传感器进行对接,通过现场总线和多元化端口进行实时数据采集,结合编制好的程序进行运算,对各设备进行控制;监管层配备至少两台工控机互为冗余,若同时出现故障,各PLC分站仍然能够独立地控制各分系统按照设定的工艺流程进行生产,保障了自来水厂生产的正常进行,提高了自来水厂自动化控制系统的稳定性与可靠性。
自来水厂自控技术方案
⾃来⽔⼚⾃控技术⽅案⾃来⽔改扩建⼯程仪表及⾃控系统⾃控⽅案⾃来⽔⼚改建⼯程项⽬组⼆零⼀⼀年⼗⽉⼆⼗⽇⽬录1⾃控系统建⽴的必要性 (1)2⾃动控制系统说明 (2)3⾃动控制系统的构成 (3)3.1 总体结构与⽬标 (3)3.2 设备控制⽅式 (4)4中央控制室 (5)4.1 系统功能 (5)4.2 配置表 (7)4.3 上位监控软件说明 (8)5仪表系统 (9)6PLC系统 (11)6.1 CP1控制站 (12)6.2 CP2控制站 (13)6.3 CP3控制站 (14)6.4 CP4控制站 (15)6.5 配置清单 (15)1⾃控系统建⽴的必要性原⽔经过取⽔、沉淀、过滤、消毒⼯艺流程后⽣产出质量合格的⾃来⽔,并由送⽔泵房输送到城市管⽹。
⾃来⽔的⽣产是连续⽣产过程,前⼀⼯艺流程的处理效果会直接影响到后续⼯艺的处理,⽣产中任何⼀个⼯艺环节出现问题都将可能导致⽣产产品的质量缺陷,同时也会在⼀定程度上提⾼⽔处理的成本。
为了确保产品质量、及时发现⽣产过程中的异常情况,就要求⼯艺⼈员实时掌握⽣产动态。
⾃来⽔⽣产过程中机械和电⽓设备必然产⽣磨损,因此在⽇常⽣产过程中就需要时刻关注重要设备的运⾏状态。
虽然⽔⼚都配置了⼤量的设备维护⼈员,但通常情况下只有当维护⼈员到达现场后才能发现设备故障,且发现的往往都是⽐较严重的故障,会直接影响正常⽣产的开展。
为了提⾼设备维护的主动性及时发现设备故障,维护⼈员需要⼀个平台来实时了解设备运⾏状态及运⾏参数。
综上所述,在⽔⼚⽇常⽣产过程中为了更好实施⼯艺管理,需要建⽴⼀个能够直观反映实际⽣产状况的平台;为了更好地保障设备的正常运⾏,需要建⽴⼀个能够有效反映⽔处理过程中各重要设备状态及信息的平台。
⽔⼚⾃控系统具备实时显⽰⽣产过程中⼯艺参数,重要设备运⾏状态及参数的功能,⽔⼚⾃控系统的建⽴能够同时满⾜⼯艺和设备维护的需求,为⽔⼚的⽇常⽣产的正常开展提供了⼀个平台。
同时,⾃控系统不仅仅具有信息显⽰的功能还具备对设备进⾏远程操作的功能,同时PLC系统还能实现对风机、⽔泵的远程控制,实现⾃动投药、⾃动加氯及滤池恒⽔位控制及滤池⾃动反冲洗的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业资料徐圩水厂自控系统建设方案刘朋目录1.徐圩水厂自控系统的构成 (2)1.1自控系统结构与目标 (2)1.2控制方式 (3)2.中控室 (3)2.1运行监视 (3)2.2运行控制 (3)2.3数据管理 (4)2.4报警处理 (4)2.5报表及打印 (4)2.6 Web数据服务 (4)3.各子站控制 (4)3.1原水泵房控制站 (4)3.2高效澄清池控制站 (5)3.3翻板滤池控制站 (6)3.4加氯加药间控制站 (7)3.5臭氧活性炭间控制站 (8)3.6送水泵房控制站 (8)3.7污泥脱水间控制站 (9)1.徐圩水厂自控系统的构成徐圩水厂自控系统网络拓扑结构采用光纤以太环网结构,在这种网络结构下,每个子站都可以通过两条不同的通道与中控室进行通讯,即使网络中的一处光纤受到损伤,也不会影响中控室与主站之间的通讯。
徐圩水厂自控网络拓扑图1.1自控系统结构与目标徐圩水厂自控系统按照分散控制,集中管理的原则配置,全厂拥有一处中控室,管理整个生产过程,并且在取水泵站、高效澄清池、加药加氯间、滤池、活性炭处理间、送水泵房和污泥脱水间分别设置有PLC控制站,PLC控制站组成光纤以太环网,各控制站负责处理各站的数据采集和控制任务。
自控系统具有以下功能:1)在线实时显示各工艺环节的生产数据,并根据工艺的要求对生产过程中的异常数据进行不同方式的显示及报警提示;2)实时显示全厂生产过程中各重要设备的运行状态及参数,并对异常情况进行显示和报警提示;3)根据进水流量、出水浊度和加药配比值来实现加药系统的自控控制;4)采用自动调节实现滤池的恒水位过滤。
反冲洗根据滤池水位、滤层上下差压和阀门开度实现运行、反冲洗到再运行的全过程控制,同时也可实现在操作画面上进行人工强制反冲洗;5)系统可根据出水总管压力自动进行水泵的启停与调节。
1.2控制方式徐圩水厂所有电动设备均设集中控制和现场控制两种控制方式,其中集中控制由运行人员在中控室上位机上进行,现场控制则在就地控制箱上操作完成,并且拥有两种优先级,集中控制为最低优先级,而现场操作为最高优先级。
中控室设置有自动/手动两种控制方式,其中手动控制由运行人员在中控室上位机上进行控制,自动控制可由PLC系统根据现场采集的信号经逻辑运算后自动进行调节。
现场控制设有远程/就地两种控制方式,其中远程方式由PLC控制站进行控制,就地方式由运行人员在现场的控制箱上进行手动操作。
通常情况下,采用远程控制方式进行控制,在控制系统维护或者检修时,切换为就地方式进行操作,确保生产的连续进行。
2.中控室中控室是整个控制系统的核心,集成了生产运行过程中所有实时数据,可以对整个厂区的全部生产过程进行集中监视、管理及控制。
同时,能够对生产过程中出现的各类报警进行显示及报警提示,并对运行数据进行记录。
中控室通过光纤环网与各站PLC控制站进行通讯,中控室内有两台操作员站计算机用于监控厂区的运行,运行人员通过操作员站的上位画面监视生产过程,调整工艺参数,并控制现场设备。
2.1运行监视运行人员通过操作员站上位机对厂区的生产过程进行监视,包括设备的状态、现场仪表数据、事故报警、历史数据等,用于实时、全面掌握厂区的生产过程。
2.2运行控制运行人员通过操作员站上位机可根据需求以及调度指令调整厂内生产,根据监视设备状态和运行记录,优化生产方式。
2.3数据管理操作员上位机记录有各厂房系统上传的数据,并对这些数据进行处理,形成历时数据库、生产报表。
根据历史数据库,可分析生产质量、成本指标,并对设备的运行进行管理。
2.4报警处理当生产过程或设备出现异常情况时,中控室发出报警提示及声音报警信号报警类型包括:1)水泵故障;2)压力、液位、流量异常;3)螺杆泵、搅拌机等设备故障;4)控制系统发现异常;5)通讯故障。
2.5报表及打印中控室上位机自动生成日报表,报表中有实时数据和统计数据,并可通过打印机进行打印。
2.6 Web数据服务系统可通过Web服务器将运行数据发布至网络,需求人员可通过网络进行查看。
3.各子站控制3.1原水泵房控制站原水泵房水泵的启停由调度人员根据清水池水位、送水泵房运转情况及外网需求变化决定。
PLC控制系统可实现主要设备的信号监测,一步化启停和相应的故障处理。
泵房水泵在备用状态下进水阀敞开,水泵启动时先开水泵,再将出水阀开到位,水泵停止的顺序为关出水阀门,关水泵。
在信号的连续监测过程中,出现设备没能正常完成动作,或监测到的数据超标,即在现场触控屏和中控室上位机跳出报警提示,同时将正在执行的命令复位,由操作人员根据实际情况解决设备故障,待设备故障清除后,可在现场触摸屏或中控室上位机上清除报警提示,再行启动。
原水泵房控制站的所有数据通过网络专线与徐圩水厂中控室进行数据交换。
1)原水泵站出水控制采用串级控制来控制出水总管压力。
串级控制的主控量为出水总管压力,副控量为原水泵站吸水井液位。
把出水总管压力控制在0.25~0.3MPa之间;2)原水泵的互备联锁。
4台水泵根据水厂及原水用户的运行负荷大小,互备联锁模式分为一用两备,两用一备,并且可根据每台泵的运行累计时间进行循环启动,实现水泵均匀磨损,避免某台水泵经常使用造成设备疲劳或长时间不用造成锈蚀;3)格栅机的自动控制。
格栅机通过时间继电器进行控制,每一小时运行十五分钟,当格栅机到达运行时间,启动格栅机,这样既能保证粗格栅每次运行都能耙上一定量的垃圾,提高运行效率,又能防止由于垃圾过多对格栅机造成损坏;4)本控制站采集所有原水泵房各仪表、水质分析数据及相关泵阀设备启停信号传送至现场触摸屏及徐圩水厂中控室。
3.2高效澄清池控制站1)自动排泥控制根据测得的澄清池出水浊度数据,通过对运行工况的分析,在保证澄清池出水浊度处于最佳范围的情况下,求得开始排泥的最佳浊度值和结束排泥时最合理的浊度值,作为自动排泥的上下限(此设定值可在线修改)。
当浊度达到上限设定值,发出开始排泥预警并自动开启排泥电动阀,关闭回流电动阀,开始排泥;当浊度值降到下限设定值时,发出停止排泥的信号,开启回流阀,关闭排泥阀。
2)污泥回流控制制水时根据来水量及污泥回流比自动控制污泥螺杆泵的启停和调节,同时打开污泥回流阀,关闭污泥排泥阀。
3)本控制站采集所有高效澄清池各仪表、水质分析数据及相关泵阀设备启停信号传送至现场触摸屏及中控室。
3.3翻板滤池控制站1)恒水位滤水自动控制滤池水位的变化受进水量的变化、滤层阻塞值、过滤周期、待滤水浊度因素影响。
采用对滤池进行恒水位控制,使得滤池在生产周期全过程滤速根据生产情况自动调节,避免了滤池在生产周期初始阶段滤速过快,后期滤速过慢的问题,从而使滤后水浊度在生产周期内相对稳定。
采用超声波液位计检测滤池液位变化作为过程变量(PV,然后与设定值(SP进行比较,计算出过程变量的变化趋势,再输出控制信号(CV,调节出水阀来控制滤速,保持滤池液位恒定。
2)翻板滤池自动反冲洗自动控制滤池反冲洗启动的控制条件是出水阀位超过高限、滤池差压值达到设定值、液位值超过高限和人工干预,当前三种条件同时满足,或后一种条件满足时,就启动自动反冲洗系统。
系统的运行是由PLC的顺序控制系统逻辑控制的,其控制如下:步骤1:启动条件预设(阀位高、差压高、液位高、人工);步骤2:条件触发自动反冲洗;步骤3:关闭滤池进水阀,待滤池液位降至设定高度,关闭滤池出水阀。
步骤4:开反冲洗风机放空阀,启动反冲洗风机,延时60s待风机运行稳定;步骤5:打开反冲洗进气阀,关闭反冲洗放空阀;步骤6:延时5min进行气冲;步骤7:启动反冲洗水泵,延时10s待水泵运行稳定,打开反冲洗进水阀;步骤8:液位上升至设定值,切换至下一滤池;步骤9:液位下降至设定值,打开反冲洗进水阀;步骤10:开反冲洗风机放空阀/关闭反冲洗进气阀。
步骤11:停止反冲洗风机运行;步骤12:停止反冲洗给水泵运行;步骤13:关闭反冲洗进水阀和反冲洗给水泵出口阀;至此反冲洗周期结束,进入下一个过滤周期。
滤池的反冲洗在不频繁启停反冲洗水泵的情况下,可通过同时冲洗两组或三组滤池,以其中一组滤池作为气冲与水冲的过渡。
滤池的自动反冲洗系统控制将充分考虑现行实际生产运行情况修正控制参数,在上位机操作界面上将为运行人员预留相关控制参数的修改界面。
3)本控制站采集所有翻板滤池各仪表、水质分析数据及相关泵阀设备启停信号传送至现场触摸屏及中控室。
3.4加药加氯间控制站1)加药投加自动控制加药投加量主要根据澄清池、滤池出水浊度、原水流量和配比值来自动控制。
前馈控制确定一个给出量,然后以高效澄清池、滤池出水浊度作为后馈信号来调节前馈给出量。
由前馈给出量和后馈调节量就可获得最佳剂量。
采用多因子前馈-反馈控制系统来控制投药,在PLC上用程序来实现以待滤水浊度为控制目标的多因子前馈-反馈控制系统。
2)加氯自动控制前加氯自动控制前加氯的主要目的是杀死水中的微生物或氧化有机物,对前加氯自动控制采用进厂水流量比例前馈自动控制,其运算公式为Y=A*K*Q,Y为前加氯的投加量(mg/L), A为给定值,K为单位原水投氯量(mg/L),且该值可根据原水水质分析数据进行动态补偿调整,Q为原水进水量(m3/L)。
后加氯补加氯自动控制出水总管余氯值与其设定值进行比较,控制系统根据两者的偏差情况,采用动态调节,使出水余氯稳定在设定值附近。
前加、后加氯自动控制可迅速调整由于处理水量变化产生的氯需求变化,可对余氯偏差进行更准确的修正,调整特性简单,同时也保证了出水质量的稳定性。
3)本控制站采集所加氯加药间各仪表、水质分析数据及相关泵阀设备启停信号传送至现场触摸屏及中控室。
3.5臭氧活性炭间控制站1)臭氧发生系统臭氧系统通过以太网与主站进行数据通讯,实现在线监测臭氧发生系统的运行状态,主控系统依据进水水量实时发送臭氧投加量至臭氧发生系统。
2)活性炭系统通过进水流量可监测到活性炭罐的进水情况,当流量降至设定值将提示进入反冲洗,打开反冲洗进水阀和出水阀,通过压力变送器监测反冲强度,反冲600s 后,停止反冲洗泵,关闭反冲洗进水阀和出水阀,打开滤水进水阀和出水阀,进入备用状态。
(活性炭处理间手动阀已经联系施工单位查看过现场,正在准备采购阶段。
)3)本控制站采集臭氧活性炭间各仪表数据及相关泵阀设备启停信号传送至现场触摸屏及中控室。
3.6送水泵房控制站送水泵房控制系统,根据设定的出厂水压力自动调节工频水泵的运行数量和变频水泵的运行频率,当管网负荷增大,变频水泵的频率控制达到高限时,自动增加一台工频水泵投入运行,当管网负荷减小,变频水泵的频率控制达到低限时,自动减少一台工频水泵运行,根据管网负荷变化实时对水泵运行状态进行动态调整。
PLC控制系统根据指令,一步化启停水泵。
在信号的连续监测过程中,出现设备没能正常完成运行,或监测到的电流超限等异常情况,即在现场触控屏和中控室上位机跳出报警提示画面,同时将正在执行的命令切除,改为启动另一台水泵,由运行人员根据实际情况解决后再投入备用并清除报警。