定积分的换元法和分部换元法

合集下载

定积分的换元法与分部积分法

定积分的换元法与分部积分法

定积分的换元法与分部积分法摘要:定积分是微积分中的一个重要概念,它表示函数在某个区间上的累积效应。

在计算定积分时,换元法和分部积分法是常用的两种方法。

本文将对定积分的换元法和分部积分法进行介绍,并通过案例演示其具体应用。

1. 定积分简介定积分是微积分中的基本概念之一,它用于计算函数在某个区间上的累积效应。

定积分的符号表示为∫,其中∫f(x)dx表示函数f(x)在区间[a, b]上的定积分。

它的几何意义是函数f(x)与x轴所夹的面积。

2. 换元法换元法是一种常用的计算定积分的方法,它通过引入新的变量,将原函数转化为更易积分的形式。

换元法的基本思想是对函数进行代换,将原函数转化为一个新的函数,并对新函数进行积分。

换元法的公式可以表示为:∫f(g(x))g’(x)dx = ∫f(u)du其中,g(x)是一个可导函数,u=g(x)是其反函数,g’(x)是g(x)的导数。

换元法的具体步骤如下:1.选择适当的换元变量,使得被积函数的形式变得简单;2.计算变量的微分,求出关于新变量的微分表达式;3.将被积函数中原变量用新变量表示,得到新的被积函数;4.计算新的被积函数的积分。

3. 分部积分法分部积分法是另一种常用的计算定积分的方法,它将一个复杂的积分问题转化为两个简单的积分问题。

分部积分法的基本思想是使用差乘法则,将定积分的求解转化为导数和乘积的关系。

分部积分法的公式可以表示为:∫u(x)v’(x)dx = u(x)v(x) - ∫v(x)u’(x)dx其中,u(x)和v(x)是可导的函数。

分部积分法的具体步骤如下:1.选择一对函数作为u(x)和v’(x);2.计算u’(x)和v(x)的导数;3.将u(x)v’(x)代入分部积分公式中,并进行计算。

4. 换元法与分部积分法的比较换元法和分部积分法都是计算定积分的有效方法,它们在不同的情况下有不同的应用。

换元法适用于被积函数可以通过代换变量为简单形式的情况。

通过引入新的变量,将原函数转化为更易积分的形式,从而简化计算过程。

§3.3定积分换元法

§3.3定积分换元法

π 2
0
sin n xdx = − ∫
π 2
0
sin n −1 xd (cos x )
π 2 0
= − sin n −1 x cos x
[
= (n − 1) ∫
π 2 0 π 2
]
π 2 0
+∫
cos xd (sin n −1 x )
cos 2 x sin n − 2 xdx
= (n − 1) ∫
0
8.已知 g ( x ) = ∫ t f ′( x − t )dt ,求 g′( x ) 。
0
x
g( x ) = ∫ t f ′( x − t )dt
0
x 0
x
令x−t=u
=
− ∫ ( x − u ) f ′(u )du
x
0
= ∫ ( x − u ) f ′(u )du = x
x
∫0 f ′(u )du − ∫0 uf ′(u )du
a a ∫ 0 f(− x) dx
0
f(x) dx =
+
a ∫0
f(x) dx = ∫ [ f(x) + f(− x)] dx.
0
a
续上
∴∫
a
−a
f(x) dx = ∫ [f(x) + f( − x)] dx ,
0
a
(2)∵ f ( x ) 为偶函数,即 f (− x ) = f ( x ) ,
∴∫
π 2 sin 2 t − 1 dt π sin t 6
6 cos t dt = π cos t sin t 2

6 cos t dt π cos t ⋅ sin t 2

5-3定积分的换元法与分部法-精品文档

5-3定积分的换元法与分部法-精品文档
2


1 ( 1 cos 2 t)d t cos t d t 2
2
1 1 t sin 2t 2 arcsin x x1 x C C 2 2 2 4
由牛顿 莱布尼兹公式 , 得
1 1 1 2 1 x d x arcsin x x 1 x . 0 2 2 0 4 1 2
0
a
x ) d x [ f ( x ) f ( x )] d x . f(
a 0
a
a
( 1 )若 f ( x ) 为偶函数,则 f ( x ) f ( x ) ,故有

a
a
f (x)dx 2

a
0
f (x)d x
( 2 ) 若 f ( x ) 为奇函数,则 f ( x ) - f ( x ) ,故
1
1 2 2 1 2 2 sin xcos xdx sin xdsin x sin x |0 0 0 2 2


例5
设 f(x ) 在对称区间 [ a ,a ]上连续,证明:
( 1 ) 当 f ( x ) 为偶函数时, x ) d x 2 x ) d x . f( f(

f (x)dx f ( t)(dt) f ( x )dx. t)dt f( a a
0
0
0
0
a
a
于是
( x ) d x f ( x ) d x f ( x ) d x f
a 0 0
a
a
a
x ) f( x )] d x . [f(

定理证明 定理证

b

第五章 第4节定积分的换元法和分部积分法

第五章 第4节定积分的换元法和分部积分法

sin
3
x sin
5
5
x cos x sin x 2
3
0

sin
3
x sin
3
x dx

0

cos x sin x 2 dx
3
3



0
2
cos x sin x 2 dx
3
cos x sin x 2 dx
2 3
0 sin x 2 d sin
3

( t 3) d t
2
1
3 1 1 3 22 ( t 3t ) 2 3 3 1
6
例3
计算 0
x 2
cos
0
5
2
cos
5
x sin xdx .

令 t cos x ,
2
dt sin xdx ,
t 0,
x sin xdx
5
x 0 t 1,

a
a x d x (a 0).
2 2
0
解: 令 x a sin t , 则 d x a cos t d t , 且当 x 0 时 t 0 , x a 时 t
2
∴ 原式 = a

2
2


2
cos t d t
(1 cos 2 t ) d t 1 2

2
0

2
a
2 a
则 有 f ( x )dx
a
b


f [ ( t )] ( t )dt .
2

定积分的换元法和分部换元法

定积分的换元法和分部换元法


(t) (t)
满足:
机动 目录 上页 下页 返回 结束
(t) (t)
说明:
1) 当 < , 即区间换为[ ,]时, 定理 1 仍成立 .
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
(t) (t)
b
f (x)d x
(令 x (t) )
a
或配元
(t) (t)
例4.
偶倍奇零
(1) 若
则 a a
f
( x) dx
a
20
f
( x) dx
(2) 若
则 a f (x) dx 0 a
证:
a
0
a
f (x)dx f (x)dx f (x)dx
a
a
0
a
a
0 f (t) d t 0 f (x) dx
a
0[ f (x) f (x)]dx
令 x t
f (x) f (x)时
(t) d(t)
配元不换限
机动 目录 上页 下页 返回 结束
例1. 计算
解:
令 x asin t ,
t
2
,
2
则dx a cos t d t , 且
当 x 0 时, t 0;
x
a
时,
t
2
.
y

原式 =
a2
2 cos 2 t d t
0
y a2 x2
a2
2 (1 cos 2t) d t

1
0
ln(1 (2
x
x) )2
dx
1 0
ln(1

定积分的换元法和分部积分法

定积分的换元法和分部积分法
微积分基本公式
不定积分法
定积分法,
且使用方法与相应的不定积分法类似。
一、定积分的换元法
我们知道,不定积分的换元法有两种,下面就分别 介绍对应于这两种换元法的定积分的换元法。
1. 第一类换元积分法(凑微分法)
设函数 f ( x) 在区间 [a, b]上连续, f (x)dx F( x) C
那么
b a
0
1
1
t
)dt
2t
ln
|
1
t
|
2 0
4 2ln3
(2)根号下为 x 的二次式
例8 计算
1
2
0
x2 dx 1 x2
解 设 x sint, π t π , 则 dx cos t dt,
2
2
且当 x 0 时,t 0; 当 x 1 时,t π, 因此
2
6
1 2 0
x2 dx 1 x2
0
分部积分
t sint
6
0
6 sintdt
0
1 62
[
cos
t
]6 0
3 1.
12 2
例16
计算
e-1
ln(1
x)dx
0

e-1
ln(1
x)dx
e-1
ln(1
x)d( x)
0
0
x
ln(1
x)
e1 0
e1
0
xd
ln(1
x)
e
1
e-1 0
x
1
1
x
dx
e
1
e-1 0
(1
1
1
x

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法


解:对 p 1,

a
dx (a 0) p x
收敛或发散

b
1
1 1 1 p 1 p 1 ( b ) x dx x p 1 p 1 p 1
p
重要的问题是b的指数是正数还是负数. 假如是
负数, 则当b趋向无穷时, b–p+1趋向于0. 若指数为
正数,则b–p+1当b趋于无穷时无界增长. 因此, 若–

a
udv uv a vdu .
a
回忆::
定积分的分部积分公式
不定积分的分部积分公 式为 :

udv uv vdu .
例1. 计算
解: 原式 =
x arctan x
1 2
1 0

1
0
1 1 2 d (1 x ) 2 4 2 0 1 x
1 2 ln( 1 x ) 2 4 0 1 ln 2 2 4
当p>1时积分有值


1
b 1 1 1 1 p 1 b ) dx lim p dx lim ( p b p 1 b 0 x p 1 x
1 1 ( ) p 1 p 1
定理1 (比较判别法) [a,), g ( x) f ( x) 0, 设 且f ( x), ( x)于[a,)内有界, 则 g (1) 当 a g ( x)dx 收敛时,a f ( x)dx 也收敛 ; (2) 当
1
dx 增长且无界, x
y 1 x
dx 发散. y x
1
b
dx x
0
1
b
x
2. 其它情形意义

定积分换元法和分部积分法-PPT文档资料

定积分换元法和分部积分法-PPT文档资料

0
2
5 cos x sin xdx
t dt 1
0 5
t 6
6 1
0
1 . 6
第五章 例2 计算
0


3 5 sin x sin x dx .

3 5 cos x sin x f ( x ) sin x sin x
3 2
3 2
3 5 dx x sin x sin x sin x dx cos 0
第五章
1 x cos x 2 x dx dx 解 原式 2 2 1 1 1 1 x 1 1x
1
2
偶函数
1 2
奇函数
2 2 x 1 x( 1 1 x ) 4 dx 4 dx 2 2 0 0 1 1 x 1 ( 1 x )
2 4 ( 1 1 x ) dx 4 4 1 x dx 0 0
第五章 第三节 定积分的换元法和 分部积分法 不定积分
换元积分法
分部积分法
定积分
换元积分法
分部积分法
一、定积分的换元法
二、定积分的分部积分法
一、定积分的换元法
( x ) C [ a , b ] ,函数 x 定理1. 设函数 f ( t)满足:
1)
( ) a , ( ) b ;
a
x d x [() fx f ( xd ) ]x f()
a 0
0 a
a
a
第五章
f ( x ) dx f ( x ) dx f ( x ) dx , a a 0
0 0 a a a 0
又 ( ) d x x t f () t d t f ( x ) d x fx

定积分的换元法与分部积分法

定积分的换元法与分部积分法
(1)
且其值域 R [a , b], 则有:

b
a
f ( x )dx f [ ( t )] ( t )dt


定积分换元公式

b
a
f ( x )dx f [ (t )] (t )dt


注 (1) 换 ( x )dx
三 个 变 化

(2) 公式特点 例1 计算 例2
b
a
b

b
a
udv uv a vdu
b b a
定积分的分部积分公式 注 使用分部积分公式应边积边代限 例14 计算
1 2

0
arcsin xdx 例15 计算 e x dx
0
1
例16 证明
n 1 n 3 3 1 , n n2 4 2 2

被积函数 f ( x ) 积分元素 dx 积分区间[a , b]
f [ ( t )] ( t )dt
f ( ( t )) ( t )dt [ , ] 或 [ , ]
变量不必回代
计算
a
换元必换限 必须注意积分限 上限对上限 下限对下限 注意简便算法
0
4
a 2 x 2 dx (a 0)
第三讲 定积分的换元法和分部积分法
定积分
牛-莱公式
换元积分法
不定积分 分部积分法
?
特点?
定积分的换元法与分部积分法
一、换元法
二、分部积分法
定积分的换元法与分部积分法
一、换元法
二、分部积分法
定理 假设f(x)在区间[a,b]上连续,函数 x ( t )满足条件:
( ) a, ( ) b ; (2) ( t )在[ , ](或[ , ])上具有连续导数,

定积分的换元法与分部积分法

定积分的换元法与分部积分法
1
1 1 1 1 xf ( 2 x )0 f ( 2 x )dx 2 2 0
1 1 1 f ( 2) f ( 2 x )0 2 4 5 1 f ( 2) f (0) 2. 2 4
上页 下页 返回
练 习 题1
一、填空题:
1、 sin( x )dx ___________________; 3 3

2、
0

(1 sin 3 )d ________________;
2
3、 0 4、
2 x 2 dx _____________;
2
1 x 5 x 3 sin 2 x dx ________________________ .. 5、 5 4 2 x 2x 1
2 , 3 , t tan t 0, 3 4
正确解法是
2
2
dx x x2 1
3 4 3
x sec t

3 4
2 3
1 sec t tan tdt sec t tan t
2
dt . 12
上页 下页 返回
思考题2解答
1 1 0 xf (2 x )dx 2 0 xdf (2 x )

则 有 a f ( x )dx f [ ( t )] ( t )dt .
上页 下页 返回
b
应用换元公式时应注意:
t (1)用 x (t ) 把变量x 换成新变量 时,积分限也
相应的改变.
求出 f [ ( t )] ( t )的一个原函数(t ) 后,不 (2)
必象计算不定积分那样再要把(t ) 变换成原 变量 x 的函数,而只要把新变量 t 的上、下 限分别代入(t ) 然后相减就行了.

§5.3_定积分的换元法与分部法

§5.3_定积分的换元法与分部法

2
20
定积分的换元法和分部积分法
3

e4
dx
e x ln x(1 ln x)
d( ln x) 1 1 d ln x 2 ln x
3
e4
解 原式
d(ln x)
e ln x(1 ln x)
3
3
e4

d(ln x)
e4 d ln x
2
e ln x (1 ln x)
e 1 ( ln x)2
2 arcsin(
ln x )
3
e4 e
.
6
21
定积分的换元法和分部积分法
a
1
dx (a 0)
0 x a2 x2
解 令 x a sint, dx a cos tdt
x0t0
x a t
2
原式


2
0
a
sin
t

a cost a 2 (1


b
a f ( x)dx F(b) F(a)
N--L公式
由于 d dt
F (t) F(t)(t)t) (t)的原函数, N--L公式



f [ (t)](t)dt

F ( )
b
a
所以 f (a b x)dx f (t)(dt)
a
b
b
b
a f (t)dt a f (x)dx
所以,原命题成立。
10

计算
4 dx .
0 1 x
解 用定积分换元法.

x

t, 则

定积分的换元法与分部积分法

定积分的换元法与分部积分法



π 0
x 2 cos xdx
(C)例4.

解: 原式 = ∫ 02 sin xde x = e x sin x 02 − ∫ 02 e x d sin x
π 2 x 0 π
e sin xdx
π π
π 2 π 2 x 0 π 2 0 π 2 0 π 2 0
= e − ∫ e cosxdx
= e − ∫ cosxde x
x2
2
2
(2) ∫
2 1
e dx 2 x
2 1
1 x
解: ∫
1 1 e 1 2 2 x dx = − ∫ 1 e d =[et ]1 = e − e x x2
1 x
(B)练习1.计算下列定积分
(1) ∫ 0 x sin x dx
2 π
( 2) ∫
e3 1
2 1 π 2 e 3 d (1 + ln x ) 解:原式 = ∫ 0 sin x dx 解:原式 = ∫ 1 2 1 + ln x 1 e3 2 π = 2 1 + ln x 1 = − cos x 0 2 =2 =1
当x = 0时,t = 0; 当x = 4时,t = 2.


4 0
2 e x dx = 2∫ 0te t dt
2 2 2 = [tet ]0 − ∫ 0 et dt = 2e 2 − [et ]0
= e2 + 1
4 ∴ ∫ 0 e x dx = 2(e 2 + 1)
(C)练习4.求下列定积分:
(1) ∫ e cos xdx
2
1 9 t 1 t 9 1 9 ∴ ∫ xe dx = ∫ 0 e dt = [ e ]0 = (e − 1) 2 2 2 另解: (凑微分法) 1 3 x2 2 3 x ∫ 0 xe dx = 2 ∫ 0e dx 1 1 = [ e x ] 3 = (e 9 − 1) 0 2 2 注:两种方法比较可知凑微分法简洁明了。

定积分的换元法与分部积分法

定积分的换元法与分部积分法

定积分的换元法与分部积分法定积分是微积分中的重要概念之一,它用于计算曲线与坐标轴之间的面积、弧长等问题。

在定积分的计算过程中,换元法与分部积分法是常用的两种方法。

本文将详细介绍这两种方法的定义、原理和具体应用,并通过实例来加深理解。

一、换元法换元法,也称为反向链式法则,是利用复合函数的导数来进行积分运算。

在定积分的换元法中,我们通过引入一个新的变量来简化被积函数的形式,使得积分的计算更加容易。

具体步骤如下:1. 假设被积函数为f(x),且能够表示为g(u)·u'(x),其中u是一个关于x的函数。

2. 将u关于x求导得到u'(x),并解出x关于u的表达式,即x=g^(-1)(u)。

3. 将f(x)中的x替换为g^(-1)(u),得到f(g^(-1)(u))·u'(x)。

4. 将上述表达式中的dx替换为u'(x)·du。

5. 得到新的被积函数F(u)=f(g^(-1)(u))·u'(x)·du。

6. 对新的被积函数F(u)进行积分。

换元法的主要思想是将原本复杂的积分问题转化为一个简单的积分问题,从而更容易地求解。

下面通过一个例子来说明:例子:计算定积分∫(1+2x)^3·2dx。

解:步骤如下:1. 令1+2x=u,求导得到dx=du/2,将其带入被积函数中得到(1+2x)^3·2·(du/2)。

2. 将x=(u-1)/2,得到被积函数(u^3)·du。

3. 计算新的被积函数的积分即可,∫u^3·du=u^4/4+C,其中C为常数。

4. 将u替换为1+2x,得到最终的结果为(1+2x)^4/4+C。

通过换元法,我们成功地将原本复杂的被积函数简化为了一个简单的表达式,从而更容易地求出其积分。

二、分部积分法分部积分法是用于求解含有积分符号的乘积函数的积分。

在分部积分法中,我们通过对被积函数进行适当的分解和重新组合,使得积分的计算更加容易。

定积分的换元法和分部换元法课件

定积分的换元法和分部换元法课件
分部换元法的定义
分部换元法是一种将定积分转化为几个易于计算的定积分的和或差的方法。
分部换元法的思路
通过将原被积函数分解为若干个易于计算的部分函数,并分别对每个部分函数进行换元,从而将原定 积分的计算转化为简单定积分的计算。
分部换元法的应用范围与限制
应用范围
分部换元法适用于被积函数可以分解为若干个易于计算的部分函数的定积分,以及定积 分的和或差。
换元法的目的是简化积分表达式,使其更易于计算。
常用的换元技巧
根式代换
用根式代换原有的变量, 将积分表达式转化为易于 计算的幂函数积分。
三角代换
用三角函数代换原有的变 量,将积分表达式转化为 三角函数的积分。
倒代换
用倒数代换原有的变量, 将积分表达式转化为易于 计算的幂函数积分。
定积分的换元公式及其应用
分部换元法的进一步研究与应用
理论深化
分部换元法的基础理论还需要进一步深化和完善,例如分部积分 公式的推导和应用等方面需要更加严谨和精细的研究。
应用拓展
分部换元法的应用领域也需要进一步拓展,例如在解决某些特殊类 型的积分和微分方程时可以发挥重要作用。
数值计算
分部换元法的数值计算也需要进一步研究和改进,以提高计算效率 和精度。
对于某些特定的定积分问题,可以通过两种方法的结合使 用,以达到更好的效果。
如何选择合适的解题方法
根据题目特点选择
对于涉及多项式、有理函数的定积分问题,分部换元法 可能更为合适。
对于熟练掌握换元法和分部换元法的同学来说,可以根 据题目的难易程度和个人喜好来选择合适的方法。
对于涉及三角函数的定积分问题,换元法可能更为合适 。
效率。
02
通过使用不同的换元方法,可以将不同类型的定积分

定积分的换元法与分部法

定积分的换元法与分部法

由此公得式:
In

n 1 n
In2

注意:
I0

2 dx

,
0
2
I1

2 sin xdx 1,
0


In
2 sin n xdx
0
2 cosn xdx
0

n n
1 n 1 n

n n n n

3 2 3 2

a
0
注: (1) 当f(x)为奇函数时,
a
f (x)dx 0.
a
(2) 当f(x)为偶函数时,
a
a
f (x)dx 2 f (x)dx.
a
0
练习
7
首页
上页
返回
下页
结束

例5 若f(x)在[0, 1]上连续, 证明


(1) 02 f (sin x)dx02 f (cosx)dx ;
上页
返回
下页
结束

例8
计算
1 0
ln(1 x) (2 x)2
dx

原式=
1
0
ln(1

x)
d
2
1
x

ln(1 x) 1 1


1

1 dx
2 x 0 0 2 x 1 x

ln
2

1 3
1 1 01 x

2
1
x
dx

ln
2

1 3
ln(1

定积分的换元法和分部积分法

定积分的换元法和分部积分法

1
4
R2
R
x x
例2 计算
0
cos3 x cos5 xdx
2

0
cos3 x cos5 xdx
2
0
cos3 x cos5 xdx
0
3
cos 2 x
1 cos2 xdx
0
3
cos 2 x sin x dx
2
2
2
0
3
cos2 x sin xdx
2
0
2
3
cos 2
解:
I1 tax
a 0
f (a t) dt f (a t) f (t)
2I1
a 0f f(a (ax) x)f f
(x) (x)
dt
a,
I1
a 2
I2 tx
0
( 1
t) sin cos2 t
t
dt
sin t 0 1 cos2 t dt
t sin t
0
1
cos2
dt t
第三节 定积分的换元法和分部积分法
一 定积分的换元法
定理1 设函数f(x)在[a,b]上连续,且x=φ(t)满足条件:(1) φ(t)在[α,β]上连续 可微;(2)当t在[α,β]上变化时, x= φ (t)的值在[a,b]上单调变化,且 φ(α)=a,φ(β)=b则
b
a f (x)dx f [ (t)](t)dt(1)
xd
cos
x
2 5
5
cos 2
x |0 2
2 5
利用换元法计算定积分时,要注意: (1).在换元时,积分的上下限必须同时变化. (2).在换元时,要注意换元后的函数在积分区域内是否有 意义.

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法

−a
0
0
a
= ∫ 0 [ f (x ) + f (− x) ]d x
a
a

∫ ∫ f ( x)d x = [ f ( x) + f (− x) ] d x
−a
0
a
a
∫ ∫ 即
f (x)d x = [ f (x) + f (−x) ] d x
−a
0
(1)若 f (x) 为偶函数,即 f ( x ) = f (− x )
π
原式 =
t 2
+
ln
|
sin
t
+
cos
t
|
2 0

4
例6:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
a
a
则 ∫ − a f (x)d x = 2∫ 0 f (x)d x
(2)若 f (x) 在 [ - a , a ] 上连续且为奇函数,
a
则 ∫ −a f (x)d x = 0
1 −1
f (u) d u
∫ ∫ ∫ =
1
f (x)d x =
0 (1 + x2 ) d x +
1 e−x d x
−1
−1
0
=
[
x
+
1 3
x
3
]0−1
+
[−e − x ]10
= 7− 1 3e
二、 定积分的分部积分法
设 u = u (x) , v = v(x) 在区间 [ a , b ] 上有连续导
π 2

t
dt
π

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

1 0
f (2x)dx
1
f (2)
1
1
f (2x)d(2x)
2
40
1 2
f
(2)
1f
4
(
2
x
)
1 0
5 1 f (2) f (0) 2.
24
23
定积分的换元法和分部积分法
思考题 试检查下面运算是否正确?
如 令x 11 dx11Fra bibliotek x2t
1 1
1
1
1 t2
d
1 t
1 dt 11 t 2
0t
x2
0
sinu
u
du x
x2 sin u du
0u
原式 lim x0
x
x2 sin u du 0u
x2
0
lim
sin x2 x2
2x
1
0 x0
2x
17
定积分的换元法和分部积分法
二、定积分的分部积分法
definite integral by parts
定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,
x3 sin2 x4 2x2
x
dx 1
0
1 4 x2dx 2 1 4 x2dx
1
0
2 x5 x4 x3 x2 2dx
2
1x2


2 2
x15xx23dx
2 x4 x2 2 2 1 x2 dx
02
2 0
x4 x2 1 x2
2dx
8 3
12
定积分的换元法和分部积分法
2
0 20
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 第三节 定积分的换元法和 分部积分法 不定积分
换元积分法
一、定积分的换元法
二、定积分的分部积分法
机动 目录 上页 下页 返回 结束
一、定积分的换元法
定理1. 设函数 单值函数 1 ( t ) C [ , ] , ( ) a , ( ) b ; 1) 2) 在[ , ] 上 则 满足:
机动
目录
上页
下页
返回
结束
(t ) (t )
机动
目录
上页
下页
返回
结束
(t ) (t )
说明: 1) 当 < , 即区间换为[ , ] 时, 定理 1 仍成立 . 2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
(t ) (t )
或配元
f ( x) d x (令 x (t ) )
机动 目录 上页 下页 返回 结束
例 4’
计算
1
1
1
2 x 2 x cos x dx . 2 1 1 x
1 x cos x 2x dx dx 1 2 2 1 1 x 1 1 x
解 原式 1
2
偶函数
奇函数
40
1
2 2 x 1 x (1 1 x ) dx 4 dx 2 2 0 1 1 x 1 (1 x )
上页
下页
返回
结束
例7 计算

1
0
ln(1 x ) dx. 2 (2 x )

0
1
1 ln(1 x ) 1 dx 0 ln(1 x )d 2 (2 x ) 2 x
1
1 1 ln(1 x ) 0 d ln(1 x ) 2 x 2 x 0
a
b
(t ) (t )
(t ) d (t )
配元不换限
机动 目录 上页 下页 返回 结束
解: 令 x a sin t , t , d x a cos t d t , 则 且 2 2 . 当 x 0 时, t 0 ; x a 时, t 2 y y a2 x2 2 2 2 cos t dt a ∴ 原式 = 0
0
a

a a
a
a
f ( x ) dx 0
a
a f ( x) dx a f ( x) dx 0 f ( x) dx
f (t ) d t f ( x) dx [ f ( x ) f ( x ) ] dx
0 0 a 0
令 x t

f ( x) f ( x)时 f ( x) f ( x)时
1 1 1 ln 2 1 1 dx 0 2 x 1 x 1 x 2 x 3 ln 2 5 1 ln(1 x ) ln(2 x )0 ln 2 ln 3. 3 3
内容小结
基本积分法 换元积分法
分部积分法
换元必换限 配元不换限 边积边代限
a2 2 (1 cos 2 t ) d t 2 0 a 1 ( t sin 2t ) 2 2 2 0
机动 目录 上页 下页 返回 结束
例1. 计算
o
2

a x
例2. 计算
t 2 1 解: 令 t 2 x 1 , 则 x , dx t d t , 且 2 当 x 0 时, t 1; x 4 时, t 3 .
f (cos t )dt f (cos x )dx;
0 0
2 2
(2) xf (sin x )dx f (sin x )dx 0 2 0 . x sin x dx 由此计算 2 0 1 cos x

.
二、定积分的分部积分法
定理2. 设 u ( x) , v( x) C1[a , b] , 则 b
3 e4

3 e4
e
d (ln x ) 2 ln x (1 ln x )
3 e4
e
d ln x 1 ( ln x )2
2arcsin( ln x )
e
. 6
例4.
(1) 若 (2) 若 证:
a 0
偶倍奇零

a
a
f ( x ) dx 2 f ( x ) dx
∴ 原式 =

t 2 1 3 2 2 t dt 1 t
1 3 2 (t 3) d t 2 1 3 1 1 3 ( t 3t ) 2 3 1
机动 目录 上页 下页 返回 结束
例3
计算
3 e4
e
dx . x ln x(1 ln x )
3 e4

原式
e
d (ln x ) ln x(1 ln x )
2
40 (1 1 x )dx 4 40
2
1
1
1 x 2 dx
4 .
单位圆的面积
例5
若 f ( x ) 在[0,1]上连续,证明
2 2
(1) f (sin x )dx f (cos x )dx ;
0 0
证 (1)设 x t dx dt, 2 x 0 t , x t 0, 2 2 0 2 sin t dt 0 f (sin x )dx 2 f 2
a
机动
目录
上页
下页
返回
结束
例6. 计算 解: 原式 = x arcsin x
1 2
1 1 1 2 2(1 x ) 2 d (1 x 2 ) 12 2 0

0

1 2
x 1 x
0
d x 2

12
(1
1 1 2 2 2 x )
3 1 12 2

0
机动
目录
相关文档
最新文档