双曲线及其标准方程习题
新高考数学总复习双曲线的定义标准方程及其几何性质课件教案练习题
2 2
3.同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为 .
2 2
2 2
4.与双曲线 2 - 2 =1(a>0,b>0)有共同渐近线的方程可表示为 2 - 2 =t(t≠0).
5.双曲线的离心率公式可表示为e= 1 +
9 7
返回 27
[例3](1)(2024·成都模拟)已知直线y=
2 2
2x是双曲线C: 2 - 2 =1(a>0,b>0)的一条渐近线,
且点(2 3,2 3)在双曲线C上,则双曲线C的方程为(
2 2
A. - =1
3 4
2 2
B. - =1
3 6
2 2
C. - =1
6 12
2 2
D. - =1
12 24
)
2 2
【解析】选C.由双曲线C: 2 - 2 =1,则其渐近线方程为y=± x,由题意可得: =
可得b= 2a,将(2 3,2
12 12
3)代入双曲线方程可得 2 - 2 =1,解得a2=6,b2=12,
3.了解双曲线几何性质的简单应用.
【核心素养】
数学运算、逻辑推理、直观想象.
返回 3
【命题说明】
考向
考法
高考对双曲线的考查形式有两种:(1)根据题设条件求双曲线的标准
方程;(2)通过双曲线的标准方程研究双曲线的基本性质,常以选择题
或填空题形式出现.
预计2025年高考在双曲线的标准方程、几何性质仍会出题,一般在
A. 37+4
双曲线练习题(含答案)
双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线及其性质
双曲线及其性质例1:(求双曲线方程)(1)已知双曲线与椭圆2212736x y+=有共同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求双曲线的方程.(2)已知双曲线通过M(1,1),N(-2,5)两点,求双曲线的标准方程.练习:(1)方程(m+2)x2+(m-1)y2=1表示双曲线的充要条件为________(2)如果双曲线的两个焦点分别为F1(-3,0),F2(3,0),离心率e则该双曲线的方程为________.(3)已知焦点在x轴上,离心率为,且经过点M(-3,2)的双曲线方程为________.(4)k>1,则关于x、y的方程(1-k)x2+y2=k2-1所表示的曲线是( )A.焦点在x轴上的椭圆B.焦点在y轴上的双曲线C.焦点在y轴上的椭圆D.焦点在x轴上的双曲线(5)已知双曲线2221 (0)16x ybb-=>的实轴的一个端点为A1,虚轴的一个端点为B1,且|A1B1|=5,则双曲线的方程是( )A.2211625x y-= B.2211625x y-=- C.221169x y-= D.221169x y-=-例2:(双曲线的离心率)(1)已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为.(2)双曲线的虚轴长、实轴长、焦距成等差数列,则双曲线的离心率为________(3)双曲线22221x ya b-= (a>0,b>0)的两个焦点分别为F1、F2,以F1F2为边作等边△MF1F2.若双曲线恰好平分三角形的另两边,则双曲线的离心率为________(4)双曲线22221x ya b-=(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为( )A.(1,3) B.(1,3]C.(3,+∞)D.[3,+∞)例3:若F1,F2是双曲线221916x y-=的两个焦点,P是双曲线上的点,且|PF1|²|PF2|=32,试求△F1PF2的面积.练习:在△ABC中,|BC|=2且sin C-sin B=12sin A,求点A的轨迹方程.【巩固练习】一、选择题1.(南昌)已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为( )(A)13(B)63(C)33(D)2332.双曲线x 2n-y2=1(n>1)的左、右两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为( )(A)12(B)1 (C)2 (D)43.(汉中模拟)设双曲线x 2a2-y29=1(a>0)的渐近线方程为3x±2y=0,则a的值为( )(A)4 (B)3 (C)2 (D)14.已知双曲线x 2a2-y2b2=1(a>0,b>0)的一条渐近线方程是y=3x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( )(A)x 236-y2108=1 (B)x29-y227=1(C)x2108-y236=1 (D)x227-y29=15.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A)2(B)3(C)3+12(D)5+126.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4则C的实轴长为( )(A)2(B)22(C)4 (D)87.设F1,F2分别为双曲线x 2a2-y2b2=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )(A)3x±4y=0 (B)3x±5y=0(C)4x±3y=0 (D)5x±4y=08.设F1,F2分别是双曲线x2-y 29=1的左、右焦点,若点P在双曲线上,且PF1→²PF2→=0,则|PF1→+PF2→|= ( )(A)(B)2(C)(D)2二、填空题9.(西安)若椭圆x 2a2+y2b2=1(a>b>0)的离心率为32,则双曲线y2a2-x2b2=1的离心率为.10.(天津)已知双曲线C1:x 2a -y2b=1(a>0,b>0)与双曲线C2:x24-y216=1有相同的渐近线,且C1的右焦点为F(则a= ,b= .11.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点为M,若点M在以AB 为直径的圆的内部,则此双曲线的离心率e的取值范围为.三、解答题12.(井冈山)已知A,B,P是双曲线x 2a2-y2b2=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积k PA²k PB=23,求双曲线的离心率.13.(马鞍山)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为 2,且过点P(4,- 10). (1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:MF 1→²MF 2→=0.(3)求△F 1MF 2的面积.14.P(x 0,y 0)(x 0≠±a)是双曲线E:x 2a 2-y 2b 2=1(a>0,b>0)上一点,M,N 分别是双曲线E 的左,右顶点,直线PM,PN 的斜率之积为15.(1)求双曲线的离心率.(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.练习题答案解析1.【解析】选B.由已知双曲线的离心率为2,得:1m+1n1m=2,解得:m=3n,又m>0,n>0,∴m>n,即1n >1m,故由椭圆mx2+ny2=1得y21n+x21m=1.∴所求椭圆的离心率为:e=1n−1m1n=1n−13n1n=63.【误区警示】本题极易造成误选而失分,根本原因是由于将椭圆mx2+ny2=1焦点所在位置弄错,从而把a求错造成.2.【解析】选B.不妨设点P在双曲线的右支上,则|PF1|-|PF2|=2n,又|PF1|+|PF2|=2n+2,∴|PF1|=n+2+n,|PF2|=n+2-n, 又c=n+1,∴|PF1|2+|PF2|2=|F1F2|2,∴∠F1PF2=90°,∴S△PF1F2=12|PF1||PF2|=1.3.【解析】选C.双曲线x 2a2-y29=1的渐近线方程为3x±ay=0与已知方程比较系数得a=2.4.【解析】选B.由题意可知c=6,a2+b2=c2,ba=3,解得a2=9,b2=27,所以双曲线的方程为x29-y227=1.5.【解析】选D.因为焦点在x轴上与焦点在y轴上的离心率一样,所以不妨设双曲线方程为x 2a2-y2b2=1(a>0,b>0),则双曲线的渐近线的斜率k=±ba ,一个焦点坐标为F(c,0),一个虚轴的端点为B(0,b),所以k FB=-bc,又因为直线FB与双曲线的一条渐近线垂直,所以k²k FB=ba (-bc)=-1(k=-ba显然不符合),即b2=ac,c2-a2=ac,所以,c2-a2-ac=0,即e2-e-1=0,解得e=1+52(负值舍去).【变式备选】双曲线x 2a2-y2b2=1(a>0,b>0)的离心率为2,则b2+13a的最小值为( )(A)233(B)33(C)2 (D)1【解析】选A.因为双曲线的离心率为2,所以ca=2,即c=2a,c2=4a2;又因为c2=a2+b2,所以a2+b2=4a2,即b=3a,因此b 2+13a=3a2+13a=a+13a≥213=233,当且仅当a=13a,即a=33时等号成立.故b 2+13a的最小值为233.6.【解析】选C.不妨设点A的纵坐标大于零.设C:x 2a2-y2a2=1(a>0),∵抛物线y2=16x的准线为x=-4,联立得方程组x2a2−y2a2=1,x=−4,解得:A(-4,16−a2),B(-4,-16−a2),∴|AB|=216−a2=43,解得a=2,∴2a=4.∴C的实轴长为4. 7.【解析】选C.设PF1的中点为M,因为|PF2|=|F1F2|,所以F2M⊥PF1,因为|F2M|=2a,在直角三角形F1F2M中, |F1M|=(2c)2−(2a)2=2b,故|PF1|=4b,根据双曲线的定义得4b-2c=2a,即2b-c=a,因为c2=a2+b2,所以(2b-a)2=a2+b2,即3b2-4ab=0,即3b=4a,故双曲线的渐近线方程是y=±43x,即4x±3y=0.8. 【解析】选B.如图,由PF 1→²PF 2→=0可得PF 1→⊥PF 2→,又由向量加法的平行四边形法则可知□PF 1QF 2为矩形,因为矩形的对角线相等,故有|PF 1→+PF 2→|=|PQ →|=2c=2 10. 9.【解析】由已知椭圆离心率为 32, 所以有a 2−b 2a= 1−(b a )2= 32,得(b a )2=14,而双曲线的离心率为a 2+b 2a= 1+(b a )2= 1+14= 52.答案: 5210.【解析】由题意可得 ba =42,a 2+b 2=5,解得:a=1,b=2.答案:1 211.【思路点拨】设出双曲线方程,表示出点F,A,B 的坐标,由点M 在圆内部列不等式求解. 【解析】设双曲线的方程为x 2a 2-y 2b 2=1(a>0,b>0),右焦点F 坐标为F(c,0),令A(c,b 2a ),B(c,-b 2a ), 所以以AB 为直径的圆的方程为(x-c)2+y 2=b 4a .又点M(-a,0)在圆的内部,所以有(-a-c)2+0<b 4a , 即a+c<b 2a ⇒a 2+ac<c 2-a 2,⇒e 2-e-2>0(e=ca ),解得:e>2或e<-1.又e>1,∴e>2. 答案:(2,+∞)12.【解析】设A(m,n),P(x 0,y 0),则B(-m,-n),∵A,B,P 在双曲线上,∴m 2a -n 2b =1,(1)x 02a -y 02b =1,(2) (2)-(1)得:x 02−m 2a =y 02−n 2b ⇒y 02−n 2x 02−m =b 2a ,k PA ²k PB =y 0−nx 0−m ²y 0+n x 0+m =y 02−n 2x 02−m =b 2a =23⇒e=c a = 1+b 2a = 1+23= 153. 13.【解析】(1)∵e= 2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点P(4,- 10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.(2)方法一:由(1)可知,双曲线中a=b= ∴c=2 ,∴F 1(-2 2(2 ∴k MF 1=3+2 3,k MF 2=3−2 3,k MF 1²k MF 2=m 29−12=-m 23.∵点M(3,m)在双曲线上,∴9-m 2=6,m 2=3.故k MF 1²k MF 2=-1,∴MF 1⊥MF 2. ∴MF 1→²MF 2→=0.方法二:∵MF 1→=(-3-2 3,-m),MF 2→=(2 3-3,-m),∴MF 1→²MF 2→=(3+2 3)³(3-2 3)+m 2=-3+m 2. ∵M(3,m)在双曲线上, ∴9-m 2=6,即m 2-3=0.∴MF 1→²MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=4 3,△F 1MF 2的边F 1F 2上的高h=|m|= 3,∴S △F 1MF 2=6. 14.【思路点拨】(1)代入P 点坐标,利用斜率之积为15列方程求解. (2)联立方程,设出A,B,OC →的坐标,代入OC →=λOA →+OB →求解.【解析】(1)由点P(x 0,y 0)(x 0≠±a)在双曲线x 2a 2-y 2b 2=1上,有x 02a 2-y 02b 2=1.由题意又有y 0x 0−a²y 0x 0+a =15,可得a 2=5b 2,c 2=a 2+b 2=6b 2, 则e=c a =305. (2)联立方程得 x 2−5y 2=5b 2,y =x −c,得4x 2-10cx+35b 2=0,设A(x 1,y 1),B(x 2,y 2), 则 x 1+x 2=5c2,x 1x 2=35b 24.设OC →=(x 3,y 3),OC →=λOA →+OB →, 即 x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线E 上一点,即x 32-5y 32=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得:λ2(x 12-5y 12)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A(x 1,y 1),B(x 2,y 2)在双曲线E 上,所以x 12-5y 12=5b 2,x 22-5y 22=5b 2.又x 1x 2-5y 1y 2=x 1x 2-5(x 1-c)(x 2-c)=-4x 1x 2+5c(x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0或λ=-4.。
双曲线及其标准方程PPT课件(公开课)ppt文档
M
2、|MF2| - | MF 1| =2a (2a< |F1F2| )
F1
F2
3、若常数2a=0
F1
F2
4、若常数2a = | F1F2 |
F1
F2
5、若常数2a>| F1F2 |
轨迹不存在
变式1 已知两定点F1(-5,0),F2(5,0),平面上一动 点P,|PF1|-|PF2|= 6,求点P的轨迹方程.
解: 由题知点P的轨迹是双曲线的右支,
根据双曲线的焦点在 x 轴上,设它的标准方程为:
x2 y2 a2b2 1 (a0,b0)
∵ 2a = 6, c=5 ∴ a = 3, c = 5
双曲线及其标准方程PPT课件(公开课)
1、复习
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹是 椭圆 .
动
画
Y Mx,y
2. 引入问题:
O
F 1c,0
F 2 c,0 X
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
平面上动点M到两定点距离的差为常数的轨迹是什么 ?
∴ a = 3, c = 5
∴ b2 = 52-32 =16
所以所求双曲线的标准方程为: x2 y2 1 9 16
走进高考
x2 y2
1.若双曲线 16 9 1 上的点P 到点
(5,0) 的距离是15,则点P 到点(5,0) 的
距离是( D ) A.7 B. 23 C. 5或25 D. 7或23
所以所求双曲线的标准方程为:
x2 y2 1 或
y2 x2 1
9 16
9 16
课堂练习
最新双曲线及其标准方程练习题
课时作业(十)[学业水平层次]一、选择题1.方程x 22+m -y 22-m =1表示双曲线,则m 的取值范围( )A .-2<m <2B .m >0C .m ≥0D .|m |≥2【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3)D.x 29-y 216=1(x ≥3)【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,∴P 点的轨迹方程为x 29-y 216=1(x ≥3). 【答案】 D3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=1【解析】由⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,⇒(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C4.已知椭圆方程x 24+y 23=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( )A.2B. 3 C .2D .3【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =21=2.【答案】 C 二、填空题5.设点P 是双曲线x 29-y 216=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________.【解析】 由双曲线的标准方程得a =3,b =4. 于是c =a 2+b 2=5.(1)若点P 在双曲线的左支上,则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16; (2)若点P 在双曲线的右支上, 则|PF 1|-|PF 2|=6, ∴|PF 2|=|PF 1|-6=10-6=4. 综上,|PF 2|=16或4. 【答案】 16或46.(2014·河南省洛阳高一月考)已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)①2;②-1;③4;④-3.【解析】 设双曲线的方程为x 2a 2-y 2b 2=1,则c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠12,∴①②满足条件.【答案】 ①②7.(2014·哈尔滨高二检测)已知△ABP 的顶点A 、B 分别为双曲线C :x 216-y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P 的值等于________.【解析】 由方程x 216-y 29=1知a 2=16,b 2=9,即a =4,c =16+9=5.在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |sin P=||PB |-|P A |||AB |=2a 2c =2×42×5=45.【答案】 45 三、解答题8.求与双曲线x 24-y 22=1有相同焦点且过点P (2,1)的双曲线的方程.【解】 ∵双曲线x 24-y 22=1的焦点在x 轴上. 依题意,设所求双曲线为x 2a 2-y 2b 2=1(a >0,b >0). 又两曲线有相同的焦点, ∴a 2+b 2=c 2=4+2=6.①又点P (2,1)在双曲线x 2a 2-y 2b 2=1上, ∴4a 2-1b 2=1.②由①、②联立,得a 2=b 2=3, 故所求双曲线方程为x 23-y 23=1.9.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线;(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆;(3)当k <0时,方程为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线;(4)当0<k <1时,方程为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程为x 24k+y 24=1,表示焦点在y 轴上的椭圆.[能力提升层次]1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1 B. 2 C .2 D .3【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且 a >0.∵4-a 2=a +2,∴a 2+a -2=0, ∴a =1或a =-2(舍去).故选A. 【答案】 A2.(2014·桂林高二期末)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8【解析】 不妨设P 是双曲线右支上一点, 在双曲线x 2-y 2=1中,a =1,b =1,c =2,则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,∵|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·12, ∴8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴8=4+|PF 1||PF 2|, ∴|PF 1||PF 2|=4.故选B. 【答案】 B3.(2014·福建省厦门一中期末考试)已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.【解析】 设F ′是双曲线的右焦点,连PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=12|PF ′|,又|FN |=|OF |2-|ON |2=5,且由双曲线的定义知|PF |-|PF ′|=8,故|MN |-|MO |=|MF |-|FN |-12|PF ′|=12(|PF |-|PF ′|)-|FN |=12×8-5=-1.【答案】 -14.已知双曲线x 216-y 24=1的两焦点为F 1、F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求点M 到x 轴的距离; (2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0, 则MF 1⊥MF 2,设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8,又m 2+n 2=(2c )2=80,②由①②得m ·n =8, ∴12mn =4=12|F 1F 2|·h , ∴h =255.(2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16),由于双曲线C 过点(32,2),所以1816-λ-44+λ=1,解得λ=4或λ=-14(舍去).∴所求双曲线C 的方程为x 212-y 28=1.。
高二数学双曲线标的准方程
添加标题
解:
x2
y2
1
9 16
2
2
2x5 7y5 例2、若P是以F1、F2为焦点的双曲线
上的点,且P到F1的距离是12,求点P到F2的
距离。
1
x2 y2
01
1 练习1:如果方程
2 m m 1 表示双曲线,求m的取值范围.
02
分析:
由 (2 m)(m 1) 0
y
M
o F2 x
3.列式|MF1| - |MF2|=
2a
即(x c)2 y2 (x c)2 y2 2a
y
4.化简.
F1
M
o
F2 x
(c2 a2) x2 a2 y2 a2(c2 a2)
令:c2-a2=b2 代入上
式得:b2x2-a2y2=a2b2y
x2 y2
即:a2 b2 1 (a>0,b>0) F 1 o
添加标题 单击此处输入你的正文,文字是
c, 0 您思想的提炼,请尽量言简意赅
1 2 的阐述观点
c, 0
的点的轨迹是什么呢?
平面内与两个定 义定: 点F1,
动 画
F2的距离的差
M
的绝对值
添加标题
单击此处输入你的正文,文字是
等于常数
您思想的提炼,请尽量言简意赅
的阐述观点
F oF
的点的轨迹叫做双曲线. 添加标题 单击此处输入你的正文,文字是 您思想的提炼,请尽量言简意赅 的阐述观点
M
x
F2
•想一想
焦点在y轴上的双
曲线的标准方程
y2 a2
x2 b2
1(a
0, b
双曲线新课习题集
双曲线及其方程 (第一课时)一、 教学目标:掌握双曲线的定义、标准方程及其推导。
二、 重点:双曲线的定义和标准方程。
难点:标准方程的推导。
三、 基本概念:1、双曲线的定义: 叫做双曲线的焦点。
叫做双曲线的焦距。
2、注意:0〈2a<21F F =2c3、思考:当2a=2c 时轨迹如何? ,当2a>2c 时又如何?四、 双曲线的标准方程及其推导。
(一) 双曲线的标准方程的推导: 1.建立直角坐标系:2.写出适合条件的动点M 的集合:3.列方程:4.化简方程:(二) 双曲线的标准方程:1、焦点在X 轴上时: 2、焦点在Y 轴上时: 3、a 、 b 、 c 的关系 五、典型例题:例1、根据下列条件,求双曲线的标准方程:(1) 两个焦点的坐标分别是(-5,0),(5,0), 双曲线上的点与两个焦点的距离的差的绝对值等于8; (2) 两个焦点的坐标分别是(0,-6),(0,6),且双曲线经过点A (-5,6).思考:如果已知点M (x,y )与点F 1(-5,0)的距离比它与点F 2(5,0)的距离大8,求M 点的轨迹方程。
并与例1(1)比较有什么联系和区别?例2、已知双曲线1453622=-y x (1)求此双曲线的左、右焦点F 1,F 2的坐标;(2) 如果此双曲线上一点P 与焦点F 1的距离等于16,求点P 与焦点F 2的距离六、基本练习:1、根据下列条件,求双曲线的标准方程: (1)a=3,b=4, 焦点在X 轴上;(2)两个焦点的坐标分别是F 1(0,-6), F 2 (0,6), 经过点A (2,-5).(3) 焦点在X 轴上,经过点P (4,-2)和点Q (2,622);(4) a=5,c=8;2、已知双曲线方程1201622=-x y (1)求双曲线的焦点F 1,F 2的坐标。
(2)如果此双曲线上一点P 与焦点F 1的距离等于8,求点P 与焦点F 2的距离。
七、巩固提高:1、若11222=+++λλy x 表示双曲线,则λ的取值范围2、求中心在原点,两对称轴都在坐标轴上,并且经过P (3,415)和Q (,3165)两点的双曲线方程。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。
双曲线的标准方程
y 2 x2 2 1(a 0, b 0) 2 a b
y
F1
o
F2 x
位置特征:焦点在x轴上 焦点坐标 F1 ( c, 0)
F2 (c, 0)
2 2 2 c a b ( a, b, c 0) 数量特征:
焦点在y轴上
F1 (0, c) F2 (0, c )
uxd07vzu
开了,还多亏了你呢!你又懂事,又能干!唉,这青丫头有你一半就好了。”耿英说:“娘娘,你说啥呀?我哪里有小青姐聪明啊,我 只是一个稀了马哈的粗心丫头呢!”乔氏摇摇头说:“不,她只不过是有一些个看似很机灵的小聪明而已,而你却拥有顾大局,识大体 的大聪明、大智慧啊。不能相比的喽!”耿英却说:“娘娘,您这样说小青姐可不对,她只是被自己心里边的那个‘疯狂的喜欢’给昏 头了呢!小青姐真得很聪明,也很明白事理,说心里话,我很欣赏她呢!”乔氏轻轻地叹了一口气说:“唉,刚才啊,我听到这丫头哭 诉她命苦。我看哪,正如英丫头刚才说的,她的命并不苦,苦的是我啊!她有这个既憨厚又倔强的东伢子爱怜着呢,可我呢?”乔氏再 也忍不住自己的眼泪了。她掏出手绢不断地擦拭着涌流出来的泪水,心酸地说:“丫头她爹去了,我这后半生啊,只能是”耿老爹父子 四人的心里也都酸酸的。耿老爹轻轻地说:“兄弟媳妇你也别太难过了。事已至此,难过没有用啊。你有青丫头呢,还有这诚恳实在的 东伢子。这以后啊,他们多生几个娃娃,你以后的日子不会孤单的!”耿正说:“娘娘,您的年纪还不大呢,幺爹他肯定希望您能过得 很好的。以后啊,你可以留意着找一个”乔氏摇摇头,幽忧地说:“不,不可能的了!”耿英也说:“我哥说得对着哩,幺爹他肯定希 望您过得好!您也别过分伤心了,老话说了,‘凡事都有个定数’哩,谁又能改变了什么!您以后的日子还长着呢,因此啊,一定要想 开一些,日子才能过得踏实。人常说啊,老天爷是有眼的,您是天底下最好的人啦!所以啊,肯定会有一个最适合您的好人来陪伴您 的!”懂事的耿直怕乔氏继续伤心哭泣,就拱着身子依偎到了她的怀里,像大人一样说:“娘娘,姐姐说得对,您是天底下最好的人, 就像我娘一样好!我们在家时,我娘经常对我们说:‘人一定要多使好心,多做好事’。娘还说:‘好人终究会得到好报’。放心,您 一定会得到好报的!”乔氏终于破涕为笑了。她紧紧地楼住耿直,在他的额头上亲了一下,笑着对耿老爹说:“耿大哥啊,你就把这个 小儿子给我吧,我可正缺这么一个好伢子呢!”耿老爹也笑了,说:“兄弟媳妇啊,刚才小直子不是说了嘛,我们那里是管姆妈叫‘娘’ 的。他现在不就叫你‘娘娘’吗?还多了一个‘娘’呢!”那天下午,对于倔强钟情的东伢子来说,尽管饱吃了小青的一顿拳头,但这 顿拳头他吃得太舒服,也太高兴了!因为,这个他喜欢至骨头里的丫头,在打得实在太累了的时候,终于接受了他的爱。而无辜的耿正 虽然挨了非常冤枉的一计重拳,但好在东伢子只是打在了他的肩膀上。乔氏将白酒点着了,抓着花苗给他搓擦了几次以后,没几天也就 彻底好了,并没有
双曲线及其标准方程习题
5.若点 M 在双曲线错误!-错误!=1 上,双曲线的焦点为 F1,F2,且|MF1|=3|MF2|,则|MF2|
等于
A.2
B.4
C.8
D.12
解析:选 B.双曲线中 a2=16,a=4,2a=8,由双曲线定义知||MF1|-|MF2||=8,又|MF1|=
3|MF2|,所以 3|MF2|-|MF2|=8,解得|MF2|=4.
以对于所求双曲线 a=1,c=2,b2=3,焦点在 y 轴上,双曲线的方程为 y2-错误!=1.
4.在方程 mx2-my2=n 中,若 mn<0,则方程表示的曲线是 A.焦点在 x 轴上的椭圆 B.焦点在 x 轴上的双曲线 C.焦点在 y 轴上的椭圆 D.焦点在 y 轴上的双曲线
解析:选 D.将方程化为错误!-错误!=1.
A.5,10 C.10,+∞
B.-∞,5 D.-∞,5∪10,+∞
解析:选 A.由题意得 10-k5-k<0,解得 5<k<10.
3.以椭圆错误!+错误!=1 的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的 方程是
-y2=1 -错误=1
B.y2-错误!=1 -错误!=1
解析:选 B.椭圆错误!+错误!=1 的焦点为 F10,1,F20,-1,长轴的端点 A10,2,A20,-2,所
由错误!·错误!=0,得 PF1⊥PF2.根据勾股定理得 |PF1|2+|PF2|2=2c2,即|PF1|2+|PF2|2=20. 根据双曲线定义有|PF1|-|PF2|=±2a. 两边平方并代入|PF1|·|PF2|=2 得 20-2×2=4a2,解得 a2=4,从而 b2=5-4=1, 所以双曲线方程为错误!-y2=1. 答案:错误!-y2=1 3.设圆 C 与两圆 x+错误!2+y2=4,x-错误!2+y2=4 中的一个内切,另一个外切.求 C 的圆心轨迹 L 的方程. 解:设两圆 x+错误!2+y2=4,x-错误!2+y2=4 的圆心分别为 F1-错误!,0,F2错误!,0, 两圆相离, 由题意得||CF1|-|CF2||=4<2错误!=|F1F2|, 从而得动圆的圆心 C 的轨迹是双曲线, 且 a=2,c=错误!,所以 b=错误!=1, 所求轨迹 L 的方程为错误!-y2=1. 4.如图,若 F1,F2 是双曲线错误!-错误!=1 的两个焦点. 1 若双曲线上一点 M 到它的一个焦点的距离等于 16,求点 M 到另一个焦点的距离; 2 若 P 是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2 的面积. 解:双曲线的标准方程为错误!-错误!=1, 故 a=3,b=4,c=错误!=5. 1 由双曲线的定义得||MF1|-|MF2||=2a=6,又双曲线上一点 M 到它的一个焦点的距离等 于 16,假设点 M 到另一个焦点的距离等于 x,则|16-x|=6,解得 x=10 或 x=22. 故点 M 到另一个焦点的距离为 10 或 22. 2 将||PF2|-|PF1||=2a=6,两边平方得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100. 在△F1PF2 中,由余弦定理得 cos∠F1PF2=错误! =错误!=0, ∴∠F1PF2=90°, ∴S△F1PF2=错误!|PF1|·|PF2|=错误!×32=16.
双曲线及其标准方程练习题及答案
4.P为双曲线 上的一点,F为一个焦点,以PF为直径的圆与圆 的位置关系是( )
A.内切 B.内切或外切
C.外切 D.相离或相交
5.双曲线 的左焦点为F,点P为左支的下半支上任一点(非顶点),则直线PF的斜率的范围是( )
A.(-∞,0]∪[1,+∞) B.(-∞,0)∪(1,+∞)
C.(-∞,-1)∪[1,+∞) D.(-∞,Байду номын сангаас1)∪(1,+∞)
6.若椭圆 和双曲线 有相同的焦点 、 ,P是两曲线的一个公共点,则 的值是(
A.m-aB.
C.
二、填空题
7.双曲线 的一个焦点是 ,则m的值是_________。
8.过双曲线 的焦点且垂直于x轴的弦的长度为_______。
三、解答题
答案与提示
一、1.D 2.A 3.C 4.B 5.B 6.A
二、7.-28.
三、9方程为 (y≠0) 10.不存在
11.A炮击P地时,炮击的方位角为北偏东30°
9.已知双曲线过点A(-2,4)、B(4,4),它的一个焦点是 ,求它的另一个焦点 的轨迹方程。
10.已知直线y=ax+1与双曲线 相交于A、B两点,是否存在这样的实数a,使得A、B关于直线y=2x对称?如果存在,求出a的值,如果不存在,说明理由。
11.A、B、C是我方三个炮兵阵地,A在B的正东相距6km,C在B的北偏西30°相距4km,P为敌炮兵阵地,某时刻A发现敌炮阵地的某种信号,4秒种后,B、C才同时发现这一信号,该信号的传播速度为每秒1km,A若炮击P地,求炮击的方位角。
一、选择题:
1.已知点 和 ,曲线上的动点P到 、 的距离之差为6,则曲线方程为( )
3.2双曲线
M图2-8从实验中发现:笔尖(即点M)在移动过程中,与两个定点的距离之差的绝对值始终保持不变(等于拉链两边的图2-9取过焦点12F F 、的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系,如图2-9,设双曲线的焦距为2c ,则两个焦点12F F 、的坐标分别为(-c ,0),(c ,0).设M (x ,y )为双曲线上的任意一点,M 与两个焦点12F F 、的距离之差的绝对值为2a ,则122MF MF a -=, 即 122MF MF a -=±. 于是有2222()()2x c y x c y a +++-+=±. 将上式化简(类似于求椭圆的方程),得22222222()()c a x a y a c a --=-. 由双曲线的定义知,2c >2a ,即c >a ,因此220c a ->.令222(0)c a b b -=>,则上式变为 222222b x a y a b -=两边同时除以22a b ,得 22221(00)x y a b a b -= >,> (2.3) 方程(2.3)叫做焦点在x 轴上的双曲线的标准方程.它所表示的双曲线的焦点是12(0)(0)F c F c -,,,,并且222b c a =-.锻能力通决问题,在过程中总结方法图2-10如图2-10所示,如果取过焦点12F F 、的直线为y 轴,线段12F F 的垂直平分线为x 轴,建立平面直角坐标系,那么用类似的方法可以得到双曲线的方程22221(00)y x a b a b -= >,> (2.4) 方程(2.4)叫做焦点在y 轴上的双曲线的标准方程.焦点为12(0)(0)F c F c -,,,.字母a ,b 意义同上,并且222b c a =-.例1 已知双曲线的焦点在x 轴上,且焦距为14,双曲线上一点到两个焦点距离之差的绝对值等于8,请写出双曲线的标准方程.解 由已知得 2c = 14,2a = 8,即c = 7,a = 4,所以22233b c a =-=.由于双曲线的焦点在x 轴上,因此双曲线的标准方程为 2211633x y -=. 例2 求下列双曲线的焦点坐标和焦距: (1)22114425x y -=; (2)224y x -=. 分析 解题关键是判断双曲线的焦点在哪个坐标轴上.方法是观察标准方程中含x 项与含y 项的符号,如果含x 项(或含y 项)的系数为正数,那么焦点在x 轴(或y 轴)上,并且该项的分母为2a .解 (1)因为含x 项的系数为正数,所以双曲线的焦点在x 轴上,并且22144,25a b ==.故22214425169c a b =+=+=.图2-112.对称性在双曲线的标准方程中,将y 换成-y ,方程依然成立.这说明双曲线关于x 轴对称.同理可知,双曲线关于y 轴对称,也关于坐标原点对称.x 轴与y 轴都叫做双曲线的对称轴,坐标原点叫做双曲线的对称中心(简称中心).3.顶点在双曲线的标准方程中,令0y =,得到x a =±.因此,双曲线与x 轴有两个交点1(,0)A a -和2(,0)A a (如图2-11).双曲线和它的对称轴的交点叫做双曲线的顶点.因此1(,0)A a -和2(,0)A a 是双曲线的顶点.令0x =,得到22y b =-,这个方程没有实数解,说明双曲线和y 轴没有交点.但是,我们也将点1(0)B b -,与2(0)B b ,画出来(如图2-11). 线段1A 2A ,1B 2B 分别叫做双曲线的实轴和虚轴,它们的长分别为2a 和2b .a 和b 分别表示双曲线的半实轴长和半虚轴长. 【说明】实轴与虚轴等长的双曲线叫做等轴双曲线. 4.渐近线经过12A A 、分别作y 轴的平行线x = -a ,x = a ,经过12B B 、分别作x 轴的平行线y = -b ,y = b .这四条直线围成一个矩形(如图2-12).矩形的两条对角线所在的方程为by x a=±. 双曲线的标准方程可以写成22221b b a y x a x a a x=±-=±-,可以看到,当|x |无限增大时,y 的值无限接近于bx a±的值.这说明双曲线的两支曲线与两条直线by x a=±无限接近(但不能相交).因此,两条直线by x a=±叫做双曲线的渐近线.图2-12【说明】焦点在y 轴的双曲线22221(0,0)y x a b a b-=>>的渐近线方程为ay x b=±. 5.离心率双曲线的焦距与实轴长的比22c ca a=叫做双曲线的离心率,记作e .即c e a=.因为0c a >>,所以双曲线的离心率1e >. 由图2-13【说明】画双曲线的草图时,可以首先确定顶点,再画出双曲线的渐近线,然后根据双曲线与其渐近线逐渐接近的特点画出图形.例4 已知双曲线的焦点为(6,0),渐近线方程为255y x =±,求双曲线的标准方程.解 由已知条件知双曲线的焦点在y 轴.所以有2236255a b b a⎧+=⎪⎨=⎪⎩解得 254a b ==,. 故所求的双曲线方程为 2212016x y -=. 【注意】不能由渐近线方程255y x =±直接得到5,25a b ==.想一想为什么?例5 已知双曲线的两个顶点坐标为(0,-4),(0,4)离心率为32,求双曲线的标准方程及其渐近线方程.。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.2.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为( )A.0B.1C.2D.3【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选A.【考点】直线的方程,双曲线的渐近线,3.已知抛物线()的焦点为双曲线()的一个焦点,经过两曲线交点的直线恰过点,则该双曲线的离心率为()A.B.C.D.【答案】B【解析】抛物线()的焦点,它也是双曲线()的一个焦点,所以有①,由两曲线交点的直线恰过点,可知它们在第一象限的交点为,此点也在双曲线上,故有②,由①②消去,得,即,即,因为,所以,选择B,求离心率的值关键是寻找到关于的等式,然后转化到的方程,从而解出.【考点】圆锥曲线的性质4.过双曲线的左焦点作圆的两条切线,切点分别为、,双曲线左顶点为,若,则该双曲线的离心率为( )A.B.C.3D.2【答案】D.【解析】如图,根据对称性,,∴为等边三角形,∴,∴.【考点】双曲线离心率的计算.5.已知双曲线的虚轴长是实轴长的2倍,则实数的值是( ) A.B.C.D.【答案】C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.【考点】双曲线的标准方程与简单几何性质.6.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】D【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C错.对于选项D:由外角平分线定理得:,故选D.【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.7.已知双曲线的一条渐近线方程为,则双曲线离心率=( ) A.B.C.D.【答案】A【解析】:∵双曲线的焦点在x轴上,∴渐近线方程为y=±,又∵渐近线方程为y=,∴∴∵,联立得:,化简得=.故选A【考点】双曲线的性质及其方程;渐近线方程;离心率8.已知双曲线的左右焦点分别是,过的直线与双曲线相交于、两点,则满足的直线有 ( )A.1条B.2条C.3条D.4条【答案】C【解析】由双曲线的标准方程可知点坐标为,过点斜率不存在的直线,即,与双曲线的交点,代入可求得为,则,又双曲线两顶点分别为,即实轴长为,结合图像,由双曲线的对称性知满足条件的直线还有两条.故共有三条直线满足条件.【考点】双曲线的几何性质.9.如果方程表示双曲线,那么实数的取值范围是()A.B.或C.D.或【答案】B【解析】由双曲线方程的标准形式可知,解得:或.【考点】本题考查双曲线标准方程的形式.10.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.【答案】存在双曲线的方程满足题中的两个条件.【解析】先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.试题解析:由(1)知,设双曲线为设在双曲线上,由双曲线焦点在轴上,,在双曲线上关于的二次函数的对称轴为即所以存在双曲线的方程满足题中的两个条件.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.11.设抛物线的焦点与双曲线的上焦点重合,则p的值为【答案】8【解析】因为抛物线的焦点为,双曲线的焦点为,所以【考点】抛物线及双曲线的焦点12.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.13.双曲线的焦距为A.B.C.D.【答案】D【解析】由条件知,∴,∴.【考点】双曲线的定义.14.已知双曲线的渐近线方程为,虚轴长为4,则该双曲线的标准方程是【答案】【解析】根据题意知,若焦点在轴上,则,∴,∴方程是:;若焦点在轴上,则,∴,∴方程为:.【考点】双曲线的应用.15. .设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设F(c,0),B(0,b),则直线FB的斜率是,相对应的渐近线的斜率为,由题可得∵,∴两边同除以ac得:即可解得离心率.【考点】双曲线的几何性质.16.若方程表示双曲线,则实数的取值范围是A.B.C.或D.以上答案均不对【答案】A【解析】解:,由方程表示双曲线,根据双曲线标准方程的特点,有解之得:,故选A.【考点】1双曲线的标准方程;2、一元二次不等式的解法.17.已知点是双曲线的两个焦点,过点的直线交双曲线的一支于两点,若为等边三角形,则双曲线的离心率为 .【答案】【解析】由双曲线的对称性可知为的中点,又因为为等边三角形,所以。
双曲线及其标准方程复习课
2
2
引申: 能将Ax2 By2 C化归到双曲线的标准方 程, 并指出a, b, c吗?
例2:求满足下列条件的双曲线的标准方程:
(1)焦点在x轴上, c 6 且经过点(-5,2); (2)过点 ( 15,4) 且与椭圆4x2+3y2=108有共同的焦点; (3)经过 P 两点. 1 ( 3,1), P 2 (2, 2 )
总结:求双曲线的标准方程:先定位再定量 ③当焦点所在的坐标轴不明确时,通常要进行分类讨论,有 时为了避免运算量过大,可设双曲线方程为mx2-ny2=1,然 后再根据条件确定m和n的值.
x2 y2 例3 : 设M是双曲线 1上一点, F1、F 2分别 4 5 为其左、 右焦点.
(1)若CD为过F1的弦,且|CD|=6,求△F2CD的周长; (2)若N是MF1的中点,且|ON|=3(O是坐标原点)及其标准方程 (复习课)
1、下列方程表示双曲线的是 思考:
.
A. x 2 y 2 6 x 9 x 2 y 2 6 x 9 6 B. x y 6 x 9 x y 6 x 9 4
2 2 2 2
C. x 2 y 2 6 x 9 x 2 y 2 6 x 9 8 D. x y 6 x 9 x y 6 x 9 8
变式1 : 一动圆与已知圆 O1 : ( x 3) 2 y 2 1外切,
2 与圆O2:(x 3) y 2 81外切切,试求动圆
圆心的轨迹方程 .
变式2:已知动圆M过定点A( 3, 0),并且与定 圆B: ( x 3) 2 y 2 64外切,求动圆圆心 M的轨 迹方程.
2 2 2 2
双曲线的定义:平面内与两个定点F1、F2的距离的差的 绝对值等于常数(小于|F1F2|)的点的轨迹叫双曲线. 问题:若焦点在y轴上,即F1(0,-3),F2(0,3),方程 形态又会是如何?
双曲线的标准方程
分析:依题意画出图形(如图)
直觉巨响点的位置情况.
只要能把巨响点满足的两个曲线 方程求出来 . 那么解方程组就可以确 定巨响点的位置.
P
yC
A
o
B
x
要求曲线的方程 , 恰当的建立坐 标系是一个关键.
解:如图,以接报中心为原点 O,正东、正北方向为 x 轴、y 轴正向,建立直角坐标系. 设 A、B、C 分别是西、东、北观测点, 则 A(-1020,0) ,B(1020,0) ,C(0,1020). 设 P(x,y)为巨响点, 由 A、C 同时听到巨响声,得|PA|=|PC|, 故 P 在 AC 的垂直平分线 PO 上,PO 的方程为 y =-x,
用 y=-x 代入上式,得 x 680 5 ,∵|PB|>|PA|, x 680 5, y 680 5, 即P(680 5,680 5), 故PO 680 10 答:巨响发生在接报中心的西偏北 450 距中心 680 10m 处.
9 若|PF1|=3,则|PF2|=_________
练习3:2y2-x2=2的焦点为 (0, 3) 、焦距是2 3 .
y2 x2 1 1 2
例1 已 知 两 定 点 F1 (5,0) , F2 (5,0) , 动 点 P 满 足
PF1 PF2 6 , 求动点 P 的轨迹方程.
F1
M
o
F2
思考:若2a=0,则轨迹是什么? 线段F1F2的垂直平分线
双曲线的标准方程
求曲线方程的步骤: 1. 建系.
y
M
以F1,F2所在的直线为x轴,线段 F1F2的中点为原点建立直角坐标系
2.设点. 设M(x , y),则F1(-c,0),F2(c,0) 3.列式
选择必修 第三章 3.2.1 双曲线及其标准方程 课件(共23张PPT)
又设||MF1|-|MF2||= 2a( a为大于0的常数, a<c).
由双曲线的定义,双曲线就是下列点的集合:
P={M|||MF1|-|MF2||=2a,0<a<|F1F2|}.
y
M
F1
O
F2 x
知新探究
y
设 M(x, y) 是双曲线上任意一点,双曲线的焦距为 2c( c >
拓展2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某
条曲线上,但不能确定爆炸点的准确位置. 而现实生活中为了安全,我们最关心的是
炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?
利用两个不同的观测点A, B测得同一点P发出信号的时间差, 可以确定点P所在
双曲线方程. 如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时
因为|PA|-|PB|=340×2=680>0,
所以点P的轨迹是双曲线的右支,因此x>340.
所以,炮弹爆炸点的轨迹方程为
2
115600
2
−
=1(x>340).
44400
P
A o
B x
知新探究
拓展1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?
提示: 爆炸点的轨迹是线段AB的垂直平分线.
思考:
1.与两定点的距离的差的绝对值等于常数(当2a=|F1F2|时)的轨迹是什么?
在直线F1F2上且 以F1、F2为端点向外的两条射线.
2.与两定点的距离的差的绝对值等于常数(当2a>|F1F2| )时的轨迹是什么?
不存在
3.当||MF1|-|MF2||=2a=0时的轨迹是什么?
双曲线及其标准方程
F1
A1 O
A2
F2
M
则|MF1|=|MF2| 此时点的轨迹是线段F1F2的垂直平 分线。
F1 M
F2
试说明在下列条件下动点M的轨迹各是什么图形? (F1、F2是两定点, |MF1|-|MF2| =2a, |F1F2| =2c (a,c为正常数)
当|MF1|-|MF2|=2a时,点M的轨迹 双曲线的右支 M 当|MF2F1 |-|MF1|=2a时,点M的轨迹 双曲线的左支 F2
y2 x 1的焦点且垂直于x轴的弦的长度 4. 过双曲线 3 4 8 3 为 . 3
2
练习
5.求适合下列条件的双曲线的标准方程.
(1)a 4
b3
(2)焦点(0,-6),(0,6),经过点(2,-5).
mx2 ny2 m nm 0 m n ,求它 6.已知方程
它表示的双曲线焦点在x轴上, 焦点为F1(-c,0),F2(c,0),且c2=a2+b2
o
F2
x
二、双曲线的标准方程:
M
y
y
o
y2 1 方程 a2 - b2 = (a>0,b>0) 叫做双曲线的标准方程 x2
它表示的双曲线焦点在x轴上, 焦点为F1(-c,0),F2(c,0),且c2=a2+b2
x
叫做双曲线。这两定点叫做双曲线的焦点,两
焦点的距离叫双曲线的焦距。
共性:
1、两者都是平面内动点到两定点的距离问题;
2、两者的定点都是焦点;
3、两者定点间的距离都是焦距。 区别: 椭圆是距离之和; 双曲线是距离之差的绝对值。
二、双曲线的标准方程:
3.2.1双曲线及其标准方程课件(人教版)(5)
四、双曲线与椭圆之间的区分与联系
定义
焦点在x
方 轴上 程 焦点在y
轴上
焦点
a, b, c 的关系
椭圆
|MF1|+|MF2|=2a (a>c)
x2 y2 a2 b2 1(a b 0)
y2 a2
x2 b2
1(a
b
0)
F1(-c, 0), F2(c, 0) F1(0, -c), F2(0, c)
(4)
若
方
程
y2 4
-
x2 m+1
=
1
表示双曲线,则实数
m
的取值范围是
__(-__1,__+_∞_)____.
归纳小结
1.会根据双曲线定义判断动点轨迹, 2.熟悉双曲线标准方程结构特点,会求双曲线标准方程 3.对照椭圆求焦点坐标,熟记a,b,c关系 4.利用双曲线定义求焦点三角形面积
:P书121练习1,2,3 :P书181习题A组
等式两边同除以a2 (c2
a2 ),得
x2 a2
y2 c2 a2
1
由c a,可得c2
a2
0,若设c2 a2
b2,则方程为
x2 a2
y2 b2
1(a
0, b
0)
我们把上述方程叫做双曲线的标准方程,它表示焦点在x轴上,焦点坐标分
别是F1(-c, 0), F2(c, 0)的双曲线,这里c2=a2+b2.
o A•
B• x
利用A, C( 或B, C) 两处测得的爆炸声的时间差 , 求爆炸点
所在的另一个双曲线的方程.
解这两个双曲线方程组成的方程组 , 就能确定爆炸点的准确位置 . 这是双曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[学业水平训练]
1.动点P 到点M (1,0)及点N (3,0)的距离之差为2,则点P 的轨迹是( )
A .双曲线
B .双曲线的一支
C .两条射线
D .一条射线
解析:选D.依题意|PM |-|PN |=2=|MN |,
所以点P 的轨迹不是双曲线,而是一条射线.
2.若方程x 210-k +y 2
5-k
=1表示双曲线,则k 的取值范围是( ) A .(5,10) B .(-∞,5)
C .(10,+∞)
D .(-∞,5)∪(10,+∞) 解析:选A.由题意得(10-k )(5-k )<0,解得5<k <10.
3.以椭圆x 23+y 24
=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )
A.x 23-y 2=1 B .y 2-x 23
=1 C.x 23-y 24=1 D.y 23-x 24
=1 解析:选B.椭圆x 23+y 24
=1的焦点为F 1(0,1),F 2(0,-1),长轴的端点A 1(0,2),A 2(0,-2),所以对于所求双曲线a =1,c =2,b 2=3,焦点在y 轴上,双曲线的方程为y 2-x 23
=1.
4.在方程mx 2-my 2=n 中,若mn <0,则方程表示的曲线是( )
A .焦点在x 轴上的椭圆
B .焦点在x 轴上的双曲线
C .焦点在y 轴上的椭圆
D .焦点在y 轴上的双曲线
解析:选D.将方程化为y 2-n m -x 2
-n m
=1. 5.若点M 在双曲线x 216-y 24
=1上,双曲线的焦点为F 1,F 2,且|MF 1|=3|MF 2|,则|MF 2|等于( )
A .2
B .4
C .8
D .12
解析:选B.双曲线中a 2=16,a =4,2a =8,由双曲线定义知||MF 1|-|MF 2||=8,又|MF 1|=3|MF 2|,所以3|MF 2|-|MF 2|=8,解得|MF 2|=4.
6.设m 是常数,若点F (0,5)是双曲线y 2m -x 29
=1的一个焦点,则m =________. 解析:由点F (0,5)可知该双曲线y 2m -x 29
=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.
答案:16
7.已知双曲线的焦点分别为(0,-2)、(0,2),且经过点P (-3,2),则双曲线的标准方程是________.
解析:由题知c =2,又点P 到(0,-2)和(0,2)的距离之差的绝对值为2a ,
2a =|(-3-0)2+[2-(-2)]2-(-3-0)2+(2-2)2|=2,∴a =1,∴b 2=c 2-a 2=3.又焦点在y 轴上,
∴双曲线的方程为y 2
-x 23
=1. 答案:y 2-x 23=1 8.在平面直角坐标系xOy 中,已知双曲线x 24-y 2
12
=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.
解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.
答案:4
9.求满足下列条件的双曲线的标准方程.
(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和(94
,5). (2)与双曲线x 216-y 2
4
=1有公共焦点,且过点(32,2). 解:(1)由已知,可设所求双曲线方程为y 2a 2-x 2
b 2=1(a >0,b >0),则⎩⎨⎧ 32a 2-9b 2=1,25a 2-8116b 2=1,
解得⎩⎪⎨⎪⎧
a 2=16,
b 2=9, 所以双曲线的方程为y 216-x 29
=1. (2)设双曲线方程为x 2a 2-y 2
b
2=1(a >0,b >0). 由题意知c =2 5. 因为双曲线过点(32,2), 所以(32)2a 2-4b
2=1. 又因为a 2+b 2=(25)2,
所以a 2=12,b 2=8.
故所求双曲线的方程为x 212-y 28=1. 10.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.
解:因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2
b
2=1(a >0,b >0),F 1(-c,0),F 2(c,0).
因为双曲线过点P (42,-3),
所以32a 2-9b
2=1.① 又因为点Q (0,5)与两焦点的连线互相垂直,
所以QF 1→·QF 2→=0,即-c 2+25=0.
解得c 2=25.②
又c 2=a 2+b 2,③
所以由①②③可解得a 2=16或a 2=50(舍去).所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. [高考水平训练] 1.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )
A.365
B.566
C.65
D.56
解析:选C.
不妨设点F 1(-3,0),
容易计算得出
|MF 1|=36=62
, |MF 2|-|MF 1|=2 6.
解得|MF 2|=52
6. 而|F 1F 2|=6,在直角三角形MF 1F 2中,
由12|MF 1|·|F 1F 2|=12
|MF 2|·d , 求得F 1到直线F 2M 的距离d 为65
. 2.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1→·PF 2→=
0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.
解析:由题意可设双曲线方程为
x 2a 2-y 2b 2
=1(a >0,b >0). 由PF 1→·PF 2→=0,得PF 1⊥PF 2.根据勾股定理得
|PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20.
根据双曲线定义有|PF 1|-|PF 2|=±2a .
两边平方并代入|PF 1|·|PF 2|=2得
20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1,
所以双曲线方程为x 24
-y 2=1. 答案:x 24
-y 2=1 3.设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.求C 的圆心轨迹L 的方程.
解:设两圆(x +5)2+y 2=4,(x -5)2+y 2=4的圆心分别为F 1(-5,0),F 2(5,0),两圆相离,
由题意得||CF 1|-|CF 2||=4<25=|F 1F 2|,
从而得动圆的圆心C 的轨迹是双曲线,
且a =2,c =5,所以b =(5)2-22=1,
所求轨迹L 的方程为x 24
-y 2=1.
4.如图,若F 1,F 2是双曲线x 29-y 2
16
=1的两个焦点. (1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;
(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.
解:双曲线的标准方程为x 29-y 216
=1, 故a =3,b =4,c =a 2+b 2=5.
(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.
故点M 到另一个焦点的距离为10或22.
(2)将||PF 2|-|PF 1||=2a =6,两边平方得
|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,
∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100.
在△F 1PF 2中,由余弦定理得
cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|2
2|PF 1|·|PF 2|
=100-1002|PF 1|·|PF 2|
=0, ∴∠F 1PF 2=90°,
∴S △F 1PF 2=12|PF 1|·|PF 2|=12
×32=16.。