热电阻测温特性实验及其数据分析

合集下载

实验四 热电阻测温特性实验

实验四  热电阻测温特性实验

实验四热电阻测温特性实验(请先仔细阅读温控仪操作说明)一、实验目的:了解热电阻的测温原理与特性。

二、基本原理:热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。

常用的有铂电阻和铜电阻,热电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A t=3.9684×10-2/℃,B t=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。

三、仪器设备:K型热电偶、Pt100铂热电阻、温度控制仪、温度传感器实验模板。

四、实验步骤:图4-1 Pt100热电阻测温接线图1、按图4-1接线,将Pt100铂电阻的三根线分别接入温度实验模板上“Rt”输入端的a、b 点,用万用表欧姆档测量Pt100三根线,其中短接的二根线接b点,另一端接a点。

这样Pt100与R3、R1、Rw1、R4组成一直流电桥,它是一种单臂电桥。

Rw1滑动端与R6相接,Pt100的b点接R5。

2、按下模块上的电源按钮,将R5、R6端同时接地,接上电压表(2V档),调节Rw3,使V02=0V。

3、恢复图4-1连接,调节Rw1再次使V02=0V(此时电桥平衡,即桥路输出端b和RW1滑动端之间在室温下输出电压为零)。

4、将热电偶插到温控仪两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的EK端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错。

5、将Pt100插入温度控制器的另一传感器插孔中,设定温控仪温度值为50℃,当温度稳定50℃时,记录下电压表读数,重新设定温度值为50℃+n·Δt,建议Δt=5℃,n=1……10,每隔1n读出数显表指示的电压值与温度表指示的温度值,并将结果填入下表4-1。

Pt100铂电阻测温特性实验.

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻测温特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。

铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。

在0~500℃以内,它的电阻R t与温度t的关系为:R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构值(本实验的铂电阻R o=100Ω)。

A=3.9684×10-3/℃,B=-5.847×10-7/℃2。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。

图30—2热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c;-V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c;△V=V1所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。

式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。

P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。

PT100铂热电阻测温实验

PT100铂热电阻测温实验

PT100铂热电阻测温实验PT100铂热电阻测温实验一、实验目的1.了解PT100铂热电阻的测温原理;2.掌握PT100铂热电阻的测温方法;3.学会使用数据采集仪进行温度测量。

二、实验原理PT100铂热电阻是一种利用铂金电阻随温度变化的特性来测量温度的传感器。

其基本原理是:在0℃时,PT100铂热电阻的阻值为100Ω,随着温度的升高,其阻值按一定规律增加。

通过测量PT100铂热电阻的阻值,可以推算出相应的温度值。

PT100铂热电阻的阻值与温度之间的关系可以用斯特曼方程表示:R(T) = R0(1 + AT + BT^2 + CT^3(1 - T0))其中,R(T)为温度T时的阻值,R0为0℃时的阻值,A、B、C为斯特曼系数,T0为参考温度(通常为0℃)。

在本实验中,我们只需要知道R0和A的值即可进行温度测量。

根据国际电工委员会(IEC)标准,PT100铂热电阻的R0为100Ω,A 为3.9083×10^-3℃。

三、实验步骤1.将PT100铂热电阻接入数据采集仪的输入通道;2.打开数据采集仪软件,设置采样率和采样时间;3.将数据采集仪与计算机连接,启动数据采集软件;4.将PT100铂热电阻放入恒温槽中,设置恒温槽的温度;5.等待恒温槽温度稳定后,记录数据采集仪显示的温度值;6.重复步骤4和5,改变恒温槽的温度,记录多个温度值;7.将实验数据整理成表格,进行分析和处理。

四、实验结果与分析实验数据如下表所示:根据实验数据,我们可以得出以下结论:1.PT100铂热电阻的测温精度较高,相对误差在±0.5%以内;2.随着温度的升高,PT100铂热电阻的阻值逐渐增大,与斯特曼方程的描述相符;3.数据采集仪能够准确地采集PT100铂热电阻的温度信号,并将其转换为数字量输出。

五、实验总结与体会通过本次实验,我们了解了PT100铂热电阻的测温原理和方法,并掌握了使用数据采集仪进行温度测量的技能。

电阻温度系数测定实验报告

电阻温度系数测定实验报告

电阻温度系数测定实验报告系数电阻测定温度实验电阻的测量实验报告光敏电阻实验报告篇一:测定铜丝的电阻温度系数测定铜丝的电阻温度系数[实验仪器与器材]加热、控温、测温装置,漆包线绕制的铜线电阻(R≈25Ω),2个滑线电阻(1750Ω、100Ω),直流电流表(25~100mA、0.5级),2个电阻箱(0.1级、1/4W),烧杯,导线等。

[提示与要求]1、关于电阻温度系数任何物质的电阻都与温度有关,多数金属的电阻随温度升高而增大,有如下关系:Rt?R0(1??Rt),式中R,、R分别是t℃、O℃时金属的电阻值,?R是电阻温度系数,to其单位是℃-1。

?R一般与温度有关,但对于实验用的纯铜材料来说,在-50℃~100℃的范围内,?R的变化非常小,可当作常数,即Rt与t呈线性关系。

2、实验要求(1)实验前,按实验目的、实验室提供的仪器、器材,结合前面的提示,设计出实验方案。

①画出装置示意图,标明各仪器名称,②设计出测量方法,拟定实验步骤和数据记录表格。

实验方案经教师认可,连线后请老师检查,无误后才能进行实验。

注意:水温不能超过80℃。

(2)数据处理①先用作图法计算?R。

②再用最小二乘法进行直线拟合(参阅第四章4),算出?R,并求出相关系数r。

③要充分考虑仪器的安全,不可因电流过大而烧坏所用仪器。

注意:本实验不要求计算不确定度。

Pt100 -200 -190 -180 -170 -160 -150 -140 -13018.49 22.80 27.08 31.32 35.53 39.71 43.87 48.00BA1 -200 -190 -180 -170 -160 -150 -140 -1307.95 9.96 11.95 13.93 15.90 17.85 19.79 21.72 BA2 -200 -190 -180 -170 -160 -150 -140 -13017.28 21.65 25.98 30.29 34.56 38.80 43.02 47.21温度(℃) 阻值(Ω) 温度(℃) 阻值(Ω) 温度(℃) 阻值(Ω)-120 52.11 -110 56.19 -100 60.25 -90 64.30 -80 68.33 -70 72.33 -60 76.33 -50 80.31 -40 84.27 -30 88.22 -20 92.16 -10 96.09 0 100.00 10 103.90 20 107.79 30 111.67 40 115.54 50 119.40 60 123.24 70 127.07 80 130.89 90 134.70 100 138.50 110 142.29 120 146.06 130 149.82 140 153.58 150 157.31 160 161.04 170 164.76 180 168.46 190 172.16 200 175.84 210 179.51 220 183.17 230 186.32 240 190.45 250 194.07 260 197.69 270 201.29 280204.88-120 23.63 -110 25.54 -100 27.44 -90 29.33 -80 31.21 -70 33.08 -60 34.94 -50 36.80 -40 38.65 -30 40.50 -20 42.34 -10 44.17 0 46.00 10 47.82 20 49.64 30 51.45 40 53.26 50 55.06 60 56.86 70 58.65 80 60.43 90 62.21 100 63.99 110 65.76 120 67.52 130 69.28 140 71.03 150 72.78 160 74.52 170 76.26 180 77.99 190 79.71 200 81.43 210 83.15 220 84.86 230 86.56 240 88.26 250 89.96 260 91.64 270 93.33 28095.00-120 51.38 -110 55.52 -100 59.65 -90 63.75 -80 67.84 -70 71.91 -60 75.96 -50 80.00 -40 84.03 -30 88.03 -20 92.04 -10 96.03 0 100.00 10 103.96 20 107.91 30 111.85 40 115.78 50 119.70 60 123.60 70127.49 80 131.37 90 135.24 100 139.10 110 142.10 120 146.78 130 150.60 140 154.41 150 158.21 160 162.00 170 165.78 180 169.54 190 173.29 200 177.03 210 180.76 220 184.48 230 188.18 240 191.88 250 195.56 260 199.23 270 202.89 280206.53290 208.45 300 212.02 310 215.57 320 219.12 330 222.65 340 226.17 350 229.67 360 233.17 370 236.65 380 240.13 390 243.59 400 247.04 410 250.48 420 253.90 430 257.32 440 260.72 450 264.11 460 267.49 470 270.36 480 274.22 490 277.56 500 280.90 510 284.22 520 287.53 530 290.83 540 294.11 550 297.39 560 300.65 570 303.91 580 307.15 590 310.38 600313.59290 96.68 300 98.34 310 100.01 320 101.66 330 103.31 340 104.96 350 107.60 360 108.23 370 109.86 380 111.48 390 113.10 400 114.72 410 116.32 420 117.93 430 119.52 440 121.11 450 122.70 460 124.28 470 125.86 480 127.43 490 128.99 500 130.55 510 132.10 520 133.65 530 135.20 540 135.73 550 138.27 560 139.79 570 141.31 580 142.83 590 144.34 600145.85290 210.17 300 213.79 310 217.40 320 221.00 330 (来自: 写论文网:电阻温度系数测定实验报告)224.56 340 228.07 350 231.60 360 235.29 370 238.83 380 242.36 390 245.88 400 249.38 410 252.88 420 256.36 430 259.83 440 263.29 450 266.74 460 270.18 470 273.43 480 277.01 490 280.41 500 283.80 510 287.18 520 290.55 530 293.91 540 297.25 550 300.58 560 303.90 570 307.21 580 310.50 590 313.79 600317.06Cu50型热电阻分度表发布者:佛山市普量电子有限公司发布时间:2010-04-08Cu50型热电阻分度表Cu100型热电阻分度表发布者:佛山市普量电子有限公司发布时间:2010-04-08Cu100型热电阻分度表Cu100 R(0℃)=100.00 整10度电阻值Ω篇二:金属电阻温度系数的测定篇三:金属导体电阻温度系数测定实验的研究金属导体电阻温度系数测定实验的研究摘要:利用控温仪器和加热炉组成恒温系统,再用双臂电桥和电位差计的方法分别测量了金属铜线的电阻,设计了实验测量的装置图,对测量结果进行了分析。

热电阻特性实验报告

热电阻特性实验报告

一、实验目的1. 了解热电阻的基本原理和测温原理。

2. 学习使用惠斯通电桥测量热电阻的电阻值。

3. 掌握热电阻的温度特性曲线测量方法。

4. 分析热电阻的温度系数及其影响因素。

二、实验原理热电阻是一种温度敏感元件,其电阻值随温度变化而变化。

根据温度系数的不同,热电阻可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

本实验主要研究NTC热电阻的特性。

热电阻的电阻值与温度之间的关系可以用以下公式表示:\[ R(T) = R_0 \cdot e^{\beta \cdot (1/T - 1/T_0)} \]其中,\( R(T) \) 为温度为 \( T \) 时的电阻值,\( R_0 \) 为参考温度\( T_0 \) 时的电阻值,\( \beta \) 为温度系数。

实验中,我们通过改变环境温度,测量不同温度下的热电阻电阻值,并绘制温度-电阻曲线,从而分析热电阻的温度特性。

三、实验仪器与材料1. 热电阻(NTC)2. 惠斯通电桥3. 直流稳压电源4. 温度计5. 导线6. 数据采集器四、实验步骤1. 将热电阻接入惠斯通电桥的测量电路中。

2. 调节直流稳压电源,使电路中的电流稳定。

3. 读取温度计的温度值,并记录。

4. 读取电桥的输出电压值,并记录。

5. 根据输出电压值,计算热电阻的电阻值。

6. 改变环境温度,重复步骤3-5,得到一系列温度-电阻数据。

7. 绘制温度-电阻曲线。

五、实验结果与分析根据实验数据,绘制了温度-电阻曲线,如图1所示。

图1 温度-电阻曲线从图1可以看出,热电阻的电阻值随温度升高而降低,符合NTC热电阻的特性。

在实验温度范围内,热电阻的温度系数约为 \( \beta = -0.005 \)。

此外,我们还分析了以下影响因素:1. 温度范围:实验结果表明,在-20℃至80℃的温度范围内,热电阻的温度特性较为稳定。

2. 环境温度:环境温度的变化会影响热电阻的测量精度,因此在实验过程中应尽量保持环境温度稳定。

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。

热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。

【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。

2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。

【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。

对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。

将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。

对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。

式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。

温度测量实验报告分析

温度测量实验报告分析

一、实验目的本次实验旨在通过实践操作,了解温度测量原理,掌握温度传感器的使用方法,并对不同类型温度传感器的性能进行比较分析。

通过实验,加深对温度测量基础知识的理解,提高实际操作能力。

二、实验原理温度测量是科学研究、工程应用和日常生活中不可或缺的环节。

本实验采用多种温度传感器进行温度测量,主要包括热电偶、热电阻和热敏电阻等。

1. 热电偶测温原理:热电偶由两种不同材料的导体组成,当其两端处于不同温度时,会产生热电势。

根据热电势与温度之间的关系,可测量温度。

2. 热电阻测温原理:热电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

3. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

三、实验器材1. 热电偶(K型、E型)2. 热电阻(铂电阻、镍电阻)3. 热敏电阻(NTC、PTC)4. 温度传感器实验模块5. CSY2001B型传感器系统综合实验台6. 温控电加热炉7. 连接电缆8. 万用表:VC9804A、VC9806四、实验步骤1. 将实验模块连接到CSY2001B型传感器系统综合实验台上。

2. 将热电偶、热电阻和热敏电阻分别接入实验模块。

3. 打开实验台,设置实验参数,如温度范围、采样时间等。

4. 启动实验,观察温度传感器的输出信号。

5. 记录实验数据,包括温度值、电阻值等。

6. 分析实验数据,比较不同温度传感器的性能。

五、实验结果与分析1. 热电偶测温实验结果:K型热电偶和E型热电偶在实验温度范围内具有较好的线性度,测量误差较小。

2. 热电阻测温实验结果:铂电阻和镍电阻在实验温度范围内具有较好的线性度,测量误差较小。

3. 热敏电阻测温实验结果:NTC热敏电阻和PTC热敏电阻在实验温度范围内具有较好的线性度,测量误差较小。

4. 性能比较分析:(1)热电偶具有较宽的测量范围,但价格较高,安装和维护较为复杂。

(2)热电阻具有较好的精度和稳定性,但测量范围相对较窄。

实验6 用非平衡电桥研究热电阻的温度特性(090923)

实验6 用非平衡电桥研究热电阻的温度特性(090923)

实验6 热敏电阻的温度特性测量注意事项:(1) 本实验内容与教材差别较大,实验前请认真阅读实验室提供的讲义和实验牌,以及任课教师的演示讲解。

(2) 先按实验讲义将电路连接好,经教师检查后再开电源。

(3) 完成实验后,先关闭仪器电源,再关总电源。

实验内容:本实验采用直流电阻平衡电桥(QJ23型)、台式数字万用表(MS8050型)、LCR 数字电桥(YB2811型)三种设备,在室温至100℃范围类分别测量铜电阻Cu R 、正温度系数热敏电阻P R 、负温度系数热敏电阻N R 三种电阻的阻值,并作图分析三种电阻的温度特性。

三种电阻的温度由FB203型多档恒流智能控温实验仪控制。

这是本学期中使用仪器设备最多的实验,实验前必须认真阅读讲义和使用说明书,掌握仪器的使用方法。

1.测量不同温度下铜电阻Cu R 、正温度系数热敏电阻P R 、负温度系数热敏电阻N R 的阻值。

从室温至100℃,每隔5℃测一组数据并记录。

升温过程和降温过程各测一组,取平均值作为被测电阻的阻值。

*下标Cu 是铜的化学式,P 代表Positive ,N 代表Negative 。

2.作Cu R 、P R 、N R 随温度的变化关系曲线,温度T 为横坐标。

3.计算Cu R 、P R 、N R 三种电阻的温度系数。

思考题:为什么热敏电阻有对温度高度灵敏的特性?实验仪器使用方法1.QJ23型直流电阻电桥电桥原理如图1,被测铜电阻Cu R 接面板上的x R 端口,取工作电压E =2V ,按下开关B 并锁定,使电桥工作。

轻按开关G ,观察电流计指针的偏转情况,松开G 。

旋转面板上的几个电阻调节旋钮改变C R 值,再轻按G ,观察指针偏转。

如此循环操作,直至按下G 时指针指向零点不动。

此时电桥平衡,Cx Cu R R R ==。

2.MS8050型数字万用表将FB203型多档恒流智能控温实验仪前面板的热敏电阻输出端口接万用表的“COM ”口和“V ΩHz正负极。

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析热电阻是一种常用的测量温度的电阻元件,它的电阻值随着温度的变化而变化。

在这个实验中,我们将使用一个热电阻传感器来测量不同温度下的电阻值,并通过数据分析来研究它的测温特性。

一、实验原理热电阻的电阻值随温度的变化可以用以下公式表示:R = R0(1 + αΔT)其中,R0是热电阻在参考温度下的电阻值,α是热电阻的温度系数,ΔT是热电阻测量温度与参考温度之间的温度差。

1. 将热电阻传感器放置在测试温度下,等待传感器温度稳定。

2. 记录热电阻传感器的电阻值和温度。

3. 重复第1和第2步,直到测量到足够多的数据点。

4. 通过上述公式计算热电阻的温度系数和参考温度。

二、实验步骤材料:热电阻传感器、实验仪器(示波器、数字万用表等)、恒温水浴装置、温度计、冰水等。

三、数据分析通过实验数据可以得到不同温度下的热电阻的电阻值,因此可以计算出热电阻的温度系数和参考温度。

1. 计算温度系数以热电阻在冰水中的数据为例,假设R0为100Ω,测量得到的电阻值和温度如下:温度(℃)电阻(Ω)0 95.60 95.80 95.60 95.70 95.60 95.70 95.60 95.70 95.60 95.8计算得到平均电阻值为95.69Ω,温度差ΔT为0℃,所以:α = (95.69 - 100)/100×0 = -0.031以实验数据为例,热电阻在不同温度下的电阻-温度关系如下:通过对上述数据进行拟合,可以得到以下曲线:根据以上曲线,可以得到热电阻的参考温度为21.7℃。

四、实验结论1. 热电阻的电阻值随温度的变化呈线性关系,可以通过计算温度系数来确定它的线性关系。

3. 热电阻的温度系数和参考温度对测量温度的准确性有一定影响,需要根据实际应用场景来确定合适的参考温度和温度系数。

10.热敏电阻温度特性的研究

10.热敏电阻温度特性的研究

物理实验中心实验指导书热敏电阻温度特性的研究热敏电阻温度特性的研究实验简介:物质的电阻率随温度而变化的现象称为热电阻效应。

我们知道,某些金属或合金制成的电阻其阻值都有规律地随温度升高而增大,具有较小的正温度系数,这类电阻我们称为正电阻温度系数的电阻。

相反,某电阻其阻值随温度升高而减小,则为负电阻温度系数的电阻。

热敏电阻器是利用半导体材料制成的热敏元件。

它的电阻值随着电阻体温度变化而显著变化。

通常可分为正温度系数热敏电阻器(简称PTC)、负温度系数热敏电阻器(简称NTC)和临界温度系数热敏电阻器(简称CTR)三类。

在一定的温度范围内,可以通过测量电阻值的变化而进行温度变化的测量。

因此热敏电阻主要用于温度测量与控制。

大多NTC 热敏电阻是由锰、镍、钴、铜、镉等金属氧化物按所需比例烧结而成。

近年来还有用单晶半导体如碳化硅等材料制成的(国产型号MF91~MF96)负电阻温度系数的热敏电阻。

具有如下优点:(1)热惯性小而灵敏度高,它的电阻温度系数的绝对值要比金属膜电阻器的大1~2个数量级;(2)稳定性好;(3)体积小,可制成各种形状,目前最小的珠状热敏电阻器的尺寸可达Φ0.2mm ;(4)功耗小,一般热敏电阻器的阻值在102~ 105Ω之间,因此不需考虑线路引线电阻的影响,适合于远距离的测量;(5)价格低廉。

NTC 热敏电阻器的测量范围较宽,特别适用于-100~300℃ 之间的温度测量。

在点温、表面温度、温差、温度场等测量中得到日益广泛的应用,同时也广泛地应用在自动控制及电子线路的热补偿电路中。

正电阻温度系数热敏电阻常用钛酸钡材料添加微量的钛、钡等稀土元素,采用陶瓷工艺成型,再高温烧结而成。

广泛用于家用电器中,如新型电吹风、电子锅、食品干燥器、电驱蚊器等产品。

热敏电阻已广泛地应用于工业、农业、医疗、交通、军事、科学研究等领域。

物理实验中主要研究负温度系数的热敏电阻的温度特性。

一、 实验目的1.研究负电阻温度系数(热敏电阻)的温度特性。

PT100 铂热电阻测温实验

PT100 铂热电阻测温实验

实验二十四 PT100 铂热电阻测温实验实验知识储备1.铂热电阻工作原理铂热电阻元件作为一种温度传感器,其工作原理是在温度作用下,铂电阻丝的电阻值随着温度的变化而变化。

温度和电阻的关系接近于线性关系,偏差极小且随着时间的增长,偏差可以忽略,具有可靠性好、热响应时间短等优点,且电气性能稳定。

铂热电阻是一种精确、灵敏、稳定的温度传感器。

铂热电阻元件是用微型陶瓷管、孔内装绕制好的铂热电阻丝脱胎线圈制成感温元件,由于感温元件可以做得相当小,因此它可以制成各种微型温度传感器探头。

可用于-200~+420℃范围内的温度。

2.PT100 设计参数PT100 铂电阻A 级在0℃时的电阻值R0=100±0.06 Ω;B 级R0=100±0.12 Ω,PT100铂热电阻各种温度对应阻值见分度表23-1。

PT100R 允许通过的最大测量电流为5mA,由此产生的温升不大于0.3℃。

设计时PT100上通过电流不能大于5mA。

图2-1-1铂电阻的温度特性实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。

2.掌握测量温度的电路设计和误差分析方法。

实验内容1.设计PT100 铂热电阻测温实验电路方案;2.测量PT100 的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。

3.通过测量值进行误差分析。

实验步骤1、完成系统方案设计;实验方案初步设定为如下:图2-实验方案电路图电阻阻值计算:考虑图中电路,当铂电阻变化ΔR时,电桥电压:ΔU=E2−R3ER3+R0+ΔR0=EΔR02(R3+R0+ΔR0),只有当R3取很大时才能保持线性。

故取R3为350欧姆,R1和R2以及电位器选用仪器上的变阻器,通过调整使节点1和节点2对应的电压差为零,这样当铂电阻受温度的影响发生变化时就会引起节点间的电压差,在实验时,考虑到差动放大器可以临时调节放大倍数,所以此处放大器只作为更进一步调节的备用元件。

Pt100热电阻测温实验报告

Pt100热电阻测温实验报告

的斜率代替,因此可得
5、迟滞误差
8.6675 − 0.2806 K = 95 − 50 = 0.186376 mv/℃
迟滞指正反行程中输出—输入特性曲线的不重合程度,用最大输出差值
∆max 与满量程输出������������������的百分比来表示,即
δH
=
±
1 2
·
∆������������������ ������������������
60
60
60
60
∑ ������������ = 4350 , ∑ ������������ = 268.44 , ∑ ������������������������ = 21768.3 , ∑ ������������2 = 54625
������=1
������=1
������=1
������=1
所示。
图 1 Pt100 测温模块输出-输入校准曲线
电压/mv
9.00
8.50
8.00
7.50
7.00
6.50
6.00
5.50
5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00
50
55
60
1正行程
1反行程
65
70
75
80
85
温度/℃
2正行程
2反行程
3正行程
90
95
0.08
95
0.08
0.18
0.19
△max
0.38
-0.54
0.39

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析热电阻测温特性实验是研究热电阻温度计的实验之一,它主要探究热电阻的电阻值与温度之间的关系。

在这个实验中,我们通常会使用热电阻温度计来测量不同温度下的电阻值,并通过对这些数据的分析,得出热电阻的测温特性。

一、实验准备在实验前,我们需要准备以下设备和材料:1.热电阻温度计2.恒温水槽3.数字万用表4.电脑或数据采集器5.实验数据处理软件二、实验步骤1.将热电阻温度计置于恒温水槽中,确保水槽温度稳定。

2.将数字万用表与热电阻温度计连接,测量其在不同温度下的电阻值。

3.将测量数据记录在实验记录表中。

4.通过电脑或数据采集器将测量数据传输到实验数据处理软件中。

5.利用实验数据处理软件对数据进行处理和分析。

三、数据分析在数据分析阶段,我们需要对实验中得到的电阻值和温度之间的关系进行拟合,得出热电阻的测温特性。

以下是一种常见的拟合方法:1.将实验数据以温度为横坐标,电阻值为纵坐标绘制成散点图。

2.对散点图进行线性拟合,得出电阻值与温度之间的线性关系式。

如果拟合结果不符合线性关系,可以采用多项式拟合或者指数拟合等方法。

3.根据拟合结果计算出测温系数和测温误差等参数。

测温系数是指温度每升高1℃,热电阻电阻值的增加量,测温误差是指实际温度与测量温度之间的最大偏差。

4.对实验结果进行分析和讨论。

如果测温误差在可接受范围内,则认为该热电阻温度计可以用于实际测温;如果测温误差较大,则需要对实验过程进行检查和分析,找出误差产生的原因并重新进行实验。

四、结论总结通过热电阻测温特性实验及其数据分析,我们可以得出以下结论:1.热电阻温度计的电阻值与温度之间存在一定的关系,可以通过实验得出其测温特性。

2.在实验过程中要保证恒温水槽的温度稳定,避免温度波动对测量结果的影响。

3.通过线性拟合、多项式拟合或指数拟合等方法可以得出热电阻的测温特性方程,并计算出测温系数和测温误差等参数。

4.根据分析结果可以判断该热电阻温度计是否适用于实际测温,并对测温误差较大的情况进行分析和讨论。

(整理)实验28应用计算机测定热敏电阻的温度特性

(整理)实验28应用计算机测定热敏电阻的温度特性

大学物理实验教案实验名称:应用计算机测定热敏电阻的温度特性1 实验目的1. 熟悉Pasco 科学工作室软件环境。

2. 掌握非线性特性传感器的科学工作室数据采集方法。

3. 掌握曲线拟合方法确定待定系数。

4.了解热敏电阻的温度特性。

2 实验仪器计算机 500型科学工作室接口 恒流源 温度传感器 电压传感器 加热装置3 实验原理3.1 热敏器件大多数材料的电阻率都与温度有关系,有的随温度的变化不明显,有的却非常敏感。

对温度变化敏感的材料通常用来制作温度传感器的热敏器件。

常见的热敏器件有用半导体材料做成的半导体热敏电阻和用金属材料(铂或铜)做成的热电阻。

半导体热敏电阻其电阻率随温度的升高而急剧下降。

金属材料做成的热电阻的电阻率随温度升高而缓慢地升高。

图28-1表示热敏电阻与普通金属电阻的不同温度特性。

热敏电阻对于温度变化的反应要比金属电阻灵敏的多,热敏电阻的体积也可以做的很小,用它来制成的半导体温度计,已广泛地使用在工业控制和科学仪器中,并在物理、化学和生物学研究等方面得到广泛应用。

3.2 热敏器件的特性3.2.1 半导体热敏电阻特性在一定的温度范围内,对于负温度型的半导体热敏电阻的电阻率ρ和温度T 之间有如下关系:TB e A /1=ρ (1)式中1A 和B 是材料物理性质有关的常数,T 为绝对温度。

对于粗细均匀的热敏电阻材料, 由于T l R Sρ= (2)T R 的单位为Ω;ρ单位为 m ⋅Ω;l 为材料的长度,单位为m ;S 为横截面积,单位为2m 。

将式(1)代入式(2),令S lA A 1=,于是可得 TB T Ae R /= (3)对一定的电阻而言,A 和B 均为常数。

对式(3)两边取对数,则有AT B R T ln 1ln += (4)可见T R ln 与T 1成线性关系。

在实验上通过测出器件的电阻T R 随温度T 的变化特性来确定系数A 值,可得到T R 的特性表达式。

3.2.2 金属热电阻特性大部分金属热电阻的特性在小温度范围内是线性的。

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析1.实验目的热电阻是一种常见的温度传感器,本实验旨在通过实验测量研究热电阻的温度特性,并分析数据得出相关的线性关系。

2.实验原理热电阻的温度特性是指其电阻值随温度的变化关系。

一般情况下,热电阻的电阻值随温度的升高而增加,这种关系可以通过线性化公式R=R0(1+α(T-T0))来描述,其中R为热电阻的电阻值,R0为参考温度T0下的电阻值,T为待测温度,α为温度系数。

3.实验设备和材料1)热电阻传感器2)温度控制器3)数显万用表4)电源5)连接电缆4.实验步骤1)将热电阻传感器连接到温度控制器,确保传感器固定在恒温槽内。

2)将温度控制器与电源连接,设置控制器的温度范围。

3)打开电源,设置温度控制器达到稳定状态。

4)使用数显万用表测量热电阻的电阻值,并记录下相应的温度值。

5)调节温度控制器,分别取多组数据,包括不同温度下的电阻值。

5.数据分析1)将实验数据记录在数据表格中,并绘制电阻值-温度的散点图。

2)根据散点图,使用线性回归分析方法,拟合出最佳的线性关系曲线,得到回归方程。

3)根据回归方程,计算出热电阻的温度系数α。

4)将拟合曲线与实验数据进行比较,评估拟合程度的好坏。

5)根据实验和分析结果,分析热电阻的温度特性,探讨实验误差和改进方向。

6.实验注意事项1)在进行实验时,注意安全操作,避免电源和设备的故障。

2)保持实验环境的稳定,减小外界温度对实验结果的影响。

3)实验过程中要仔细操作,减小仪器误差,确保数据的准确性。

4)实验结束后,注意清理和归位实验设备,保持实验室的整洁。

通过以上实验步骤和数据分析,我们可以得到热电阻的温度特性,并通过线性回归分析得到热电阻的温度系数。

这些结果对于温度测量和控制方面有着重要的应用价值。

同时,我们也可以通过分析实验误差和改进方向,提高实验的准确性和可靠性。

金属热电阻特性实验报告

金属热电阻特性实验报告

金属热电阻特性实验报告本实验旨在研究金属热电阻的特性。

金属热电阻是一种利用金属材料热电效应的传感器。

它通过金属导体材料引起的电动势变化来检测温度。

通过本实验了解金属热电阻的基本原理和工作特性,为热电阻在实际应用中的使用提供参考。

实验装置本实验中使用的装置包括:一个温度控制器,一个铂电阻,一个测温仪。

实验步骤1. 将铂电阻连接在测温仪上,打开电源;2. 调整控制器的温度,待温度达到设定值时记录测温仪的读数;3. 将温度控制器的温度逐步升高,记录铂电阻的电阻值;4. 分别将温度控制器的温度降至1℃时,记录铂电阻的电阻值;5. 对铂电阻的电阻值与温度进行相关分析,并制作回归分析曲线。

实验数据和分析实验数据如下:控制器温度(℃)铂电阻电阻值(Ω)50 3.82100 7.48150 11.20200 14.85250 18.50300 22.23将以上数据作图,并通过回归分析得到三个参数:a、b、r2,分别为回归方程的截距、斜率和相关系数。

回归方程为:y = a + bx。

图1:铂电阻电阻值与控制器温度关系图通过回归方程,我们可以得到:a = -0.239b = 0.0743r2 = 0.9999从图1的回归分析曲线可以看出,铂电阻电阻值与控制器温度呈正比关系。

在温度从50℃增加到300℃的过程中,铂电阻的电阻值从3.82Ω增加到22.23Ω。

结论本实验结果表明,金属热电阻的电阻值与温度呈线性关系。

并且,通过回归分析得到的相关系数r2非常接近1,说明回归方程可以很好地描述两者之间的关系。

综上所述,本实验成功研究了金属热电阻的特性,为热电阻在实际应用中的使用提供了可靠的参考。

热电阻测温特性实验(精)

热电阻测温特性实验(精)

热电阻测温特性实验一、实验目的:了解热电阻的特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)R0系温度为0℃时的电阻。

本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。

三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

四、实验步骤:1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参数设定。

2、将热电偶插入台面三源板加热源的一个传感器安置孔中。

将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。

E型(蓝+,绿-);k型(红+,黑-)3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。

5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出P t100三根线中其中短接的二根线(蓝,黑)接b端。

这样R t与R3、R1、R w1、R4组成直流电桥,是一种单臂电桥工作形式。

R w1中心活动点与R6相接,见图11-5。

图11-5 热电阻测温特性实验3、在端点a与地之间加直流源2V,合上主控箱电源开关,调R w1使电桥平衡,即桥路输出端b和中心活动点之间在室温下输出为零。

4、加±15V模块电源,调R w3使V02=0,接上数显单元,拨2V电压显示档,使数显为零。

Pt100铂电阻测温特性实验.

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻测温特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。

铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。

在0~500℃以内,它的电阻R t与温度t的关系为:R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构值(本实验的铂电阻R o=100Ω)。

A=3.9684×10-3/℃,B=-5.847×10-7/℃2。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。

图30—2热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c;-V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c;△V=V1所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。

式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。

P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。

热电阻测温实验报告

热电阻测温实验报告

热电阻测温实验报告热电阻测温实验报告引言:温度是一个在日常生活和科学研究中非常重要的物理量。

准确测量温度对于工业生产、医学诊断、环境监测等方面都至关重要。

在这个实验中,我们将使用热电阻来测量温度,并研究其原理和应用。

实验目的:1. 了解热电阻的基本原理和工作原理;2. 掌握使用热电阻测温的方法和技巧;3. 研究热电阻的特性曲线,探索其在不同温度下的响应。

实验器材和方法:1. 实验器材:热电阻、温度控制装置、数字温度计、电压表、电流表、电源等;2. 实验方法:a. 将热电阻连接到电路中,确保电路连接正确;b. 设置温度控制装置的温度,并等待温度稳定;c. 使用数字温度计测量温度,同时记录热电阻的电阻值;d. 改变温度控制装置的温度,重复步骤c,记录多组数据;e. 根据测得的数据,绘制热电阻的特性曲线。

实验结果与分析:通过实验,我们得到了一组热电阻在不同温度下的电阻值数据,并绘制成特性曲线。

从曲线上可以看出,热电阻的电阻值随着温度的升高而增加,呈现出一定的线性关系。

这是因为热电阻的电阻值与其材料的电阻温度系数有关,随着温度的升高,材料的电阻温度系数导致电阻值增加。

根据测得的数据,我们还可以计算出热电阻的温度系数。

通过选择两个温度点,计算出其对应的电阻值和温度差,并代入公式中,可以得到热电阻的温度系数。

这个系数可以用来校正热电阻的测温误差,提高测温的准确性。

除了测量温度,热电阻还可以用于温度控制。

通过将热电阻连接到温度控制装置中,可以实现对温度的精确控制。

当温度超过设定值时,热电阻的电阻值会发生变化,从而改变电路中的电流和电压,进而控制温度的升降。

这种温度控制方法在实际应用中具有广泛的应用前景。

实验结论:通过本次实验,我们深入了解了热电阻的原理和应用。

热电阻可以通过测量其电阻值来间接测量温度,具有简单、精确、稳定的特点。

热电阻的特性曲线可以帮助我们了解其响应特性和温度系数。

此外,热电阻还可以用于温度控制,具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二热电阻测温特性实验
1 实验目的
了解热电阻的特性与应用。

2 基本原理
利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用铂电阻和铜电阻,铂电阻在0~630.74℃以内,电阻Rt与温度t的关系为Rt = R0(1 + αt + βt2),其中R0是温度为0 °C时的电阻。

本实验R0 = 100 Ω,α= 3.9684×10−2°C−1,β= −5.847×10−7°C−2,铂电阻使用三引线,其中一端接二根引线,主要为消除引线电阻对测量的影响。

3 需用器件与单元
加热源、K 型热电偶、Pt100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

4 实验步骤
4.1 差动放大器调零
将实验模板调节增益电位器RW2顺时针调节大致到中间位置,将±15V电源及地从主控箱接入模板,检查无误后,合上主控箱电源开关,进行差动放大器调零。

4.2 将K 型热电偶插入到热源孔,将自由端按极性正确接至主控板上,用于温度设定。

4.3 将Pt100铂电阻引线接入Rt端的a、b 上。

Pt100三根线中,其中两根线为铂电阻的一端。

采用三线制的第一对称接法将Pt100接入电桥,这样Rt、R3和Rl、RWl、R4并联组成单臂电桥,见图2.2。

4.4 在端点a 与地之间加直流源4V,合上主控箱电源开关,调RW1使Vi输出为零,即桥路输出为零(平衡)。

然后将Pt100热电阻探头插入到热源孔。

4.5 按Δt = 5℃进行升温,温度稳定后,读取数显表值,将结果填入表2.1。

实验结束后将温度控制器温度设定为零,关闭电源开关。

表2.1 铂电阻热电势与温度值
t(℃) 40 45 50 55 60 65 70 75 80 85 u/mv -8.6 -2.4 -4.3 -0.9 6.2 11.7 16.9 20.4 24.8 29.0
5 思考题
5.1 根据表2.1值计算温度测量系统的灵敏度,S =∆uO/∆t(∆uO输出电压变化量,∆t温度变化量);及其非线性误差。

5.2 如何根据测温范围和精度要求选用热电阻?
数据处理:
1、计算温度测量系统的灵敏度:其中Δt=5℃,
Δ
u=1/25(11.7-(-8.6)+16.9-(-7.4)+20.4-(-4.3)+24.8-(-0.9)+29.0-6.2)= 4.712mv S =∆uO/∆t=4.712/5=0.94mv/℃
85 29 29.1325 -0.13
由上表可知,绝对误差的最大值Δu=2.97mv,δ=Δu/u
×100%
FS
=2.97/37.6×100%=7.90%
2.由于热电阻阻值随温度变化,所以温度变化必须在规定范围内,由最高温度可计算出最大阻值,根据式子Rt = R0(1 + αt + βt2),测量精度为﹙Rt/t=tm﹚÷﹙R/实测电阻﹚×100%,选用的电阻必须在测量精度范围内。

相关文档
最新文档