最新倍长中线法(经典例题)

合集下载

倍长中线最全总结 例题+练习(附答案)

倍长中线最全总结   例题+练习(附答案)

倍长中线最全总结 例题+练习(附答案)知识导航中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

倍长中线:延长三角形中线,是得延长后的线段是原中线的2倍。

目的是为构造一对8字型全等三角形(SAS ),从而实现边角的转移。

易错点睛倍长中线的目的在于转移边角,需要注意的是要注意延长哪一条线段或者类中线;倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。

DAB C模块一 有关倍长中线的全等模型【范例】(2014秋•江汉区校级月考)如图,在ABC ∆中,AD 为中线,求证:2AB AC AD +>.【分析】延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关系可得 2AB AC AD +>。

【解答】证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DE ADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;BB【核心考点1】倍长中线1.(2016秋•五莲县期中)如图,ABC ∆中,D 为BC 的中点. (1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关 系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三 边可得53253AD -<<+,再计算即可. 【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DEADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;(2)5AB =,3AC =,53253AD ∴-<<+,14AD ∴<<.ABC2.如图,ABC ∆中,BD DC AC ==,E 是DC 的中点,求证:AD 平分BAE ∠.【分析】延长AE 到M ,使EM AE =,连结DM ,由SAS 证明DEM CEA ∆≅∆,得出C MDE ∠=∠,DM AC =,证出DM BD =,ADM ADB ∠=∠,由SAS 证明ADB ADM ∆≅∆,得出BAD MAD ∠=∠即可.【解答】证明:延长AE 到M ,使EM AE =,连结DM ,如图所示:E 是DC 的中点,DE CE ∴=,在DEM ∆和CEA ∆中,EM AE DEM CEADE CE =⎧⎪∠=∠⎨⎪=⎩,()DEM CEA SAS ∴∆≅∆, C MDE ∴∠=∠,DM AC =,又BD DC AC ==,DM BD ∴=,ADC CAD ∠=∠,又ADB C CAD ∠=∠+∠,ADM MDE ADC ∠=∠+∠,ADM ADB ∴∠=∠,在ADB ∆和ADM ∆中,AD AD ADB ADMBD DM =⎧⎪∠=∠⎨⎪=⎩,()ADB ADM SAS ∴∆≅∆,BAD MAD ∴∠=∠,即AD 平分BAE ∠。

倍长中线最全总结 例题+练习(附答案)

倍长中线最全总结   例题+练习(附答案)

倍长中线知识导航中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

倍长中线:延长三角形中线,是得延长后的线段是原中线的2倍。

目的是为构造一对8字型全等三角形(SAS ),从而实现边角的转移。

易错点睛倍长中线的目的在于转移边角,需要注意的是要注意延长哪一条线段或者类中线;倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。

DAB C模块一 有关倍长中线的全等模型【范例】(2014秋•江汉区校级月考)如图,在ABC ∆中,AD 为中线,求证:2AB AC AD +>.【分析】延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关系可得 2AB AC AD +>。

【解答】证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DE ADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;BB【核心考点1】倍长中线1.(2016秋•五莲县期中)如图,ABC ∆中,D 为BC 的中点. (1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关 系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三 边可得53253AD -<<+,再计算即可. 【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DEADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;(2)5AB =,3AC =,53253AD ∴-<<+,14AD ∴<<.DABC2.如图,ABC ∆中,BD DC AC ==,E 是DC 的中点,求证:AD 平分BAE ∠.【分析】延长AE 到M ,使EM AE =,连结DM ,由SAS 证明DEM CEA ∆≅∆,得出C MDE ∠=∠,DM AC =,证出DM BD =,ADM ADB ∠=∠,由SAS 证明ADB ADM ∆≅∆,得出BAD MAD ∠=∠即可.【解答】证明:延长AE 到M ,使EM AE =,连结DM ,如图所示:E 是DC 的中点,DE CE ∴=,在DEM ∆和CEA ∆中,EM AE DEM CEADE CE =⎧⎪∠=∠⎨⎪=⎩,()DEM CEA SAS ∴∆≅∆, C MDE ∴∠=∠,DM AC =,又BD DC AC ==,DM BD ∴=,ADC CAD ∠=∠,又ADB C CAD ∠=∠+∠,ADM MDE ADC ∠=∠+∠,ADM ADB ∴∠=∠,在ADB ∆和ADM ∆中,AD AD ADB ADMBD DM =⎧⎪∠=∠⎨⎪=⎩,()ADB ADM SAS ∴∆≅∆,BAD MAD ∴∠=∠,即AD 平分BAE ∠。

倍长中线法证明全等例题

倍长中线法证明全等例题

选择题在三角形ABC中,AD是中线,倍长AD至点E,连接BE,若要证明三角形ADC与三角形EDB 全等,需要添加的条件是?A. 角ADC = 角EDBB. AD = BDC. 角CAD = 角EBD(正确答案)D. AC = BE已知三角形ABC中,D是BC的中点,AD是中线,延长AD至E使得DE = AD,连接BE。

若角ADC = 角EDB,则下列哪一对三角形全等?A. 三角形ABD与三角形ECDB. 三角形ADC与三角形EDB(正确答案)C. 三角形ABC与三角形EBDD. 三角形ABD与三角形EBD在三角形ABC中,D为BC的中点,AD为中线。

延长AD到E,使得DE = AD,连接BE。

若AC平行于BE,则下列结论正确的是?A. 三角形ADC与三角形EDB不全等B. 三角形ADC与三角形EDB全等(正确答案)C. 三角形ABC与三角形EBD全等D. 无法判断三角形ADC与三角形EDB的全等关系在三角形ABC中,D是BC的中点,AD是中线。

延长AD到E,使得DE = AD,连接BE。

若要证明三角形ADC全等于三角形EDB,可依据的判定定理是?A. SSSB. ASAC. SAS(正确答案)D. AAA已知三角形ABC,D为BC的中点,AD为中线。

延长AD至E,使DE = AD,连接BE。

若角C = 角E,则下列哪一对三角形一定全等?A. 三角形ABD与三角形ECDB. 三角形ABC与三角形EBDC. 三角形ADC与三角形EDB(正确答案)D. 三角形ABC与三角形ADC在三角形ABC中,D是BC的中点,AD是中线。

延长AD到E,使得DE = AD,连接BE。

若三角形ADC与三角形EDB全等,则它们的对应角一定相等,即?A. 角ADC = 角EBD(正确答案)B. 角ADC = 角EDCC. 角CAD = 角CDED. 角BAC = 角E已知三角形ABC,D是BC的中点,AD是中线。

延长AD至E,使得DE = AD,连接BE。

专题02 倍长中线模型(原卷版)(人教版)

专题02 倍长中线模型(原卷版)(人教版)

专题02 倍长中线模型【基本模型】【例题精讲】V(2)如图2,AD是ABC=;AC BF(3)如图3,在四边形^,试猜想线段CE DE例2.(培优综合1)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.例4.(培优综合3)在ABC V 中,点P 为BC 边中点,点M .CN ^直线a 于点N ,连接PM ,PN .(1)如图1,若点B ,P 在直线a 的异侧,延长(2)若直线a 绕点A 旋转到图7BMP CNP S S +=△△,1BM =(3)若过P 点作PG ^直线a 于点(2)如图2,若A O D 、、三点不在同一条直线上,AC 与BD AE BE OE 、、之间的数量关系,并给予证明;(3)如图3,在(2)的条件下作BC 的中点F ,连接OF ,直接写出【变式训练】1.如图所示,在ABC D 中,AD 交BC 于点D ,点E 是BC 中点,EF ∥AD 交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC Ð的平分线.2.阅读理解:(1)如图1,在ABC V 中,若10AB =,6AC =,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使得AD DE =,再连接BE ,把AB ,AC ,2AD 集中在ABE V 中,利用三角形三边关系即可判断中线AD 的取值范围是______.(2)解决问题:如图2,在ABC V 中,D 是BC 边上的中点,DE DF ^,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>.(3)问题拓展:如图3,在ABC V 中,D 是BC 边上的中点,延长DA 至E ,使得AC BE =,求证:CAD BED Ð=Ð.4.如图,△ABC中,AB=AC,(1)求证:AD=AE;【课后训练】+<B.BE+A.BE CF EFA.50°B.603.在△ABC中,AB=AC,点EF⊥AE,若点F在BD的垂直平分线上,示)4.请阅读下列材料:(1)如图1,①若AB AC =,请直接写出EAC BCD Ð-Ð=______;②连接DE ,若2AE DE =,求证:DEB AEC Ð=Ð;(2)如图2,连接FB ,若FB AC =,试探究线段CF 和DF 之间的数量关系,并说明理由.8.已知ABC V 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD Ð=Ð,求证:AE EC =.(3)如图3,点D 在ABC V 内部,且满足AD BC =,BAD DCB Ð=Ð,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.。

倍长中线最全总结 例题+练习(附答案)

倍长中线最全总结   例题+练习(附答案)

倍长中线最全总结 例题+练习(附答案)知识导航中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

倍长中线:延长三角形中线,是得延长后的线段是原中线的2倍。

目的是为构造一对8字型全等三角形(SAS ),从而实现边角的转移。

易错点睛倍长中线的目的在于转移边角,需要注意的是要注意延长哪一条线段或者类中线;倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。

DAB C模块一 有关倍长中线的全等模型【范例】(2014秋•江汉区校级月考)如图,在ABC ∆中,AD 为中线,求证:2AB AC AD +>.【分析】延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关系可得 2AB AC AD +>。

【解答】证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DE ADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;BB【核心考点1】倍长中线1.(2016秋•五莲县期中)如图,ABC ∆中,D 为BC 的中点. (1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关 系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三 边可得53253AD -<<+,再计算即可. 【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DEADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;(2)5AB =,3AC =,53253AD ∴-<<+,14AD ∴<<.ABC2.如图,ABC ∆中,BD DC AC ==,E 是DC 的中点,求证:AD 平分BAE ∠.【分析】延长AE 到M ,使EM AE =,连结DM ,由SAS 证明DEM CEA ∆≅∆,得出C MDE ∠=∠,DM AC =,证出DM BD =,ADM ADB ∠=∠,由SAS 证明ADB ADM ∆≅∆,得出BAD MAD ∠=∠即可.【解答】证明:延长AE 到M ,使EM AE =,连结DM ,如图所示:E 是DC 的中点,DE CE ∴=,在DEM ∆和CEA ∆中,EM AE DEM CEADE CE =⎧⎪∠=∠⎨⎪=⎩,()DEM CEA SAS ∴∆≅∆, C MDE ∴∠=∠,DM AC =,又BD DC AC ==,DM BD ∴=,ADC CAD ∠=∠,又ADB C CAD ∠=∠+∠,ADM MDE ADC ∠=∠+∠,ADM ADB ∴∠=∠,在ADB ∆和ADM ∆中,AD AD ADB ADMBD DM =⎧⎪∠=∠⎨⎪=⎩,()ADB ADM SAS ∴∆≅∆,BAD MAD ∴∠=∠,即AD 平分BAE ∠。

倍长中线法(经典例题)

倍长中线法(经典例题)

N作 BE! AD 的延长线于倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时, 常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全 等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么 等于什么(延长的那一条),用SAS 证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模 型的构造。

【方法精讲】常用辅助线添加方法倍长中线△ ABC 中式1:延长AD 到E,B --------------- ■ ------------- CDAD 是E BC使 DE=AD接BE方式2:间接倍长 AB 延长MD 到N, CE连接CN 经典例题讲解:例〔:△ ABC 中,AB=5 AC=3求中线 AD 的取值范围例2:已知在△ ABC 中,AB=AC D 在AB 上,E 在AC 的延长线上,DE 交 BC 于 F ,且 DF=EF 求证:BD=CE例3:已知在△ ABC 中 , AD 是 BC 边上的中线,E 是AD 上一点,且BE 二AC例4:已知:如图,在- ABC 中,AB = AC , DE 在 BC 上 ,且 DE 二EC 过 D 作 DF//BA 交 AE 于点 F , DF=AC.例 5:已知 CD=AB Z BDA M BAD AE 是A ABD 的中线,求证:/ C=Z BAE自检自测:1、如图,△ ABC 中 , BD=DC=AC,是 DC 的中点,求证,AD 平分/ BAE.使 DN=M ,BE延长BE 交AC 于F ,求证:AF=EF求证:AE 平分.BACDEAECCFAC2、在四边形ABCD K AB// DC E 为BC 边的中点,/ BAE K EAF AF与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关 系,并证明你的结论.3、如图,AD 为 MBC 的中线,DE 平分.BDA 交AB 于E,DF 平分.AD 交 AC 于 F.求证:BE CF EF4、已知:如图, ABC 中, C=90,CM AB 于 M AT 平 分 BAC 交 CM 于 D,交 BC 于 T ,过 D 作 DE//AB 交 BC 于 E ,求证:CT=BE.ADBF。

13.13专题11:--倍长中线法

13.13专题11:--倍长中线法

13.13专题11:--倍长中线法一.【知识要点】1.倍长中线法:通过将中线或类似于中线的线段向中点方向延长,使延长的部分线段与中线相等,俗称中线倍长.二.【经典例题】1.如图所示,AD是△ABC中BC边上的中线,若AB=2,AC=4,则AD的取值范围是__________.2.如图,在△ABC中,点E为BC的中点,CF∥AB且∠BAE=∠EAF,求证:AF+CF=AB.3.如图,点D为BC的中点,DE⊥DF交AB于E,交AC于F,连EF,若BE=5,CF=3,求EF 的取值范围.4.如图,在△ABC中,CE为△ABC的角平分线,AD⊥CE交BC于点D,垂足为点F,且∠ACB =2∠B.(1)当∠B=31°时,求∠BAD的度数;(2)求证:BE=EC;(3)求证:AB=2CF.5.如图,△ABC为等边三角形,EC=ED,∠CED=120°,P为BD的中点.求证:AE=2PE.三.【题库】【A】1. 如图,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .2.如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.【B】1.已知,在△ABC中,AD为BC边上的中线,AC=5,AD=4,则AB的取值范围是( )A. 1<AB<9B. 3<AB<13C. 5<AB<13D. 9<AB<132.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是____________;中线AD的取值范围是_________________.3.如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA,求证:AE=2AD.【C】1.如图,△ABC中,AD是BC边上的中线,过B点作直线分别交AC,AD于点E,F,当AE=EF 时,图中是否存在与AC相等的线段?若存在,请找出并加以证明,若不存在,说明理由。

中线倍长法和截长补短法学

中线倍长法和截长补短法学

几何证明-常用辅助线 (一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。

待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。

证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDCBD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中, AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=ACC例2: 中线一倍辅助线作法△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线使DE=AD ,连接BE 方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N ,作BE ⊥AD 的延长线于使DN=MD , 连接BE 连接CD例3:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

倍长中线最全总结 例题+练习(附答案)

倍长中线最全总结   例题+练习(附答案)

倍长中线知识导航中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

倍长中线:延长三角形中线,是得延长后的线段是原中线的2倍。

目的是为构造一对8字型全等三角形(SAS ),从而实现边角的转移。

易错点睛倍长中线的目的在于转移边角,需要注意的是要注意延长哪一条线段或者类中线;倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。

DAB C模块一 有关倍长中线的全等模型【范例】(2014秋•江汉区校级月考)如图,在ABC ∆中,AD 为中线,求证:2AB AC AD +>.【分析】延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关系可得 2AB AC AD +>。

【解答】证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DE ADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;BB【核心考点1】倍长中线1.(2016秋•五莲县期中)如图,ABC ∆中,D 为BC 的中点. (1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB ∆≅∆,再根据三角形的三边关 系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三 边可得53253AD -<<+,再计算即可. 【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D 为BC 的中点,DB CD ∴=,在ADC ∆和EDB ∆中AD DEADC BDE DB CD =⎧⎪∠=∠⎨⎪=⎩,()ADC EDB SAS ∴∆≅∆, BE AC ∴=,在ABE ∆中,AB BE AE +>,2AB AC AD ∴+>;(2)5AB =,3AC =,53253AD ∴-<<+,14AD ∴<<.DABC2.如图,ABC ∆中,BD DC AC ==,E 是DC 的中点,求证:AD 平分BAE ∠.【分析】延长AE 到M ,使EM AE =,连结DM ,由SAS 证明DEM CEA ∆≅∆,得出C MDE ∠=∠,DM AC =,证出DM BD =,ADM ADB ∠=∠,由SAS 证明ADB ADM ∆≅∆,得出BAD MAD ∠=∠即可.【解答】证明:延长AE 到M ,使EM AE =,连结DM ,如图所示:E 是DC 的中点,DE CE ∴=,在DEM ∆和CEA ∆中,EM AE DEM CEADE CE =⎧⎪∠=∠⎨⎪=⎩,()DEM CEA SAS ∴∆≅∆, C MDE ∴∠=∠,DM AC =,又BD DC AC ==,DM BD ∴=,ADC CAD ∠=∠,又ADB C CAD ∠=∠+∠,ADM MDE ADC ∠=∠+∠,ADM ADB ∴∠=∠,在ADB ∆和ADM ∆中,AD AD ADB ADMBD DM =⎧⎪∠=∠⎨⎪=⎩,()ADB ADM SAS ∴∆≅∆,BAD MAD ∴∠=∠,即AD 平分BAE ∠。

专题02 倍长中线(解析版)

专题02 倍长中线(解析版)

中点问题一--倍长中线E ,使DE =BD ,连接CE ,是斜边BC 的中线模型讲解1.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 8 .【解答】解:∵DC ⊥BC ,∴∠BCD =90°,∵∠ACB =120°,∴∠ACD =30°,延长CD 到H 使DH =CD ,∵D 为AB 的中点,∴AD =BD ,在△ADH 与△BDC 中,,∴△ADH ≌△BDC (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =AH =4,∴△ABC 的面积=S △ACH =×4×4=8,故答案为:8.2.如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ;例题演练(2)若∠ABC=120°,点G是线段AF的中点,连接DG,EG.求证:DG⊥GE.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD=DC=BC.∵∠DAE=∠BAF,∴∠BAE=∠DAF.在△ABE与△ADF中,,∴△ABE≌△ADF(SAS),∴BE=DF,∴BC﹣BE=DC﹣DF,即CE=CF;(2)如图,延长EG到点H,使HG=EG,连接HA、HD.∵点G是AF的中点,∴AG=FG,在△HAG与△EFG中,,∴△HAG≌△EFG(SAS),∴EF=AH,∠HAG=∠EFG,∴AH∥EF.∵四边形ABCD是菱形,∴DC=BC=AD.∵由(1)知,BE=DF,且∠BAE=∠DAF,EC=FC.∵∠ABC=120°,∴∠C=60°,∴△EFC是等边三角形,∴∠FEC=60°,∴EC=FE.由上述知,FE=HA,∴EC=HA,∠HAG=∠HAD+∠DAF=∠EFG.∵AF=AE,∴∠AFE=∠AEF.∵∠BAD=60°,∴∠EAF=60°﹣∠BAE﹣∠DAF=60°﹣2∠DAF.在△AEF中,∠EAF=180°﹣∠AEF﹣∠EFG=180°﹣2∠EFG=180°﹣2(∠HAD+∠DAF),∴∠HAD=60°.在△HAD与△ECD中,,∴△HAD≌△ECD(SAS),∴DE=DH,易证△DGH≌△DGE,故∠DGH=∠DGE=90°,即DG⊥GE.1.如图在△ABC 中,AD 为BC 边上的中线,E 是线段AD 上一点,且AE =BC ,BE 的延长线交AC 于F ,若AF =EF .求证:(1)AC =BE(2)∠ADC =60°.【解答】证明:(1)倍长AD 至点T ,连BT .在△ACD 和△TBD 中,∴△ACD ≌△TBD ,∴AC =BT ,∠CAD =∠T ,又∵AF =EF ,∴∠CAD =∠AEF =∠BET ,∴BT =BE ,∴BE =AC .(2)在DT 上取DM =DC ,连接BM .∴AE +ED =ED +DM即AD =EM∴△DAC ≌△MEB (SAS ),∴BM =CD =BD ,∴△BDM 为正三角形,∴∠ADC =∠BDM =60°.强化训练2.【证明体验】(1)如图1,在△ABC中,AD为BC边上的中线,延长AD至E,使DE=AD,连结BE.求证:△ACD≌△EBD.【迁移应用】(2)如图2,在△ABC中,AC=5,BC=13,D为AB的中点,DC⊥AC.求△ABC面积.【拓展延伸】(3)如图3,在△ABC中,∠ABC=90°,D是BC延长线上一点,BC=CD,F是AB 上一点,连结FD交AC于点E,若AF=EF=2,BD=6,求ED的长.【解答】(1)证明:如图1中,在△ACD 和△EBD 中,,∴△ACD ≌△EBD (SAS );(2)解:如图2中,延长CD 到T ,使得DT =CD ,连接BT .由(1)可知△ADC ≌△BDT ,∴AC =BT =5,∠ACD =∠T =90°,∴CT ===12,∴CD =DT =6,∴S △ACB =S △ADC +S △CDB =•AC •DC +•BT •CD =×5×6+×5×6=30;(3)解:如图3中,延长AC 到R ,使得CR =CA ,连接DR .由(1)可知,△ACB ≌△RCD ,∴AB =DR ,∠A =∠R ,∵FE =FA ,∴∠A =∠AEF ,∵∠AEF =∠DER ,∴∠DER=∠R,∴DE=DR=AB,设DE=DR=AB=x,则BF=x﹣2,DF=x+2,在Rt△DBF中,BF2+BD2=DF2,∴(x﹣2)2+62=(x+2)2,∴x=,∴DE=.3.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF于点G.若BG=CF,求证:AD为△ABC的角平分线.【解答】解:延长FE,截取EH=EG,连接CH,∵E是BC中点,∴BE=CE,在△BEG和△CEH中,,∴△BEG≌△CEH(SAS),∴∠BGE=∠H,BG=CH,∴∠BGE=∠FGA=∠H,∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD平分∠BAC.4.已知:如图所示,AB=BC,AD为△ABC中BC边的中线,延长BC至E点,使CE=BC,连接AE.求证:∠DAC=∠CAE.【解答】解:延长AD到F,使得DF=AD,连接CF.∵AD=DF,∠ADB=∠FDC,BD=DC,∴△ADB≌△FDC(SAS),∴AB=CF,∠B=∠DCF,∵BA=BC,CE=CB∴∠BAC=∠BCA,CE=CF,∵∠ACE=∠B+∠BAC,∠ACF=∠DCF+∠ACB,∴∠ACF=∠ACE,∵AC=AC,∴△ACF≌△ACE(SAS),∴∠CAD=∠CAE.5.在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,若AB=10,BF=4,求PG的长;(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想;并给予证明.(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.【解答】(1)解:如图1:延长GP交DC于点E,利用△PED≌△PGF,得出PE=PG,DE=FG,∵△BGF是等边三角形,∴FG=BG,又∵四边形ABCD是菱形,∴CD=CB,∴CE=CG,∴CP是EG的中垂线,在Rt△CPG中,∠PCG=60°,∵AB=10,BF=4;∴CG=6∴PG=3(2)如图2,证明:延长GP交DA于点E,连接EC,GC,∵∠ABC=60°,△BGF正三角形∴GF∥BC∥AD,∴∠EDP=∠GFP,在△DPE和△FPG中∴△DPE≌△FPG(ASA)∴PE=PG,DE=FG=BG,∵∠CDE=∠CBG=60°,CD=CB,在△CDE和△CBG中,∴△CDE≌△CBG(SAS)∴CE=CG,∠DCE=∠BCG,∴∠ECG=∠DCB=120°,∵PE=PG,∴CP⊥PG,∠PCG=∠ECG=60°∴PG=PC.(3)猜想:PG=PC.证明:如图3,延长GP到H,使PH=PG,连接CH,CG,DH,作FE∥DC∵P是线段DF的中点,∴FP=DP,∵∠GPF=∠HPD,∴△GFP≌△HDP,∴GF=HD,∠GFP=∠HDP,∵∠GFP+∠PFE=120°,∠PFE=∠PDC,∴∠CDH=∠HDP+∠PDC=120°,∵四边形ABCD是菱形,∴CD=CB,∠ADC=∠ABC=60°,点A、B、G又在一条直线上,∴∠GBC=120°,∵△BFG是等边三角形,∴GF=GB,∴HD=GB,∴△HDC≌△GBC,∴CH=CG,∠DCH=∠BCG,∴∠DCH+∠HCB=∠BCG+∠HCB=120°,即∠HCG=120°∵CH=CG,PH=PG,∴PG⊥PC,∠GCP=∠HCP=60°,∴PG=PC.6.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.【解答】解:(1)BM=DM,BM⊥DM,在Rt△EBC中,M是斜边EC的中点,∴BM=EC=EM=MC,∴∠EMB=2∠ECB.在Rt△EDC中,M是斜边EC的中点,∴DM=EC=EM=MC.∴∠EMD=2∠ECD.∴BM=DM,∠EMD+∠EMB=2(∠ECD+∠ECB),∵∠ECD+∠ECB=∠ACB=45°,∴∠BMD=2∠ACB=90°,即BM⊥DM.(2):(1)中的结论仍成立,延长DM至点F,使得DM=MF,连接CD和EF,连接BD,连接BF、FC,延长ED 交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF是平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF.∵DE∥CF,∴∠AHE=∠ACF.∵∠BAD=45°﹣∠DAH=45°﹣(90°﹣∠AHE)=∠AHE﹣45°,∠BCF=∠ACF﹣45°,∴∠BAD=∠BCF.又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△DBF中,由BD=BF,DM=MF,得BM=DM且BM⊥DM.7.如图1,在△ABC中,∠BAC=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,连接BM,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△MCN,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.【解答】(1)证明:解法一:如图1中,延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMC=∠BAC=90°,∵AB=AC,∠BAC=90°,∴∠C=45°,∵MN⊥BC,∴∠MNC=90°,∠NMC=45°=∠KMC=∠C,∴MN=NC,在△ANC和△KNM中,,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.解法二:根据直角三角形斜边中线性质,可知AD=BM,DN=BM,由此即可证明.(2)如图2中,结论:AD=DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM.在△ADB和△KDM中,,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KMD=∠B=45°,∵∠NMC=∠NCM=∠ACB=45°∴MN=NC,∠KMN=∠ACN=90°在△ANC和△KNM中,,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,即AD=DN.(3)如图3中,结论:AD=DN,AD⊥DN.理由:延长AD到K,使得DK=AD,连接AN、KN、KM,延长KN交AC于G.在△ADB和△KDM中,,∴△ADB≌△KDM,∴AB=KM=AC,∠BAD=∠MKD,∴AB∥KM,∴∠KGC=∠BAC=90°,∴∠ACN+∠NMG=180°,∵∠KMN+∠NMG=180°,∴∠ACN=∠NMK,在△ANC和△KNM中,,∴△ANC≌△KNM,∴AN=KN,∠ANC=∠KNM,∴∠KNA=∠MNC=90°∵AD=DK,∴DN=AD=DK,DN⊥AK,即AD=DN.AD⊥DN.8.△ABC中,点D为BC上一点,E为AC上一点,连接AD,BE,DE,已知BD=DE,AD=DC,∠ADB=∠EDC.(1)如图1,若∠ACB=40°,求∠BAC的度数;(2)如图2,F是BE的中点,过点F作AD的垂线,分别交AD、AC于点G、H.求证:AH=CH.【解答】解:(1)如图1,∵AD=DC,∠ACB=40°,∴∠DAC=∠ACB=40°,∴∠ADB=∠C+∠DAC=80°,在△ADB和△CDE中,∵,∴△ADB≌△CDE(SAS),∴∠BAD=∠ACB=40°,∴∠BAC=40°+40°=80°;(2)如图2,过B作BN∥AC,交HF的延长线于N,直线HF交AB于M,连接DH、DM,∴∠BNM=∠EHF,∵BF=EF,∠BFN=∠EFH,∴△EFH≌△BFN(AAS),∴BN=EH,由(1)得:∠BAD=∠DAC,∵FH⊥AD,∴∠AGF=∠AGH=90°,∵AG=AG,∴△AMG≌△AHG(ASA),∴AH=AM,∠AHM=∠AMH,∵∠AMH=∠BMN,∴∠BNM=∠BMN,∴BN=BM,∵△ABD≌△CED,∴∠ABD=∠CED,∵BD=DE,∴△DEH≌△DBM,∴∠BMD=∠AHD,∵AM=AH,∠BAD=∠DAH,AD=AD,∴△AMD≌△AHD,∴∠AMD=∠AHD,∴∠AMD=∠BMD,∵∠AMD+∠BMD=180°,∴∠AMD=90°,∴∠AHD=90°,∵AD=CD,∴AH=CH.9.直角三角形有一个非常重要的性质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:如图2,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;(1)求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明:若不成立,请说明理由;(3)如图4,∠BAC=90°,a旋转到与BC垂直的位置,E为BC上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM,PN,求证:PM⊥PN.【解答】(1)证明:如图2中,延长NP交BM的延长线于G.∵BM⊥AM,CN⊥AM,∴BG∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(2)解:结论:PM=PN.如图3中,延长NP交BM于G.∵BM⊥AM,CN⊥AM,∴BM∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(3)如图4中,延长NP交BM于G.∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°,∴∠EAN=∠ACM,在△EAN和△CAM中,,∴△EAN≌△CAM,∴EN=AM,AN=CM,∵EN∥CG,∴∠ENP=∠CGP,在△ENP和△CGP中,,∴△ENP≌△CGP,∴EN=CG=AM,PN=PG,∵AN=CM,∴MG=MN,∴PM⊥PN.1.(2017•唐河县四模真题)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【解答】解:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE,∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°∵BF=DF,∴∠DBF=∠BDF,∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB,∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形,∵DF=GF.∴DF=CF,DF⊥CF.(3)延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°,∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.∵F是BE的中点,∴EF=BF,∴△DEF≌△HBF,∴ED=HB,∵AC=,在Rt△ABC中,由勾股定理,得AB=4,∵AD=1,∴ED=BH=1,∴AH=3,在Rt△HAD中由勾股定理,得DH=,∴DF=,∴CF=∴线段CF的长为.。

倍长中线法(经典例题)

倍长中线法(经典例题)

知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS 证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD ,连接BE方式2:间接倍长作CF ⊥AD 于F , 延长MD 到N ,作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CN经典例题讲解:例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE过D 作DG//AC例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠D ABCEDAB C F EDC B AN D C B AMFE D A B C FEC ABD ABF DEC例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.E DABCF EAB C D第 14 题图DFCBEADABCMTE。

三角形全等之倍长中线(含答案和练习)

三角形全等之倍长中线(含答案和练习)

三角形全等之倍长中线1.如图, AD 为△ ABC 的中线.(1)求证: AB+AC >2AD.(2)若 AB=5,AC=3,求 AD 的取值范围.B2.如图,在△ ABC 中, AD 平分∠ BAC,且 BD=CD.求证: AB=AC.B3.如图, CB 是△ AEC 的中线, CD 是△ ABC 的中线,且 AB=AC.求证:① CE=2CD;② CB 平分∠ DCE.E4.如图,在△ ABC 中,D 是 BC 边的中点,E 是 AD 上一点,BE=AC, BE 的延长线交 AC 于点 F.AD CAD CCB D AAFE求证:∠ AEF=∠EAF.B D C5. 如图,在△ ABC 中, AD 交 BC 于点 D,点 E 是 BC 的中点, EF ∥ AD 交 CA 的延长线于点F,交AB 于点 G, BG=CF .求证: AD 为△ ABC 的角平分线.F FA AG GB E DC B ED C16. 如图,在四边形 ABCD 中,AD∥BC,点 E 在 BC 上,点 F 是 A DCD 的中点,且 AF⊥AB,已知 AD=2.7, AE=BE=5,求 CE 的长.FB E C7.如图,在正方形 ABCD 的边 CB 的延长线上取一点 E,△FEB 为等腰直角三角形,∠ FEB=90°,连接 FD ,取 FD 的中点 G,连接 EG, CG.求证: EG=CG 且 EG⊥ CG.A DGFE B C2....【参考答案】1.( 1)证明:如图,A2B 1 D CE延长 AD 至 E,使 DE=AD,连接 BE,∴AE=2AD.∵AD 是△ ABC 的中线∴ BD=CD在△ BDE 和△ CDA 中BD CD1 2ED AD∴△ BDE≌△ CDA(SAS)∴BE=AC在△ ABE 中, AB+BE>AE∴AB+AC>2AD( 2)解:由①可知AE=2AD,BE=AC在△ ABE 中,AB BE<AE<AB+BE∵AC=3,AB=5∴5 3<AE<5+3∴2<2AD<8∴1<AD<432. 证明:如图,延长AD 到 E,使 DE=AD,连接 BE.A1 23B C4 DE在△ ADC 和△ EDB 中CD BD3 4AD ED∴△ ADC≌△ EDB(SAS)∴AC=EB,∠ 2=∠E∵AD 平分∠ BAC∴∠ 1=∠ 2∴∠ 1=∠ E∴AB=BE∴AB=AC3.证明:如图,C4 51E B 3 2 DAF延长 CD 到 F,使 DF=CD,连接 BF.∴CF=2CD∵CD 是△ ABC 的中线∴ BD=AD在△ BDF 和△ ADC 中4....BD AD2 1DF DC∴△ BDF ≌△ ADC(SAS)∴BF=AC,∠ 3=∠A∵CB 是△ AEC 的中线∴ BE=AB∵AC=AB∴BE=AC∴BE=BF∵∠ CBE 是△ ABC 的一个外角∴∠ CBE=∠ BCA+∠A=∠BCA+∠3∵AC=AB∴∠ BCA=∠ CBA∴∠ CBE=∠ CBA+∠3=∠ CBF在△ CBE 和△ CBF 中CB CBCBE CBFBE BF∴△ CBE≌△ CBF(SAS)∴CE=CF,∠ 4=∠5∴CE=2CDCB 平分∠ DCE4.证明:如图,延长 AD 到 M,使 DM=AD,连接 BM.AFEB CDM∵D 是 BC 边的中点∴ BD=CD.... 在△ ADC 和△ MDB 中5....CD BDADC MDBAD MD∴△ ADC≌△ MDB (SAS)∴∠ CAD=∠ M,AC=MB∵BE=AC∴BE=MB∴∠ M=∠BEM∴∠ CAD=∠ BEM∵∠ AEF=∠BEM∴∠ CAD=∠ AEF即∠ AEF=∠EAF5.证明:如图,延长 FE 到 M,使 EM=EF,连接 BM.FAG 123B E D CM∵点 E 是 BC 的中点∴BE=CE在△ CFE 和△ BME 中FE MECEF BEMCE BE∴△ CFE≌△ BME(SAS)∴CF=BM,∠ F=∠M∵BG=CF∴BG=BM∴∠ 3=∠ M∴∠ 3=∠ F∵AD∥ EF∴∠ 2=∠ F,∠ 1=∠3∴∠ 1=∠ 2....即 AD 为△ ABC 的角平分线.6.解:如图,延长 AF 交 BC 的延长线于点 G.6....A D35 41 F2B EC G∵AD∥ BC∴∠ 3=∠ G∵点 F 是 CD 的中点∴DF=CF在△ ADF 和△ GCF 中3G1 2DF CF∴△ADF≌△ GCF(AAS )∴AD=CG∵AD=2.7∴CG=2.7∵AE=BE∴∠ 5=∠ B∵AB⊥ AF∴∠ 4+∠ 5=90°∠B+∠G=90°∴∠ 4=∠ G∴EG=AE=5∴CE=EG CG=5 2.7=2.37.证明:如图,延长 EG,交 CD 的延长线于 M.MA DGFE B C由题意,∠ FEB=90°,∠ DCB=90°7∴∠ DCB+∠ FEB=180°∴EF∥ CD∴∠ FEG=∠ M∵点 G 为 FD 中点∴FG=DG在△ FGE 和△ DGM 中FEG MFGE DGMFG DG∴△ FGE≌△ DGM ( AAS )∴EF=MD ,EG=MG∵△ FEB 是等腰直角三角形∴EF=EB∴BE=MD在正方形 ABCD 中, BC=CD∴BE+BC=MD+CD即EC=MC∴△ ECM 是等腰直角三角形∵EG=MG∴EG⊥ CG,∠ ECG=∠MCG=45°∴EG=CG全等三角形之倍长中线每日一题1.(4 月 21 日)已知:如图,在梯形 ABCD 中, AD∥BC,AB=AD+BC, E 是 CD 的中点.求证: AE⊥BE.A DEB CA8 ED FB C2.(4 月 22 日)已知:如图,△ ABC 与△ BDE 均为等腰直角三角形, BA⊥ AC, ED⊥ BD,垂足分别为 A,D,连接 EC, F 为 EC 中点,连接 AF,DF ,猜测 AF,DF 的数量关系和位置关系,并说明理由.3.(4 月 23 日)已知:如图, D 为线段 AB 的中点,在 AB 上任取一点 C(不与点 A,B,D 重合),分别以 AC,BC 为斜边在 AB 同侧作等腰 Rt△ ACE 与等腰 Rt△BCF,∠AEC=∠CFB=90°,连接DE,DF ,EF.F 求证:△ DEF 为等腰直角三角形.EA C D BA4. (4 月 24 日)已知:如图,在四边形 ABCD 中, AB∥DC,E为 BC 边的中点,∠ BAE=∠EAF,AF 与 DC 的延长线相交于D点 F.试探究线段 AB 与 AF,CF 之间的数量关系,并说明理由.B E CF9....【参考答案】1.证明:延长 AE 交 BC 的延长线于点 F.ADEB C F∵AD∥ BC∴∠ D=∠DCF ,∠ DAE=∠F∵E 是 CD 的中点∴ DE=CE在△ ADE 和△ FCE 中∠D∠ FCEDAE FDE CE∴△ ADE≌△ FCE(AAS )∴AD=FC,AE=FE∵AB=AD+BC∴AB=CF+BC=BF在△ ABE 和△ FBE 中AB FBBE BEAE FE....∴△ ABE≌△ FBE( SSS)10....∴∠ AEB=∠FEB=90°即AE⊥BE2.解:AF⊥DF ,AF=DF ,理由如下:延长 DF 交 AC 于点 P.AEPD FB C∵BA⊥ AC, ED⊥ BD∴∠ BAC=∠ EDA= 90°∴DE∥ AC∴∠ DEC=∠ ECA∵F 为 EC 中点∴ EF=CF在△ EDF 和△ CPF 中DEF PCFEF CF∠E FD ∠ CFP∴△ EDF ≌△ CPF(ASA )∴DE=CP,DF=PF∵△ ABC 与△ BDE 均为等腰直角三角形∴AB=AC,DE=BD∴AB BD=AC DE=AC CP即AD=AP在△ DAF 和△ PAF 中DF PFAF AFAD AP∴△ DAF ≌△ PAF( SSS)∴∠ DFA=∠PFA=90°,∠ DAF=∠PAF=45°11∴AF⊥ DF, AF=DF3.证明:延长 ED 到点 G,使 DG=DE,连接 BG,FG.FEA C D BG∵D 为线段 AB 的中点∴ AD=BD在△ EDA 和△ GDB 中ED GD∠E DA ∠ GDBDA DB∴△ EDA≌△ GDB(SAS)∴EA=GB,∠ A=∠GBD∵△ ACE 与△ BCF 是等腰直角三角形∴AE=CE=BG, CF=FB,∠ A=∠ECA=∠FCB=∠FBC=45°∴∠ ECF=90°,∠ GBF=∠GBD+∠FBD =90°在△ ECF 和△ GBF 中EC GB∠E CF ∠ GBFCF BF∴△ ECF≌△ GBF(SAS)∴EF=GF,∠ EFC=∠GFB∵∠ CFB=∠ CFG+∠GFB=90°∴∠ EFG=∠ EFC+∠CFG=90°在△ EFD 和△ GFD 中EF GFFD FDED GD∴△ EFD ≌△ GFD (SSS)∴∠ EDF=∠ GDF=90°,∠ EFD=∠GFD=45°∴DE=DF12∴△ DEF 为等腰直角三角形4.解: AB=AF+CF,理由如下:延长 AE 交 DF 的延长线于点 G.ADB E CFG∵E 为 BC 边的中点∴ BE=CE∵AB∥ DC∴∠ B=∠BCG,∠ BAG=∠ G在△ ABE 和△ GCE 中∠B∠ GCE∠B AE ∠ GBE CE∴△ ABE≌△ GCE(AAS )∴AB=GC∵∠ BAE=∠EAF∴∠ G=∠EAF∴AF=GF∵GC=GF+FC∴AB=AF+CF三角形全等之倍长中线(随堂测试)1. 在△ ABC 中, AC=5,中线 AD=4,则边 AB 的取值范围是 _______________.2.已知:如图,在△ ABC 中, AB≠AC,D,E 在 BC 上,且 DE=EC,过 D 作 DF∥ AB 交 AE 于点F,DF=AC.求证: AE 平分∠ BAC.13AFB D E C【参考答案】1.3<AB<132.证明略(提示:延长 AE 到点 G,使 EG=EF,连接 CG,证明△ DEF ≌△ CEG).三角形全等之倍长中线(作业)1.已知:如图,在△ ABC 中,AB=4,AC=2,点 D 为 BC 边的中点,且 AD 是整数,则 AD=________.AB D C2.已知:如图, BD 平分∠ ABC 交 AC 于 D,点 E 为 CD 上一点,且 AD=DE, EF∥ BC 交 BD 于F.求证: AB=EF.14ADF EB C3.已知:如图,在△ ABC 中, AD 是 BC 边上的中线,分别以 AB,AC 为直角边向外作等腰直角三角形.求证: EF=2AD.EA FB D C4.如图,在△ ABC 中, AB >AC, E 为 BC 边的中点, AD 为∠ BAC 的平分线,过 E 作 AD 的平行线,交 AB 于 F,交 CA 的延长线于 G.求证: BF=CG.GAFB E D C155.如图,在四边形 ABCD 中,AD∥BC,点 E 在 BC 上,点 F 是 CD 的中点,连接 AF,若∠ DAF= ∠EAF,求证: AF⊥EF.A DFB E C【参考答案】1. 22.证明略(提示:延长 FD 到点 G,使得 DG=DF ,连接 AG,证明△ ADG≌△ EDF,转角证明AB=EF)3.证明略(提示:延长 AD 到点 G,使得 AD=GD,连接 CG,证明△ ABD≌△ GCD,△ EAF≌△GCA)4.证明略(提示:延长 FE 到点 H,使得 FE=EH,连接 CH,证明△ BFE≌△ CHE,转角证明 BF=CG)5.证明略(提示:延长 AF 交 BC 的延长线于点 G,证明△ ADF ≌△ GCF,转角证明 AF⊥EF)16。

初中数学倍长中线法(最全最新倍长中线法专题)

初中数学倍长中线法(最全最新倍长中线法专题)

课堂练习
练习3.如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1, BF=2,∠GEF=90°,求GF的长.
课堂练习
练习4.如图,在梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB, 若AD=2.7,AF=4,AB=6. 求CE的长.
课后练习
4.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG, 如图(1),易证EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图(2),证明: EG=CG且EG⊥CG. (2)如图(3)将△BEF绕点B逆时针旋转180°,证明: EG=CG且EG⊥CG.
几何模型四:倍长中线法
倍长中线法
当线段出现一个中点时,特别是三角形中,常常采用“倍长中线法”添加辅助线.倍 长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三 角形的有关知识来解决问题的方法.倍长中线法: △ABC中AD是BC边中线 方式1: 延长AD到E, 使DE=AD,连接BE
课堂练习
练习7.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的 中线.求证: AD是∠EAC的平分线.
例题讲解
例5.如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E作EF∥AD交AB于点G,交CA的 延长线于点F.求证: BG=CF.
证明: 作CM∥AB交FE的延长线于M.∵BG∥CM, ∴∠B=∠MCE,∵E是BC中点, ∴BE=EC,在△BEG和△CEM中,
证明: 如图,过点D作DG∥AE,交BC于点G; 则△DGF≌△ECF, ∴DG=CE; ∵AB=AC, ∴∠B=∠ACB;

全等三角形倍长中线法的经典例题

全等三角形倍长中线法的经典例题

全等三角形倍长中线法的经典例题示例文章篇一:嘿,同学们!今天我要跟你们讲讲全等三角形倍长中线法,这可太有趣啦!先来说说啥是倍长中线法。

就好像我们搭积木,找到了关键的那块积木,整个造型就稳啦!倍长中线法就像是那个关键的“积木”,能帮我们解决好多全等三角形的难题呢。

比如说有这样一道题:在三角形ABC 中,AD 是中线。

那我们就延长AD 到点E,让AD = DE 。

这时候,连接BE ,哇塞,神奇的事情发生啦!“小明,你说说这时候能发现啥?”我问同桌小明。

小明挠挠头说:“好像能得到一些相等的边和角。

”“对呀!”我兴奋地说,“你看,因为AD 是中线,BD = DC ,又因为我们延长AD ,让AD = DE ,再加上对顶角相等,这不就可以证明三角形ADC 和三角形EDB 全等嘛!”再看这道题,三角形ABC 中,AD 是中线,AB = 5 ,AC = 3 ,求中线AD 的取值范围。

这可难倒了不少同学,可咱们用倍长中线法,不就轻松多啦?我跟后桌的小红一起讨论,我说:“小红,你想想,倍长中线之后,是不是能把条件都联系起来啦?”小红眼睛一亮:“对呀,这样就能构造出全等三角形,然后就能找到边的关系啦!”哎呀,这不就像我们找宝藏,倍长中线法就是那把能打开宝藏大门的钥匙嘛!通过这些例题,咱们是不是发现,倍长中线法简直就是解决全等三角形问题的神器呀!只要我们灵活运用,那些难题就都不在话下啦!我觉得呀,数学就像一个大宝藏,而这些解题方法就是我们挖掘宝藏的工具,只要我们用心去寻找,就能发现无数的惊喜!示例文章篇二:哎呀呀,同学们,今天咱们来聊聊全等三角形里倍长中线法的那些经典例题!先来说说啥是倍长中线法吧。

就好像我们走路遇到一条河,直接过去太困难,但是如果修一座桥,是不是就轻松多啦?倍长中线法就像是那座桥,能让我们在解全等三角形的难题时,一下子找到出路!比如说有这么一道题:在三角形ABC 中,AD 是中线。

延长AD 到E,使DE = AD。

三角形全等之倍长中线习题及答案

三角形全等之倍长中线习题及答案

三角形全等之倍长中线(习题)➢例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC .求证:AE 平分∠BAC . 【思路分析】 读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:A B DCE F??G??FECDBA (这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG . 在△DEF 和△CEG 中, ∴△DEF ≌△CEG (SAS ) ∴DF =CG ,∠DFE =∠G∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1.已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.2.已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F . 求证:AB =EF .3.已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°.求证:EF =2AD .如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G .求证:BF =CG .4.如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF ⊥EF .F E DCBAG FEDCBA➢ 思考小结1.如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC .比较下列两种不同的证明方法,并回答问题. 方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中 ∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC ∴∠E =∠2在△BDE 和△CDA 中 ∴△BDE ≌△CDA (AAS ) ∴BE =AC∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E21ECDBA 21ECDBA∴AB=BE∴AB=AC相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等.不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2.利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt△ABC中,∠BCA=90°,CD是斜边AB的中线.求证:CD 1AB.2【参考答案】➢巩固练习1.22.证明略(提示:延长FD到点G,使得DG=DF,连接AG,证明△ADG≌△EDF,转角证明AB=EF)3.证明略(提示:延长AD到点G,使得GD=AD,连接CG,证明△ABD≌△GCD,△EAF≌△GCA)4.证明略(提示:延长FE到点H,使得EH=FE,连接CH,证明△BFE≌△CHE,转角证明BF=CG)5.证明略(提示:延长AF交BC的延长线于点G,证明△ADF≌△GCF,转角证明AF⊥EF)➢思考小结1.倍长中线SAS AAS 角2.证明略。

倍长中线法(经典例题)

倍长中线法(经典例题)

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠BABFDEC例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.E D ABF EAB C3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.第 14 题图DF CBEADABCMTE。

全等三角形倍长中线模型例题

全等三角形倍长中线模型例题

全等三角形倍长中线模型例题
哎呀呀,同学们,今天咱们来瞅瞅全等三角形倍长中线模型这个有趣的东西!
先来讲个小故事吧。

有一天,小明和小红在教室里讨论数学题,就说到了全等三角形倍长中线这个难题。

小明挠挠头说:“这倍长中线到底是咋回事啊?感觉好难哟!”
小红眨眨眼,自信地说:“别着急,咱们一起来分析分析。


那到底啥是全等三角形倍长中线模型呢?咱们来好好瞧瞧。

比如说,有一个三角形ABC ,中线AD 把BC 边分成了相等的两段,这时候,咱们延长AD 到E ,让AD = DE ,再连接CE 。

这不就神奇地出现了全等三角形啦?你看,三角形ABD 和三角形ECD 就全等啦!为啥呢?因为AD 是中线,BD = DC ,对边对顶角相等,再加上咱们延长弄出来的AD = DE ,这不就符合全等三角形的条件啦!
这就好像搭积木一样,原本零散的积木,按照特定的方式拼接,就变成了一个完整的形状。

再想想,如果不这样做,要证明一些边相等或者角相等,得多绕好多弯子呀!
咱们再来看个例子。

三角形MNO ,中线NP ,还是按照刚才的方法倍长中线,是不是一下子就找到解题的关键啦?
你们说,这倍长中线模型是不是特别妙?它就像一把神奇的钥匙,能打开好多难题的锁!
所以呀,同学们,咱们以后遇到和全等三角形有关的难题,可别忘了倍长中线这个厉害的办法哟!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倍长中线法
知识网络详解:
中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.
所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)
倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

【方法精讲】常用辅助线添加方法——倍长中线
△ABC中
方式1:延长AD到
E,AD是BC边中线
使DE=AD,
连接BE
方式2:间接倍长
作CF⊥AD于F,延长MD到N,
作BE⊥AD的延长线于使DN=MD,
连接BE 连接CN
经典例题讲解:
例1:△ABC中,AB=5,AC=3,求中线AD的取值范围
例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE
过D 作DG//AC
例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠
B
A
B
F
D
E
C
例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE
自检自测:
1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证,AD平分∠BAE.
2、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论.
A
B
F
E
A
B C
3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+
4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.
建筑词典大全 附中文详细解释 I 第一节 一般术语
1. 工程结构 building and civil engineering structures
房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。

2. 工程结构设计 design of building and civil engineering structures
在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。

3. 房屋建筑工程 building engineering
第 14 题图
D
F C
B
E
A
D
A
B
C
M
T
E
一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

4. 土木工程civil engineering
除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

5. 公路工程highway engineering
为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

6. 铁路工程railway engineering
为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

7. 港口与航道工程port ( harbour ) and waterway engineering
为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

8. 水利工程hydraulic engineering
为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering
以利用水能发电为主要任务的水利工程。

10. 建筑物(构筑物)construction works
房屋建筑或土木工程中的单项工程实体。

11. 结构structure
广义地指房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的实体,狭义地指各种工程实体的承重骨架。

12. 基础foundation
将建筑物、构筑物以及各种设施的上部结构所承受的各种作用和自重传递到地基的结构组成部分。

13. 地基foundation soil; subgrade; subbase; ground
支承由基础传递或直接由上部结构传递的各种作用的土体或岩体。

未经加工处理的称为天然地基。

14. 木结构timber structure
以木材为主制作的结构
15. 砌体结构masonry structure
以砌体为主制作的结构。

它包括砖结构、石结构和其它材料的砌块结构。

有无筋砌体结构和配筋砌体结构。

16. 钢结构steel structure。

相关文档
最新文档