人教版八年级上册13.4最短路径问题练习题

合集下载

人教版八年级上册13.4最短路径问题同步练习

人教版八年级上册13.4最短路径问题同步练习

13.4最短路径问题同步练习一、选择题1.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定2.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.3 B.4 C.5 D.63.如图,等腰三角形ABC的底边BC长为4,面积是18,腰AC的垂直平分线EF分别交AC,AB边于点E,F.D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为()A.10 B.11 C.12 D.134.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.85.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°6.如图,在直角坐标系中,点A、B的坐标分别为(1,5)和(4,0),点C是y轴上的一个动点,且A、B、C三点不再同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,1)B.(0,2)C.(0,3)D.(0,4)7.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30°B.15°C.20°D.35°8.如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是()A.30°B.45°C.60°D.90°二、填空题9.在平面直角坐标系中,已知A(1,1)B(2,3),C点在x轴上且BC﹣AC最大,则C点的坐标为.10.平面直角坐标系中,已知点A(﹣1,1)、B(﹣5,4),在y轴上确定点P,使得△APB的周长最小,则点P的坐标是.11.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,则BF+EF的最小值为.12.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(6,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为.13.如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值cm.三、解答题14.请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4﹣AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求的最小值.15.已知:如图所示,点P,Q分别代表两个小区,直线l代表临近小区的一条公路.点P 到直线l的距离为千米,两点P、Q所在直线与直线l的夹角为45°,两小区P、Q 之间的距离为1千米.根据居民出行的需要,计划在公路l上的某处设置一个公交车站.考虑到修路的费用问题,希望车站的位置到小区P和小区Q的距离之和m最短,请在公路l上画出车站的位置(用点M表示,保留画图痕迹,不写作法),并求出m的值.16.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?17.如图,在平面直角坐标系中,已知点A(2,3),点B(6,1)关于y轴对称的点分别是点C,点D.(1)请写出点C,点D的坐标;(2)在x轴上求作一点P,使PA+PB的值最小(保留作图痕迹,不要求写作法)并直接写出点P的坐标.18.如图,小区A与公路l的距离AC=200米,小区B与公路l的距离BD=400米,已知CD=800米,现要在公路旁建造一利民超市P,使P到A、B两小区的路程之和最短,超市应建在哪?(1)请在图中画出点P;(2)求CP的长度;(3)求PA+PB的最小值.19.在如图所示的平面直角坐标系中有下面各点:A(0,3),B(1,﹣2),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,﹣3),G(4,0).(1)写出与点C关于坐标轴对称的点;(2)连接CE,则直线CE与y轴是什么关系(直接写出结论)?(3)若点P是x轴上的一个动点,连接PD,PF,当PD+PF的值最小时,在图中标出点P的位置,并直接写出P点的坐标.。

人教版八年级数学上册测试题:13.4课题学习最短路径问题

人教版八年级数学上册测试题:13.4课题学习最短路径问题

人教版八年级数学上册测试题:13.4课题学习最短路径问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH 上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________.二、解答题2.已知,如图,在直线l的同侧有两点A,B.(1)在图1的直线上找一点P,使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长.3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小.4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD 上一动点,要使MB+MN最小,请找点M的位置.6.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数.7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点.(1)要使得△PEF的周长最小,试在图上确定点E、F的位置.(2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________.8.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.9.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.参考答案1.60°【详解】如图,因为点A关于GH的对称点是F,所以连接BF交GH于点P,则PA+PB=PF+PB=BF,所以PA+PB的最小值是BF.因为∠BAF=180°×(6-2)÷6=120°,AB=AF,所以∠AFB=30°.因为∠HGF=90°,所以∠GPF=60°.故答案为:60°.2.画图见解析.【解析】试题分析:(1)作B关于l的对称点B',连接AB′,线段AB′与l交于P,则P就是所求点.也可作A关于l的对称点A′;(2)直线AB与l交于P,则P就是所求点,试题解析:如图:(1)作点B关于直线l的对称点B′,连接AB′交直线l于点P.点P即为所求.(2)连接AB并延长,交直线l于点P.3.作图见解析.【解析】试题分析:根据轴对称的性质,作B关于CD的对称点B′,连接AB′,交CD于Q.试题解析:如图,作B关于CD的对称点B′,连接AB′,交格线CD于Q,此时QA+QB=QA+QB′=AB′,根据两点之间线段最短,得QA+QB最小.4.画图见解析.【解析】试题分析:过点A作河岸a的垂线AE,在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;连接A′B与河岸b相交于点C,即可确定桥的位置.试题解析:(1)过点A作河岸a的垂线AE;(2)在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;(3)连接A′B与河岸b相交于点C;(4)过点C作河岸b的垂线,交河岸a于点D.所以,CD就是桥所在的位置.5.作图见解析.【解析】试题分析:因为AD垂直平分BC,所以点C是点B关于AD的对称点,连接CN交AD于点M.试题解析:如图,连接NC与AD的交点为M点.点M即为所求.6.(1) 作图见解析. (2) 76°.【解析】试题分析:(1)分别作点P关于AC,BC的对称点D,G,连接DG交AC、BC于点M、N.(2)由四边形的内角和求∠D+∠G=∠C,由轴对称的性质可得,∠D=∠DPM,∠G=∠GPN,即可求解.试题解析:(1)①作出点P关于AC、BC的对称点D、G.②连接DG交AC、BC于点M、N.点M、N即为所求.(2)设PD交AC于E,PG交BC于F,∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°.∵∠C=52°,∴∠EPF=128°.∵∠D+∠G+∠EPF=180°,∴∠D+∠G=52°.由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=52°,∴∠MPN=128°-52°=76°.7.(1) 作图见解析. (2)30°【解析】试题分析:(1)分别作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F.(2)由轴对称的性质知OP=OC,OP=OD,且△PEF周长的最小值是CD,所以dqga4OCD 是等边三角形,而∠COD=2∠EOF,由此即可求解.试题解析:(1)如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.(2)根据轴对称的性质得,OC=OP=OD,∠COE=∠POE,∠DOF=∠POF,△PEF的周长的最小值=CD,因为OP=4,△PEF的周长的最小值为4,所以△OCD是等边三角形.因为∠COE=∠POE,∠DOF=∠POF,所以∠PEF=12∠COD=30°.8.∠AMN+∠ANM=120°.【解析】试题分析:根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.试题解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠DAB=120°,∴∠HAA′=60°.∴∠A′+∠A″=∠HAA′=60°.∵∠A′=∠MAA′,∠NAD=∠A″,且∠A′+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAD+∠A″=2(∠A′+∠A″)=2×60°=120°.点睛:本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.9.(1)见解析;(2)AM+AN=BM+BN.【解析】试题分析:(1)根据轴对称的性质,分别作点M,N关于OP,OQ的对称点M′,N′,连接MM′,NN′交OP,OQ于点A,B.(2)由轴对称的性质可知AM+AN=M′N,BM+BN=MN′,试题解析:(1)图略,点A,B即为所求.画法:①作点M关于射线OP的对称点M′;②连接M′N交OP于点A;③作点N关于射线OQ的对称点N′;④连接N′M交OQ于点B.(2)AM+AN=BM+BN.点睛:本题主要考查了轴对称的性质,“将军饮马”型的问题是中考常考的题型,如图,点A,B在直线l的同旁,在直线l求点P,使PA+PB最小.确定点P的位置的方法是,作点A 关于直线l的对称点A′,连接BA′交直线l于点P,则PA+PB的值最小.。

人教版八年级数学上册《13-4 课题学习 最短路径问题》作业同步练习题及参考答案

人教版八年级数学上册《13-4 课题学习 最短路径问题》作业同步练习题及参考答案

13.4 课题学习最短路径问题1.已知点A(-2,1),B(3,2),在x 轴上求一点P,使AP+BP 最小,下列作法正确的是( ).A.点P 与O(0,0)重合B.连接AB 并延长,交x 轴于点P,点P 即为所求C.过点A 作x 轴的垂线,垂足为P,点P 即为所求D.作点A 关于x 轴的对称点A',连接A'B,交x 轴于点P,点P 即为所求2.如图,OA,OB 分别是线段MC,MD 的垂直平分线,MD=5 cm,MC=7 cm,CD=10 cm,一只小蚂蚁从点M 出发爬到OA 边上任意一点E,再爬到OB 边上任意一点F,然后爬回点M 处,则小蚂蚁爬行的路径最短可为( ).A.12 cmB.10 cmC.7 cmD.5 cm3.如图,牧童在A 处放牛,其家在B 处,A,B 到河岸的距离分别为AC 和BD,且AC=BD,若点A 到河岸CD 的中点的距离为500 m,则牧童从A 处把牛牵到河边饮水再回家,所走的最短路程是m.4.如图,l 为河岸(视为直线),要想开一条沟将河里的水从A 处引到田地里去,应从河边l 的何处开口才能使水沟最短,找出开口处的位置并说明理由.5.如图,在四边形ABCD 中,∠C=50°,∠B=∠D=90°,E,F 分别是BC,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( ).A.50°B.60°C.70°D.80°6.如图,某公路(视为x 轴)的同一侧有A,B,C 三个村庄,要在公路边建一货栈(即在x 轴上找一点)D,向A,B,C 三个村庄运送农用物资,路线是:D→A→B→C→D(或D→C→B→A→D).试问在公路上是否存在D 使送货路程之和最短?若存在,请在图中画出D 所在的位置;若不存在,请说明理由.7.某中学八(2)班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO 桌面上摆满了橘子,BO 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后到D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.答案与解析夯基达标1.D2.B 当CD 与OA 的交点为E,与OB 的交点为F 时,路径最短.因为OA,OB 分别是线段MC,MD 的垂直平分线,所以ME=CE,MF=DF,所以小蚂蚁爬行的路径最短为CD=10 cm,故选B.3.1 0004.解过A 向直线l 作垂线段,与l 相交于B,从B 处开口可满足要求.图略.理由:垂线段最短. 培优促能5.D 作点A 关于BC 和CD 的对称点A',A″,连接A'A″,交BC 于点E,交CD 于点F,则A'A″即为△AEF 周长的最小值.作DA 的延长线AH.∵∠C=50°,∴∠DAB=130°.∴∠HAA'=50°.∴∠AA'E+∠A″=∠HAA'=50°.∵∠EA'A=∠EAA',∠FAD=∠A″,∴∠EAA'+∠A″AF=50°.∴∠EAF=130°-50°=80°.故选D.6.解存在D 使所走路线D→A→B→C→D 的路程之和最短.作法:(1)作点A 关于x 轴的对称点A';(2)连接A'C 交x 轴于D.则D(3,0)就是所要建货栈的位置,如图.创新应用7.解如图.作法:①作点C 关于OA 的对称点C1,点D 关于OB 的对称点D1;②连接C1D1,分别交OA,OB 于点P,Q,连接CP,DQ,小明沿C→P→Q→D 的路线行走时,所走的总路程最短.。

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。

人教版初中数学八年级上册《13.4 课题学习 最短路径问题》同步练习卷

人教版初中数学八年级上册《13.4 课题学习 最短路径问题》同步练习卷

人教新版八年级上学期《13.4 课题学习最短路径问题》同步练习卷一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.42.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.363.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.104.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.36.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值.三.解答题(共30小题)21.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.22.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB 的最小值.23.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,(1)求△ABC的面积;(2)如图②,BH为∠ABC的角平分线,点O为线段BH上的动点,点G为线段BC上的动点,请直接写出OC+OG的最小值.24.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.(1)求出AB的长.(2)求出△ABC的周长的最小值?25.已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD为AB边上的高.动点P从点A 出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.(1)求CD的长;(2)t为何值时,△ACP为等腰三角形?(3)若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小?如果有请求出最小值,如果没有请说明理由.26.如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为它设计一条最短的路线,标明放羊与饮水的位置.27.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.28.在如图所示的网格中,线段AB和直线l如图所示:(1)借助图中的网格,在图1中作锐角△ABC,满足以下要求:①C为格点(网格线交点);②AB=AC.(2)在(1)的基础上,请只用直尺(不含刻度)在图(1)中找一点P,使得P到AB、AC的距离相等,且P A=PB.(友情提醒:请别忘了标注字母!)(3)在图2中的直线l上找一点Q,使得△QAB的周长最小,并求出周长的最小值是.29.用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.30.如图,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.31.在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,求x=2时,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.(3)根据(2)中的结论,请构图求出代数式+的最小值.32.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C(3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标.33.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P 三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.34.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=3,BD=15,设BC=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C在什么位置时,AC+CE的值最小,求出这个最小值;(3)根据(2)中的规律和结论,作出图形并求出代数式+的最小值.35.如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.(1)证明:△ABC为等腰三角形;(2)点H在线段AC上,试求AH+BH+CH的最小值.36.如图所示,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值.37.已知:三点A(a,1)、B(3,1)、C(6,0),点A在正比例函数y=x的图象上.(1)求a的值;(2)点P为x轴上一动点.①当△OAP与△CBP周长的和取得最小值时,求点P的坐标;②当∠APB=20°时,求∠OAP+∠PBC的度数.38.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)试求AC+CE的最小值.39.如图,点A是半圆上的三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O的半径是1,问点P在直线MN上什么位置是(在图中标注),AP+BP的值最小?并求出最小值.40.如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED 的垂直平分线.(1)求证:DB=DC;(2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.41.如图,把两个全等的腰长为8的等腰直角三角形沿他们的斜边拼接得到四边形ABCD,N是斜边AC上一动点.(1)若E、F为AC的三等分点,求证:∠ADE=∠CBF;(2)若M是DC上一点,且DM=2,求DN+MN的最小值;(注:计算时可使用如下定理:在直角△ABC中,若∠C=90°,则AB2=AC2+BC2)(3)若点P在射线BC上,且NB=NP,求证:NP⊥ND.42.如图等腰梯形ABCD中,AD∥BC,AB=CD,其中AD=2,BC=5.(1)尺规作图,作等腰梯形ABCD的对称轴a;(2)在直线a上求作一点P,使PD+PC和最小;并求此时PD:PC的值.43.如右图,∠POQ=20°,A为OQ上的点,B为OP上的一点,且OA=1,OB=2,在OB上取点A1,在AQ上取点A2,设l=AA1+A1A2+A2B,求l的最小值.44.如图,在平面直角坐标系中,A,B两点的坐标分别为A(﹣2,0),B(8,0),以AB 为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.(1)求C,M两点的坐标;(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.45.如图,正方形ABCD边长为4,DE=1,M,N在BC上,且MN=2.求四边形AMNE 周长的最小值.46.如图,点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.47.如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?48.如图,已知点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,点P 是直径AB上的点.若⊙O的半径为1.(1)用尺规在图中作出点P,使MP+NP的值最小(保留作图痕迹,不写作法);(2)求MP+NP的最小值.49.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求P A+PB+PC的最小值.50.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?人教新版八年级上学期《13.4 课题学习最短路径问题》2019年同步练习卷参考答案与试题解析一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.4【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.【点评】本题考查轴对称﹣最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.2.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB 有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.3.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.10【分析】作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.【解答】解:作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.由对称的性质可知,∠ACP=∠ACE,∠PCB=∠BCF,CP=CE=CF=6,∵∠ACB=30°,∴∠ECF=60°,∴△CEF是等边三角形,∴EF=CE=6,∴△PMN的周长的最小值=PM+MN+PN=EM+MN+NF=EF=6,故选:B.【点评】本题考查轴对称﹣最短问题、等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.4.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+【分析】如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.【解答】解:如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.∴PH2=PB2﹣BH2=PQ2﹣HQ2,∴22﹣BH2=()2﹣(3﹣BH)2,解得BH=,∴PH2=4﹣2=2,∴PH=,∴PH=BH=,∴∠PBQ=45°,∵∠ABP=∠ABP′,∠CBQ=∠CBQ′,∴∠P′BQ′=2(∠ABC﹣∠PBQ)+∠PBQ=2∠ABC﹣∠PBQ=150°,作Q′K⊥P′B于K.在Rt△BKQ′中,∠KBQ′=30°,BQ′=BQ=3,∴KQ′=,BK=,在Rt△P′Q′K中,KP′=2+,KQ′=,∴P′Q′2=(2+)2+()2=22+6,∴(MP+MN+NQ)2P′Q′2=22+6.故选:C.【点评】本题考查轴对称最短问题、解直角三角形、勾股定理、直角三角形30度角的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,根据直角三角形解决问题,属于中考选择题中的压轴题.5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.3【分析】作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.想办法证明∠DAE=30°即可解决问题;【解答】解:作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.∵四边形ABCD是矩形,∴∠ADC=90°,∵DE⊥AC,AE=3CE,设EC=a,则AE=3a,∴∠AED=∠DEC=90°,∴a+3a=6,∴a=,∴EC=,AE=,∵∠DAE+∠ADE=90°,∠ADE+∠EDC=90°,∴∠DAE=∠EDC,∴△ADE∽△DCE,∴DE2=AE•EC,∴DE=,∴tan∠DAE==,∴∠DAE=30°,∵AD∥CB,∴∠DAE=∠ACB=∠BCM=30°,∴∠ACH=60°,∴AH=AC•sin60°=3,故选:D.【点评】本题考查轴对称﹣最短问题,矩形的性质,相似三角形的判定和和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.6.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.【分析】如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE 的值最小,最小值=CF的长.再利用相似三角形的性质求出CF即可.【解答】解:如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE的值最小,最小值=CF的长.取AB中点T,连接CT,作CH⊥AB于H.在Rt△ABC中,AB==4,∴CH==.CT=AB=2,∵TC=TB,∴∠TBC=∠TCB=∠ABG,∵∠ADC=∠TBC+∠TCB=2∠DBC,∠CBF=2∠DBC,∴∠CTH=∠CBF,∴sin∠CTH=sin∠CBF,∴=,∴=,∴CF=,故选:D.【点评】本题考查轴对称﹣最短问题、勾股定理、相似三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是10.【分析】作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,依据轴对称的性质,即可得到OM=OM'=6,∠NOM'=90°,再根据勾股定理即可得到PM+PN的最小值.【解答】解:如图,作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,∴PM+PN的最小值等于线段M'N的长,∵OM=OM',OP=OP,PM=PM',∴△OPM≌△OPM'(SSS),∴∠POM=∠POM'=45°,OM=OM'=6,∴∠NOM'=90°,∴Rt△NM'O中,M'N===10,∴PM+PN的最小值是10,故答案为:10.【点评】此题主要考查了利用轴对称求最短路径问题和勾股定理等知识,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=﹣.【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题;【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵P A=P A,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴P A=PG,∴P A+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.【点评】本题考查轴对称﹣最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题,属于中考常考题型.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【分析】首先由S△P AB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l 上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即P A+PB的最小值.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为【分析】作DM∥AC,使得DM=EF=1,连接BM交AC于F,由四边形DEFM是平行四边形,推出DE=FM,推出DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,由四边形ABCD是菱形,在Rt△BDM中,根据BM=计算即可.【解答】解:如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°∴AD=AB,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM==∴DE+BF的最小值为.故答案为.【点评】本题考查菱形的性质、平行四边形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会添加常用辅助线,把问题转化为两点之间线段最短解决,属于中考填空题中的压轴题.11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是2.【分析】如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.【解答】解:如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.PC+PD的最小值=PD+PC′=DC′,∵四边形ABCD是菱形,∠A=135°,∴∠B=∠CEG=45°,∠BCD=135°∵∠CGE=90°,CE=2,∴CG=GE=GC′=,∴∠GCE=45°,∠DCC′=90°,∴DC′==2,故答案为2.【点评】本题考查轴对称﹣最短问题,三角形的面积,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=﹣x+7,∴直线CC″的解析式为y=x﹣1,由解得,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,∴可得C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″==10.故答案为10.【点评】本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是8+4.【分析】本题首先要明确P点在何处,通过M关于AC的对称点M′,根据勾股定理就可求出MN的长,根据中位线的性质及三角函数分别求出AB、BC、AC的长,从而得到△ABC的周长.【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴=1,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=2,MN=2∴AC=4 ,AB=BC=2PM=2PN=4,∴△ABC的周长为:4+4+4 =8+4 .故答案为:8+4.【点评】本题考查等腰三角形的性质和轴对称及三角函数等知识的综合应用.正确确定P 点的位置是解题的关键.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短..【分析】(I)添加辅助线,构造相似三角形即可解决问题;(Ⅱ)作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ =PD+PQ′=DQ′最短;【解答】解:(I)作DF∥AB交BC于F,作CH⊥AB于H,交DF于G.∵DF∥AB,∴△CDF∽△CAB,∴=,∴=,∴CD=,故答案为.(Ⅱ)如图构造边长为5的菱形ABEC,作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.故答案为:作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.【点评】本题考查轴对称﹣最短问题,勾股定理、菱形的性质、垂线段最短就、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.【分析】作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.成本法求出E′H,CH,利用勾股定理即可解决问题;【解答】解:作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC 的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.∵DA平分∠CAB,DG⊥AB,DC⊥AC,∴DG=DC,∵AD=AD,∴Rt△ADG∽Rt△ADC,∴DG=DC=1,AG=AC=4,∵△BGD∽△BCA,∴==,∴==,∴x=,y=,∵E′H∥BC,∴==,∴E′H=,AH=,∴CH=4﹣=,∴PE+PC的最小值=CE′==.故答案为=.【点评】本题考查轴对称最短问题、角平分线的性质定理、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是2.【分析】如图,在x轴上取一点M(2,0),连接CM交y轴于N.首先证明△OBP∽△MBC,推出∠MBC=∠BOP=90°,推出点C在直线CN上运动,因为BC=PC,可得AC+ PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长;【解答】解:如图,在x轴上取一点M(2,0),连接CM交y轴于N.∵A(﹣2,0),B(0,2),M(2,0),∴OA=OB=OM=2,∴△OBM,△PBC都是等腰直角三角形,∴∠OBM=∠CBP=45°,∴∠OBP=∠MBC,∵==,∴△OBP∽△MBC,∴∠MBC=∠BOP=90°,∴点C在直线CN上运动,∵BC=PC,∴AC+PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长,∵A(﹣2,0),B′(4,﹣2),∴AB′==2,故答案为2.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为5;PD+4PC的最小值为10.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBE,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是【分析】构建如图坐标系,利用一次函数构建方程组求出点D、E坐标,作点E关于BC的对称点E′,连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长;【解答】解:根据如图坐标系:由题意:A(0,6),B(8,0),∴直线AB的解析式为y=﹣x+6,∵CD平分∠ACB,∴直线CD的解析式为y=x,由,解得,∴D(,),∵CE=DE,∴E(,),作点E关于BC的对称点E′(,﹣),连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长,∵DE′=,∴PD+PE的最小值为,故答案为.【点评】本题考查轴对称﹣最短问题、一次函数的应用等知识,解题的关键是学会构建平面直角坐标系,利用一次函数解决问题,属于中考常考题型.19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是+.【分析】BP=OQ=x.易知△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,求出直线E′F的解析式即可;【解答】解:设BP=OQ=x.∵四边形ABCD是正方形,BC=2,∴OB=OA=OD=OC=,∵BP=OQ,∴PQ=OB=,∴△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,∵E′(0,﹣),F(,),∴直线FE′的解析式为y=2x﹣,∴M(,0),∴x=时,∴△P AQ的周长最小,最小值=+.故答案为+.【点评】本题考查轴对称最短问题、正方形的性质、勾股定理、一次函数的应用等知识,解题的关键是学会利用转化的思想思考问题,属于中考填空题中的压轴题.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值2.【分析】如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.首先证明EK =CD,可得CD+BE=EK+EB≥BK,推出CD+BE的最小值为BK的长;【解答】解:如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.∵CK∥AB,∴∠KCE=∠A,∵CK=CA,CE=AD,∴△CKE≌△CAD,∴CD=KE,∵CD+BE=EK+EB≥BK,∴CD+BE的最小值为BK的长,在Rt△BCG中,∵∠G=90°,BC=8,∴CG=BC=4,BG=4,在Rt△KBG中,BK===2.故答案为2.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会构造全等三角形解决问题,属于中考填空题中的压轴题.三.解答题(共30小题)。

人教版八年级数学上册同步练习13.4 课题学习 最短路径问题(word版,含答案解析)

人教版八年级数学上册同步练习13.4 课题学习 最短路径问题(word版,含答案解析)

人教版八年级数学上册13.4 课题学习最短路径问题一、选择题(共16小题;共80分)1. 如图,直线是一条河,,是两个村庄.欲在上的某处修建一个水泵站,向,两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是A. B.C. D.2. 如图,四边形是直角梯形,,,点是腰上的一个动点,要使最小,则点应该满足A. B.C. D.3. 四边形中,,,在,上分别找一点,,使三角形周长最小时,则的度数为A. B. C. D.4. 如图,直线外存在不重合的两点,,在直线上求作一点,使得的长度最短,作法为:① 作点关于直线的对称点;②连接与直线相交于点,则点为所求作的点.在解决这个问题时没有运用到的知识或方法是A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角5. 如图,牧童在处放牛,其家在处,,到河岸的距离分别为和,且,若点到河岸的中点的距离为米,则牧童从处把牛牵到河边饮水再回家,最短距离是A. 米B. 米C. 米D. 米6. 如图,已知直线,且与之间的距离为,点到直线的距离为,点到直线的距离为,.试在直线上找一点,在直线上找一点,满足且的长度最短,则此时A. B. C. D.7. 如图,正的边长为,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是A. B. C. D.8. 如图,在中,,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是A. B. C. D.9. 如图,在四边形中,,,在,上分别找一点,,使的周长最小,此时,A. B. C. D.10. 如图,,内有一定点,且,在上有一动点,上有一动点.若周长最小,则最小周长是A. B. C. D.11. 如图,四边形中,,,,分别是,上的点,当的周长最小时,的度数为A. B. C. D.12. 如图,在中,,,面积是,的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为A. B. C. D.13. 如图,在中,,,,为上一点,且,平分交于.若是上的动点,则的最小值等于A. B. C. D.14. 如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁从外壁处到达内壁处的最短距离为A. C. D.15. 如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为A. B. C. D.16. 如图,,点是内任意一点,,点和点分别是射线和射线上的动点,若周长的最小值是,则的值是A. B. C. D.二、填空题(共5小题;共25分)17. 与的最小公倍数是.18. 如图,在中,是边的中点,过点作边的垂线,是上任意一点,且,,则的周长的最小值为.19. 如图,在中,,,的垂直平分线交于点,交于点,在直线上存在一点,使,,三点构成的的周长最小,则的周长最小值为.20. 已知,点在的内部,点是边上任意一点,点是边上任意一点,连接,,当的周长最小时,的度数为.21. 如图,是等腰直角三角形,,,为上的动点,则的最大值为.三、解答题(共3小题;共45分)22. 如图,已知直线及其同侧两点,,在直线上找一点,使得的长度最小.23. 如图,点,在的内部,为射线上的一个动点,为射线上的一个动点,求作点,,使得的长最短.作法:24. 如图,,两个小集镇在河流的同侧,分别到河的距离为千米,千米,且千米,现在要在河边建一自来水厂,向,两镇供水,铺设水管的费用为每千米万,请你在河流上选择水厂的位置,使铺设水管的费用最节省,并求出总费用是多少?答案第一部分1. D2. D 【解析】如图,作点关于的对称点,连接交于,连接.根据轴对称的性质,得,根据对顶角相等知,所以.3. C4. D5. B6. B7. A 【解析】如图所示.过点作的对称点,连接,与的延长线交于点 .此时,为最小值 .点在线段上,点在点处.的最小值为.8. B 【解析】如图连接,,,,,,,,,共线时,的值最小,最小值为的长度.9. D10. B【解析】设,则,作与相交于,并将延长一倍到,即,作与相交于,并将延长一倍到,即,连接与相交于,与相交于,再连接,,连接,,则即为周长最短的三角形,是的垂直平分线,;同理,是的垂直平分线,,的周长,,且,是等边三角形,,即在保持的条件下的最小周长为.11. D 【解析】作关于和的对称点,,连接,交于,交于,则即为的周长最小值.作延长线 .,...,,..12. C 【解析】连接.是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,13. D 【解析】如图,作点关于的对称点,连接交于,连接,此时的值最小,作于.,,,,,,,,,故选:D.14. D 【解析】如图:将杯子侧面展开,作关于的对称点,连接,则即为最短距离,.15. B【解析】分别作点关于,的对称点,,连接,分别交,于点,,如图所示:此时的周长取最小值.,,,,,,,.16. B第二部分17.18.19.【解析】如图,连接.,,的值最小时,的周长最小,垂直平分线段,,,的最小值为,的周长的最小值为.20.【解析】如图,过点作关于,的对称点,,连接,与,相交与点,,则此时的周长最小,为线段的长度;,,,,,,,,,,,解得:;故答案为:.21.第三部分22. 过点作直线的垂线,垂足为点,截取,连接,则与的交点就是点.23. 作点关于直线的对称点,作点关于直线的对称点交于,交于,则最短.24. 作关于的对称点,连接交于,点即为所求作的点,则可得:(千米),所以(千米),所以(千米),总费用为万元.。

人教版八年级数学上册13.4最短路径问题练习

人教版八年级数学上册13.4最短路径问题练习

新人教版八年级数学上册13.4 最短路径问题练习1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.以下列图,点A,B 分别是直线l 异侧的两个点,在l 上找一个点C,使CA +CB最短,这时点 C 是直线 l 与 AB 的交点.为了证明点 C 的地址即为所求,我们不如在直线上别的任取一点C′,连接 AC′,BC′,B′ C′,证明 AC+CB <AC′+ C′ B.以下:证明:由作图可知,点 B 和 B′关于直线l 对称,所以直线 l 是线段 BB′的垂直均分线.因为点 C 与 C′在直线 l 上,所以 BC =B′ C, BC′= B′ C′.在△ AB′ C′中, AB′< AC′+ B′ C′,所以 AC +B′ C< AC′+ B′ C′,所以 AC +BC<AC ′+ C′ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转变为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求依照轴对称的性质、利用三角形的三边关系,经过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注妄图形而忽略题意要求,审题不清以致答非所问.3.利用平移确定最短路径选址选址问题的要点是把各条线段转变到一条线段上.若是两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,若是两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,平时依照最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以经过平移河岸的方法使河的宽度变为零,转变为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们平时利用轴对称、平移等变换把不在一条直线上的两条线段转变到一条直线上,从而作出最短路径的方法来解决问题.【例 2】如图,小河边有两个农村A, B,要在河边建一自来水厂向 A 村与 B 村供水.( 1) 若要使厂部到A,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B 两村的水管最短,应建在什么地方?解析: (1)到 A,B 两点距离相等,可联想到“ 线段垂直均分线上的点到线段两端点的距离相等”,又要在河边,所以作AB 的垂直均分线,与EF 的交点即为吻合条件的点.(2)要使厂部到 A 村、 B 村的距离之和最短,可联想到“ 两点之间线段最短” ,作A(或B)点关于 EF 的对称点,连接对称点与 B 点,与 EF 的交点即为所求.解: (1)如图 1,取线段AB 的中点 G,过中点 G 画 AB 的垂线,交EF 于 P,则 P 到 A,1B 的距离相等.也可分别以A、 B 为圆心,以大于2AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点 P 即为所求.(2)如图 2,画出点 A 关于河岸 EF 的对称点 A′,连接 A′ B 交 EF 于 P ,则 P 到 A,B的距离和最短.【例 3】如图,从 A 地到 B 地经过一条小河( 河岸平行 ),今欲在河上建一座与两岸垂直的桥,应如何选择桥的地址才能使从 A 地到 B 地的行程最短?思路导引:从 A 到 B 要走的路线是A→ M→N→ B,如图所示,而MN 是定值,于是要使行程最短,只要 AM+ BN 最短即可.此时两线段应在同一平行方向上,平移从C 到 B 应是余下的行程,连接 BC 的线段即为最短的,此时不难说明点MN 到 AC,N 即为建桥地址,MN即为所建的桥.解: (1)如图 2,过点 A 作 AC 垂直于河岸,且使(2 )连接 BC 与河岸的一边交于点N.AC等于河宽.(3)过点 N 作河岸的垂线交另一条河岸于点M.则 MN 为所建的桥的地址.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转变在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段经过近似于镜面反射的方式转变为一条线段,如图,AO+ BO=AC 的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例 4】 ( 本质应用题 )茅坪民族中学八 (2)班举行文艺晚会,桌子摆成如图 a 所示两直排( 图中的 AO, BO), AO 桌面上摆满了橘子, OB 桌面上摆满了糖果,站在 C 处的学生小明先拿橘子再拿糖果,尔后到 D 处座位上,请你帮助他设计一条行走路线,使其所走的总行程最短?图 a图b解:如图b.(1)作 C 点关于 OA 的对称点 C1,作 D 点关于 OB 的对称点 D1, (2)连接 C1D 1,分别交OA,OB 于 P,Q,那么小明沿 C→P→ Q→ D 的路线行走,所走的总行程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的要点.先做出其中一点关于对称轴的对称点,尔后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.依照垂直均分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的要点运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例 5】以下列图,A,B两点在直线l 的两侧,在l 上找一点C,使点 C 到点A、 B的距离之差最大.解析:此题的打破点是作点A(或 B)关于直线 l 的对称点 A′ (或 B′ ),作直线 A′ B( AB′ )与直线 l 交于点 C,把问题转变为三角形任意两边之差小于第三边来解决.解:以下列图,以直线l 为对称轴,作点 A 关于直线l 的对称点A′,A′ B 的连线交l于点 C,则点 C 即为所求.原由:在直线 l 上任找一点 C′ (异于点 C),连接 CA ,C′ A,C′ A′,C′ B.因为点 A, A′关于直线 l 对称,所以 l 为线段 AA′的垂直均分线,则有 CA= CA′,所以CA-CB= CA′ - CB= A′ B.又因为点 C′在 l 上,所以 C′ A=C′ A′ .在△A′ BC′中,C′A- C′ B = C′ A′ - C′ B< A′ B,所以 C′ A′- C ′ B< CA- C B.点拨:依照轴对称的性质、利用三角形的三边关系,经过比较来说明最值问题是常用的一种方法.。

第13章13.4课题学习最短路径问题(课后作业)人教版数学八年级上册试题试卷含答案

第13章13.4课题学习最短路径问题(课后作业)人教版数学八年级上册试题试卷含答案

1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:基础版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.如图线段4AB =,P 是m 上的一个动点,m AB ,AB 与m 间的距离为1.5,PA PB +的最小值为__________.8.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.9.如图,点A 、B 是直线l 同侧的两点,请你在l 上求作一个点P ,使PA PB 最小.10.如图,要在街道旁修建一个牛奶站,向居民区A ,B 提供牛奶,牛奶站应建在什么地方,才能使A ,B 到它的距离之和最短?【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.C 4.B 5.D 6.D7.58.如图所示:9.作点A 关于l 的对称点A ',连接A B ',交l 与点P ,点P 就是所求.10.作点A 关于直线l 的对称点A ',连接A B '交直线l 于点M ,则点M即为所求点.1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:提升版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.(★)如图,ABC ∆是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD上的一个动点,当PC PE +最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒8.(★)如图,等边ABC ∆的周长为18,BD 为AC 边上的中线,动点P ,Q 分别在线段BC ,BD 上运动,连接CQ ,PQ ,当BP 长为__________时,线段CQ PQ +的和为最小.9.(★)如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为10AC =千米,30BD =千米,且30CD =千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?10.(★)如图,已知30AOB ∠=︒,P 为其内部一点,3OP =,M 、N 分别为OA 、OB 边上的一点,要使PMN ∆的周长最小,请给出确定点M 、N 位置的方法,并求出最小周长.【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.C 4.B 5.D 6.D7.(★)C 8.(★)39.(★)作A 关于CD 的对称点A ',连接A B '与CD ,交点CD 于M ,点M 即为所求作的点,则10DK A C AC ='==千米,40BK BD DK ∴=+=千米,50AM BM A B ∴+='==千米,总费用为503150⨯=万元.10.(★)作点P 关于OA 的对称点1P ,点P 关于OB 的对称点2P ,连接12PP ,与OA 的交点即为点M ,与OB 的交点即为点N ,PMN ∆的最小周长为1212PM MN PN PM MN P N PP ++=++=,即为线段12PP 的长,连接1OP 、2OP ,则123OP OP ==,又12260POP AOB ∠=∠=︒ ,∴△12OPP 是等边三角形,1213PP OP ∴==,即PMN ∆的周长的最小值是3.1.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5 km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1 km 处B .距C 点2km 处C .距C 点3 km 处D .CD 的中点处2.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A.B .1200m C .1300m D .1700m3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .12课后作业:培优版题量: 10题 时间: 20min13.4最短路径问题4.如图,在ABC ∆中,AB AC =,AD 、CE 是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( )A .BCB .CEC .AD D .AC 5.如图,正方形ABCD 的边长为8,点M 在边DC 上,且2DM =,点N 是边AC 上一动点,则线段DN MN +的最小值为( )A .8B.C.D .106.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m,)(m为非负数),则CA CB +的最小值是( )A .2B .4C .6D.7.(★★)如图,点P 是AOB ∠内任意一点,5cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,PMN ∆周长的最小值是5 cm ,则AOB ∠的度数是( )A .25︒B .30︒C .35︒D .40︒8.(★★)如图,30AOB ∠=︒,M ,N 分别是边OA ,OB 上的定点,P ,Q 分别是边OB ,OA 上的动点, 记OPM α∠=,OQN β∠=,当MP PQ QN ++最小时,则关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒9.(★★)已知:如图所示,(3,2)M ,(1,1)N -.点P 在y 轴上使PM PN +最短,求P 点坐标.10.(★★)如图,在ABC ∆的一边AB 上有一点P .(1)能否在另外两边AC 和BC 上各找一点M 、N ,使得PMN ∆的周长最短?若能,请画出点M 、N 的位置,若不能,请说明理由;(2)若52ACB ∠=︒,在(1)的条件下,求出MPN ∠的度数.【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清思路不清 计算错误 粗心大意【正确解答】1.B2.C3.C4.B5.D6.D7.(★★)B8.(★★)B9.(★★)根据题意画出图形,找出点N 关于y 轴的对称点N ',连接MN ',与y 轴交点为所求的点P ,(1,1)N - ,(1,1)N ∴'--,设直线MN '的解析式为y kx b =+,把(3,2)M ,(1,1)N '--代入得:321k b k b +=⎧⎨-+=-⎩,解得3414k b ⎧=⎪⎪⎨⎪=-⎪⎩,所以3144y x =-,令0x =,求得14y =-,则点P 坐标为1(0,)4-.10.(★★)(1)①作出点P 关于AC 、BC 的对称点D 、G ,②连接DG 交AC 、BC 于两点,③标注字母M 、N ;(2)PD AC ⊥ ,PG BC ⊥,90PEC PFC ∴∠=∠=︒,180C EPF ∴∠+∠=︒,52C ∠=︒ ,128EPF ∴∠=︒,180D G EPF ∠+∠+∠=︒ ,52D G ∴∠+∠=︒,由对称可知:G GPN ∠=∠,D DPM ∠=∠,52GPN DPM ∴∠+∠=︒,1285276MPN ∴∠=︒-︒=︒.。

人教版八年级数学13.4最短路径问题(包含答案)

人教版八年级数学13.4最短路径问题(包含答案)

13.4最短路径问题知识要点:1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.一、单选题1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在()A.在A的左侧B.在AB之间C.在BC之间D.B处【答案】D2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在()A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.【答案】D4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是()A.30° B.36° C.50° D.60°【答案】A5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4 C.4.8D.5【答案】C6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()A.70°B.60°C.80°D.65°【答案】A7.如图所示,在Rt△ABC中,△ACB=90°,△B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是()A.13 cm B.6.5 cmC.30 cm D.cm【答案】B8.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C9.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.125B.4 C.245D.510.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D11.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短..的是()二、填空题12在平面直角坐标系中,已知点A(0,2)、B(4,1),点P在轴上,则PA+PB的最小值是______________。

数学人教版八年级上册13.4最短路径 课堂练习

数学人教版八年级上册13.4最短路径 课堂练习

任务单
班号姓名
问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
问题2 你能将这个问题抽象为数学问题吗?
练习1如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
练习2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。


课堂小结:
(1)本节课研究问题的基本过程是什么?
(2)轴对称在所研究问题中起什么作用?。

人教版八年级上册数学 13

人教版八年级上册数学  13

人教版八年级上册数学13.4 课题学习最短路径问题专项训练一.选择题1. 如图,在△ABC中,AB=AC,BC=8,面积是20,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.8 B.9 C.10 D.122. 如图,∠AOB=50°,点P为∠AOB内一点,点M、N分别在OA、OB上,当△PMN的周长最小时,∠MPN 的度数是()A.50°B.65°C.80°D.130°3. 如图,在△ABC中,AC=BC=10,∠ACB=4∠A,BD平分∠ABC交AC于点D,点E,F分别是线段BD,BC上的动点,则CE+EF的最小值是()A.2 B.4 C.5 D.64. 如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2 B.4 C.6 D.85. 如图,在平面直角坐标系中,点A(5,2),点B(0,3),点P是x轴上一个动点,且点A,B,P不在同一条直线上,当△ABP的周长最小时,点P的坐标为()A.(2,0)B.(2.5,0)C.(3,0)D.(1.5,0)6. 如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是()A.α﹣β=2x B.2β+α=90°+2x C.β+α=90°+x D.β+2α=180°﹣2x7. 在Rt△ABC中,∠C=90°,∠A=30°,点P是边AC上一定点,此时分别在边AB,BC上存在点M,N使得△PMN周长最小且为等腰三角形,则此时的值为()A.B.1 C.D.28. 如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是()A.6 B.7 C.8 D.99. 如图,在学习了轴对称后,琪琪在课外研究三角板时发现“两块完全相同的含有30°的三角板可以拼成一个等边三角形”,请你帮他解决以下问题:在直角△ABC中,∠ACB=90°,∠A=30°,AC=6,BC=,点E,P分别在斜边AB和直角边AC上,则EP+BP的最小值是()A.B.4 C.6 D.10.如图,点A,B在直线l的同侧,在直线l上找一点P,使PA+PB最小,则下列图形正确的是()A. B. C. D.二.填空题11. 如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1),若P是y 轴上的动点,则PA+PC的最小值为.12. 如图,在△ABC中,∠ABC=90°,AB=12,BC=5,AC=13,点M、N分别是AB、AC上的动点,连接CM、MN,则CM+MN的最小值为.13. 如图,在△ABC中,∠B=60°,BC=12.点M在BC边上,且MC=BC,射线CD⊥BC于点C,点P 是射线CD上一动点,点N是线段AB上一动点.(Ⅰ)线段MP+NP是否存在最小值?(用“是”或“否”填空)(Ⅱ)如果线段MP+NP存在最小值,请直接写出BN的长;如果不存在,请说明理由.14. 如图所示,在平面直角坐标系中A(﹣2,4),B(﹣4,2).在y轴找一点P,使得△ABP的周长最小,则△ABP周长最小值为.15. 如图,海上救援船要从A处到海岸l上的M处携带救援设备,再回到海上C处对故障船实施救援,使得行驶的总路程AM+CM为最小.已知救援船和故障船到海岸l的最短路径分别为AB和CD,BD=20海里,∠AMB=60°,救援船的平均速度是25节(1节=1海里/小时),则这艘救援船从A处最快到达故障船所在C处的时间为小时.三.解答题16. 如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)在x轴上找一点P,使得PA+PB的值最小,并求最小值.17. 如图,直线a∥b,点A,点D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=12cm,AE:BE=1:2,P为射线AB上一动点,P从A点开始沿射线AB方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m为何值时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.18. 如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:CE=BE.(2)若AB=15cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.19. 如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.20.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.。

人教版八年级上册数学《课题学习 最短路径问题》训练

人教版八年级上册数学《课题学习 最短路径问题》训练

《13.4课题学习—最短路径问题》达标测评(附答案)一.选择题(共15小题,满分45分)1.如图,在△ABC中,AB的垂直平分线EF分别交AB、AC边于点E、F,点K为EF上一动点,则BK+CK的最小值是以下哪条线段的长度()A.EF B.AB C.AC D.BC2.如图,在五边形ABCDE中,∠BAE=152°,∠B=∠E=90°,AB=BC,AE=DE.在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.55°B.56°C.57°D.58°3.如图,∠AOB=60°,点P为∠AOB内一点,点M、N分别在OA、OB上,当△PMN周长最小时,∠MPN的度数是()A.120°B.60°C.30°D.90°4.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°5.如图,点A,B在直线l的同侧,在直线l上找一点P,使P A+PB最小,则下列图形正确的是()A.B.C.D.6.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC 上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.47.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB 最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.8.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.89.如图,四边形ABCD中,∠A=∠C=90°,点M、N分别是BC、AB边上的动点,∠B =56°,当△DMN的周长最小值时,则∠MDN的度数是()A.124°B.68°C.60°D.56°10.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ 与QN的和最小,那么下面的操作正确的是()A.B.C.D.11.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC 边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.50°B.60°C.70°D.80°12.如图,等腰三角形ABC的底边BC为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.1413.如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.14.如图,在△ABC中,AB=AC,BC=4,△ABC的面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.6B.8C.10D.1215.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.A点处B.D点处C.AD的中点处D.△ABC三条高的交点处二.填空题(共6小题,满分30分)16.等腰三角形ABC的底边BC长为6,面积是21,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是.18.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.19.如图,在△ABC中,AB=AC,BC=5,△ABC的面积为20.DE垂直平分AC,分别交边AB,AC于点D,E,点F为直线DE上一动点,点G为BC的中点,连接FG,FC,则△FGC的周长的最小值为.20.如图,在△ABC中,AB=AC=8,AD、CE分别是△ABC的两条中线,CE=6,P是AD 上一动点,则BP+EP的最小值是.21.如图,等腰三角形ABC的底边BC长为2,面积是4,腰AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值是.三.解答题(共5小题,满分45分)22.已知:M、N分别是∠AOB的边OA、OB上的定点,(1)如图1,若∠O=∠OMN,过M作射线MD∥OB(如图),点C是射线MD上一动点,∠MNC的平分线NE交射线OA于E点.试探究∠MEN与∠MCN的数量关系;(2)如图2,若P是线段ON上一动点,Q是射线MA上一动点.∠AOB=20°,当MP+PQ+QN取得最小值时,求∠OPM+∠OQN的值.23.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.24.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小;(3)四边形BCC1B1的面积为.25.作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.26.在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD=12,试求PC+PE的最小值.参考答案一.选择题(共15小题,满分45分)1.解:连接AK,∵EF是线段AB的垂直平分线,∴AK=BK,∴BK+CK=AK+CK,∴AK+CK的最小值=BK+CK的最小值,∵AK+CK≥AC,∴当AK+CK=AC时,AK+CK的值最小,即BK+CK的值最小,∴BK+CK的最小值是线段AC的长度,故选:C.2.解:如图,延长AB至A′,使A′B=AB,延长AE至A″,使A″E=AE,则BC垂直平分AA′,DE垂直平分AA″,∴AM=A′M,AN=A″N,根据两点之间,线段最短,当A′,M,N,A″四点在一条直线时,A′M+MN+NA″最小,则AM+MN+AN的值最小,即△AMN的周长最小,∵AM=A′M,AN=A″N,∴可设∠MAA′=∠MA′A=x,∠NAA″=∠NA″A=y,在△AA′A″中,x+y=180°﹣∠BAE=180°﹣152°=28°,∵∠AMN=∠MAA′+∠MA′A=2x,∠ANM=2y,∴∠AMN+∠ANM=2x+2y=56°,故选:B.3.解:分别作点P关于OA、OB的对称点P1、P2,连接P1、P2交OA于M,交OB于N,∴OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质可得MP=P1M,PN=P2N,∴△PMN的周长的最小值=P1P2,由轴对称的性质可得∠P1OP2=2∠AOB,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=180°﹣2∠P1OP2,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=∠OP1P2+∠OP2P1=180°﹣2∠P1OP2=60°,故选:B.4.解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣32°)=32°,∴∠ADE′+∠CDF′=∠P+∠Q=32°,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣64°=116°.故选:D.5.解:∵点A,B在直线l的同侧,∴作A点关于l的对称点A',连接A'B与l的交点为P,由对称性可知AP=A'P,∴P A+PB=P A′+PB=A′B为最小,故选:B.6.解:作AH⊥OB于H,交OC于P,作PQ⊥OA于Q,∵∠OAB=∠AOB=15°,∴PH=PQ,∴P A+PQ=P A+PH=AH,∴P A+PQ的最小值为AH,在Rt△ABH中,∵OB=AB=6,∠ABH=30°,∴AH=AB=3,∴P A+PQ的最小值为3,故选:C.7.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连接IB 交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.8.解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∵AB=3,AC=4,∴△ABP周长的最小值是AB+AC=3+4=7.故选:C.9.解:延长DA到E使DA=AE,延长DC到F,使CF=DC,连接EF交AB于N,交BC 于M,此时,△DMN的周长最小,∵AB⊥AD,BC⊥DC,∴∠DAB=∠DCB=90°,DM=FM,DN=EN,∴∠E=∠ADN,∠F=∠CDM,∵∠B=56°,∴∠ADC=124°,设∠MDN=α,∴∠ADN+∠CDM=124°﹣α∴∠DNM+∠DMN=2(124°﹣α),∴α+2(124°﹣α)=180°,解得:α=68°,故选:B.10.解:先作点M关于直线l的对称点M′,再连接M′N交l于点Q,则MQ+NQ=M′Q+NQ=M′N,由“两点之间,线段最短”可知,点Q即为所求的点,故选:D.11.解:作点P关于AC,BC的对称点D,G,连接PD,PG分别交AC,BC于E,F,连接DG交AC于M,交BC于N,连接PM,PN.此时△PMN的周长最小.∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∴∠EPF=130°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,故选:D.12.解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=24,解得AD=12,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=12+×4=14.故选:D.13.解:分别作点P关于∠O的两边的对称点P1,P2,连接P1P2交∠O的两边于A,B,连接P A,PB,此时△P AB的周长最小.故选:D.14.解:连接AD,AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴MA=MC,∵AD≤AM+MD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.15.解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、E、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,即也是△ABC的三条高的交点,故选:D.二.填空题(共6小题,满分30分)16.解:如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=•BC•AD=×6×AD=21,∴AD=7,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短为AD+BD=AD+BC=10,故答案为:10.17.解:分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故答案为30°.18.解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故答案为10.19.解:∵DE是AC的垂直平分线,∴A与C关于DE对称,连接AG,CF,∴GF+FC=AF+FG=AG,此时FC+FG最短,∵AB=AC,点G为BC的中点,∴AG⊥BC,∵BC=5,△ABC的面积为20,∴AG=8,∴△FGC的周长=FC+FG+GC=AG+CG=8+=,∴△FGC的周长的最小值为,故答案为.20.解:作E关于AD的对称点E',连接BE',∵AB=AC=8,AD是BC边中线,CE是AB边中线,∴E'在AC边上,且是AC边的中点,∴BP+PE=BP+PE=BE',此时BP+EP的值最小,∵△BAC是等腰三角形,∴BE'=CE,∵CE=6,∴BP+EP的最小值为6,故答案为6.21.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×2×AD=4,解得AD=4,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM周长的最小值=(CM+MD)+CD=AD+BC=4+×2=4+1=5.故答案为:5.三.解答题(共5小题,满分45分)22.解:(1)设∠O=∠OMN=α,∴∠MNB=2α,∵MD∥OB,∴∠AMD=α,∵NE平分∠MNC,∴∠MNE=∠ENC,设∠MNE=β,∴∠CNB=2α﹣2β,∵MD∥OB,∴∠MCN=2α﹣2β,∴∠EMC+∠MEN=∠ENC+∠MCN,∴β+2α﹣2β=α+∠MEN,∴∠MEN=α﹣β,∴2∠MEN=∠MCN;(2)作M点关于OB的对称点M',N点关于OA的对称点N',连接M'N'与OB、OA分别交于点P、点Q,连接ON'、OM',∴MP+PQ+QN=M'N',此时MP+PQ+QN的值最小,由对称性可知,∠OQN'=∠OQN,∠OPM'=∠OPM,∴∠OPM'=∠AOB+∠OQP=∠AOB+(180°﹣∠OQN'),∵∠AOB=20°,∴∠OM'P=200°﹣∠OQN',∴∠OPM+∠OQN=200°.23.解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,则AP=AP',BP=BP“,此时△P AB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.24.解:(1)如图所示:;(2)如图所示:;(3)∵每小格均为边长是1的正方形,∴CC1=4+4=8,BB1=2+2=4,BB1和CC1之间的距离为2,∴四边形BCC1B1的面积为×(8+4)×2=12,故答案为:12.25.解:作图如右图:牛奶站应建在C点,才能使A、B到它的距离之和最短.26.解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.。

八年级初二上册数学 人教版《课题学习 最短路径问题》 练习试题 测试卷(含答案)(1)

八年级初二上册数学 人教版《课题学习 最短路径问题》 练习试题 测试卷(含答案)(1)

《13.4课题学习最短路径问题》课时练一、选择题1.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=()A.60°B.70°C.80°D.90°2.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°3.如下图是一个的正方形,现要在中轴线上找一点,使最小,则的位置应选在()点处.A.P B.Q C.R D.S4.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°5.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.86.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°7.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠28.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP 与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:89.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为( )A.10cm B.15cm C.20cm D.40cm 二、填空题11.如图,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED=.12.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.13.如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC= .14.如图,在△ABC中,AB=3,AC=4,AB⊥AC,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是.15.如图,△ABC中,AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为__________.16.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC最小值为.三、作图题17.要在河边修建一个水泵站,分别向张村、李庄送水(如图).修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由.18.如图,已知点A,B(3,﹣2)在平面直角坐标系中,按要求完成下列个小题.(1)写出与点A关于y轴对称的点C的坐标,并在图中描出点C;(2)在(1)的基础上,点B,C表示的是两个村庄,直线a表示河流,现要在河流a上的某点M处修建一个水泵站,向B、C两个村庄供水,并且使得管道BM+CM的长度最短,请你在图中画出水泵站M的位置.19.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.20.如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC关于直线DE的对称的△A1B1C1;(2)在DE上画出点P,使PA+PC最小;(3)在DE上画出点Q,使QA﹣QB最大.四、解答题21.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.参考答案1.D 2.D 3.B 4.D 5.D 6.C 7.A 8.A 9.B 10.C 11.74°.12.30°.13.2α.14.7.15.6.16.;17.解:先作点B关于河岸的对称点,然后连接此对称点与点A,交河岸于点P,点P即为所求.18.解:(1)写出与点A关于y轴对称的点C的坐标(﹣2,1),点C位置如图所示.(2)①作点B关于直线a的对称点B′,②连接CB′与直线a的交点为M.点M就是所求的点.(理由是两点之间线段最短)19.解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.20.解:(1)如图,△A1B1C1即为所求;(2)如图,连接A1C交DE于点P,点P即为所求;(3)延长AB交DE于点Q,点Q即为所求.21.解:(1)如图1,作C关于直线AB的对称点C′,连接C′D交AB于点P.则点P就是所要求作的点.理由:在l上取不同于P的点P′,连接CP′、DP′.∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.。

人教版数学八年级上册 13.4 最短路径问题 同步习题

人教版数学八年级上册 13.4 最短路径问题 同步习题

13.4 最短路径问题同步习题一、选择题1.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C. D.2.如图,已知∠O ,点P 为其内一定点,分别在∠O 的两边上找点A 、B ,使△ PAB 周长最小的是()A. .B.C. D.3.如图,等边ΔABC的边长为8,AD是BC边上的中线,E是AD边上的动点,F是AB边上一点,若BF=4,当BE+EF取得最小值时,则∠EBC的度数为()A. 15∘B. 25∘C. 30∘D. 45∘4.如图,正ΔABC的边长为2,过点B的直线l⊥AB,且ΔABC与ΔA′B′C′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )A. 3B. 4C. 5D. 65.如图所示,在等边△ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A. △ABC的重心处B. AD的中点处C. A点处D. D点处6.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A. 3B. 6C. 5D. 47.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A. 40°B. 100°C. 140°D. 50°8.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN 周长取最小值时,则∠MPN的度数为()A. 140°B. 100°C. 50°D. 40°9.如图,∠AOB=30º,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若ΔPQR 周长最小,则最小周长是()A. 10 ∠ABD=∠ACEB. 10√2C. 20D. 20√210.如图,四边形ABCD中,∠BAD=120° , ∠B=∠D=90°,在BC、CD上分别找一点M、N,使ΔAMN周长最小时,则∠AMN+∠ANM的度数为()A. 130°B. 110°C. 120°D. 125°二、填空题11.如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则PA+PE的最小值是________.12.如图,等边△ABC的边长为2,过点B的直线l⊥AB且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是________.13.在直角坐标系中,点A(-1,1),点B(3,2),P是x轴上的一点,则PA+PB的最小值是________ 。

八年级数学上册 第十三章 轴对称 13.4 最短路径问题同步练习(含解析)(新版)新人教版-(新版)

八年级数学上册 第十三章 轴对称 13.4 最短路径问题同步练习(含解析)(新版)新人教版-(新版)

第十三章轴对称13.4 最短路径问题(练习)一、单选题(共10小题)1.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300-m)+10(900-m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600-n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.【点睛】考查了比较线段的长短,此题为数学知识的应用,考查知识点为两点之间线段最短.2.已知村庄A和B分别在一条河的两岸,现要在河上造一座桥MN(假定河的两岸彼此平行,且桥与河岸互相垂直),下列示意图中,桥的建造位置能使从村庄A经桥过河到村庄B的路程最短的是( )A.B.C.D.【答案】C【解析】如图作AI∥MN,且AI=MN,连接BI,由两点之间线段最短可知此时从A点到B点的距离最短,所以AM∥BN.【详解】解:如图,作AI∥MN,且AI=MN,连接BI,∴四边形AMNI为平行四边形,∴AM∥BN,此时从A点到B点距离最短.故选:C.【点睛】本题主要考查了最短路径的问题,运用到了两点之间线段最短,平行四边形等知识点,解此题的关键在于熟练掌握其知识点.3.某公司员工分别住在A、B、C、D四个住宅区,A区有20人,B区有15人,C区有5人,D区有30人,四个区在同一条直线上,位置如图所示.该公司的接送车打算在此间设立一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设置在()A.D区 B.A区 C.AB两区之间 D.BC两区之间【答案】D【解析】根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可解答.【详解】解:∵当停靠点在D区时,所有员工步行到停靠点路程和是:20×800+15×400+5×200=23000m;当停靠点在A区时,所有员工步行到停靠点路程和是:15×400+5×600+30×800=33000m;当停靠点在AB两区之间时,设距离B区x米,所有员工步行到停靠点路程和是:20×(400-x)+15x+5×(200+x)+30×(400+x)=(30x+21000)m;当停靠点在BC两区之间时,设距离B区x米,所有员工步行到停靠点路程和是:20×(400+x)+15x+5×(200-x)+30×(400-x)=21000m.∴当停靠点在BC两区之间时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在BC两区之间.故选:D.【点睛】此题考查了比较线段的长短,正确理解题意是解题的关键.要能把线段的概念在现实中进行应用.4.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C【解析】认真分析图形,要求点A到点F的最短路线,其中AB,EF的线路是固定的,则需要确定点B到点E之间的最短路线,由两点之间,线段最短可得,点B到点E之间BE最短.【详解】解:由图中可以看出,从点A到点F,AB,EF是必须经过的路线,点B到点E的路线中BE最短,所以点A到点F的最短路线为A→B→E→F,故答案选C.【点睛】本题主要考查了线段的性质,根据两点之间线段最短确定出点A到点F的最短路线是解题的关键.5.如图,从A地到B地有①、②、③三条路线,每条路线的长度分别为l、m、n,则()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【答案】C【解析】分析:根据两点间直线距离最短,认真观察图形,可知①③都是相当于走直角线,故①③相等,②走的是直线,最短.详解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l=n>m.故选:C.点睛:本题考查了生活中的平移现象,要求学生充分利用两点间线段距离最近.6.如图,直线l表示一条河,点A,B表示两个村庄,想在直线l的某点P处修建一个向A,B供水的水站,现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设管道一定最短的是( )A.B.C.D.【答案】A【解析】依据轴对称的性质,通过等线段代换,将所求路线长转化为两点之间的距离即可.【详解】解:作点A关于直线l的对称点A′,连接BA′交直线l于P.根据两点之间,线段最短,可知选项A铺设的管道最短.故选:A.【点睛】本题考查了最短路线问题,这类问题的解答依据是“两点之间,线段最短”.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.7.下列命题是真命题的是()A.两点之间的距离是这两点间的线段B.墙上固定一根木条,至少需要两根钉子,其依据是“两点之间,线段最短”C.同一平面内,两条直线的位置关系有平行、相交和垂直三种D.同平面内,过一点有且只有一条直线与已知直线垂直【答案】D【解析】根据两点间的距离的定义、垂线的性质即可作出判断.【详解】A、两点之间的距离是这两点间的线段的长度,故错误;B、墙上固定一根木条,至少需要两根钉子,其依据是“两点可以确定一条直线”,故错误;C、同一平面内,两条直线的位置关系有平行、相交两种,故错误;D、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确.故选:D.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2017·某某市临淄区皇城镇第二中学初一期中)小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点有且只有一条直线D.两点之间线段最短【答案】D【解析】试题解析:由图可知,剪掉一部分,相当于用一条线段取代了连接原来两点之间的曲线.根据线段公理:两点之间,线段最短,所以剩下树叶的周长比原树叶的周长要小.故本题应选D.点睛:直线公理是指两点确定一条直线,而线段公理是指两点之间线段最短,我们要清楚这两者的区别. 9.(2017·某某市临淄区皇城镇第二中学初一期中)下列说法正确的是()A.两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点 D.两点之间的线段叫做这两点之间的距离【答案】B【解析】A中,两点之间线段最短,故A错误;B中,若P是线段AB的中点,则点P到A、B的距离相等,即AP=BP,故B正确;C中,若AP=BP,点P不一定是线段AB的中点,如,故C错误;D中,两点之间的线段的长度叫做这两点之间的距离,故D错误.故选B.10.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C. D.【答案】C【解析】根据对称的性质以及两点之间线段最短可知选项C是正确的.故选C.二、解答题(共3小腿)A B C;(2) 11.(2019·某某市外国语学校初一期末)如下图所示.(1)作出△ABC关于y轴对称的图形111在x轴上确定一点P,使得PA+PC最小.【答案】(1)见解析;(2)见解析.【解析】(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1,然后顺次连接即可;(2)根据轴对称确定最短路线问题,找出点A关于x轴的对称点A′的位置,然后连接A′B与x轴的交点即为点P【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求(有两种做法:作A或C的对称点均可).【点睛】此题考查作图-轴对称变换,轴对称-最短路线问题,掌握作图法则是解题关键12.(2018·泸西县中枢镇逸圃初级中学初二期中)作图题(保留作图痕迹,不写作法)如图,A、B两村在一条小河MN的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,在图1中用尺规作图....作出厂址P的位置.(2)若要使自来水厂到两村的输水管用料最省,在图2中作出厂址Q的位置.【答案】作图见解析.【解析】试题分析:(1)根据中垂线的性质知,作AB的中垂线,交于直线MN于点P就是所求的点;(2)由三角形的三边关系,三角形是任意两边之和大于第三边知,故作出点A关于直线MN的对称点E,连接BE交于直线MN的点Q是所求的点.试题解析:(1)如图所示:点P即为所求;(2)如图所示:点Q即为所求.13.(2017·某某鄂尔多斯康巴什新区第二中学初二期中)如图,在游艺室的水平地面上,沿着地面的AB 边放一行球,参赛者从起点C起步,跑向边AB任取一球,再折向D点跑去,将球放入D点的纸箱内便完成任务,完成任务的时间最短者获得胜利,如果邀请你参加,你将跑去选取什么位置上的球?为什么?【答案】见解析【解析】试题分析:可过点D作关于AB的对称点D′,连接CD′与AB交于点E,即为所求.试题解析:如图,参赛者应向E点跑,因为AB所在直线是DD′的垂直平分线,所以ED=ED′,C、D′两点之间CE+ED′是最短的(两点之间线段最短),所以CE+ED是最短的.点睛:此题考查轴对称最短路径问题,能够利用两点之间线段最短求解一些简单的实际问题.凡是涉及到最短距离问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.。

人教版8年级上13.4最短路径问题练习题(无答案)

人教版8年级上13.4最短路径问题练习题(无答案)

13.4最短路径问题练习1.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.2.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.4.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为5.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是.6.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为.7.已知在平面直角坐标系中,已知A(2,3),B(3,5),点P为直线y=x﹣2上一个动点,当|PB﹣PA|值最大时,点P的坐标为.8.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF 上的任意一点,连接PA,PB,则PA+PB的最小值为.9.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是.10.如图所示:∠AOB的内部有一点P,到顶点O的距离为5cm,M、N分别是射线OA、OB上的动点.若∠AOB=30°,则△PMN周长的最小值为.11.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).(1)写出△AOB的面积为;(2)点P在x轴上,当PA+PB的值最小时,在图中画出点P,并求出点P的坐标.12.如图在△ABC中,点D、E分别是AB、AC边上的定点,请你在BC边上确定一点P,使△PDE的周长最小(在图中作出点P,保留作图痕迹,不写作法)13.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)14.如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?15.如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.(1)在图中分别标明A(0,2),B(﹣4,2),C(﹣2,﹣4)关于直线l的对称点A′、B′、C′的位置,并写出它们的坐标:A′、B′、C′;(2)结合图形观察点坐标,你会发现:平面直角坐标系内任意一点P(x,y)关于第二、四象限的角平分线l的对称点P′的坐标为:;(3)已知点D(5,﹣1),E(4,﹣2),试在x轴上找一点M,在直线l上找一点N,使得四边形EDMN周长最小.请画出图形,并标出点M、点N.16.在平面直角坐标系中,P点坐标为(2,6),Q点坐标为(2,2),点M为y轴上的动点.(1)在平面直角坐标系内画出当△PMQ的周长取最小值时点M的位置.(保留作图痕迹)(2)写出点M的坐标.。

人教版八年级上册数学 13.4 最短路径问题 课时训练 (含答案)

人教版八年级上册数学 13.4 最短路径问题   课时训练  (含答案)

人教版八年级上册数学13.4 最短路径问题课时训练一.选择题1.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A. B.C. D.2.已知A(﹣1,1)、B(2,﹣3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为()A.(0,0)B.(,0)C.(﹣1,0)D.(﹣,0)3.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC边上的动点,当△PMN 的周长最小时,∠MPN的度数是()A.50°B.60°C.70°D.80°4.如图.在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN 的周长最小时,则∠AMN+∠ANM的度数为()A.84°B.88°C.90°D.96°5.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使PA+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)6.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=4,则△PMN 的周长的最小值为()A.2 B.4 C.6 D.8二.填空题7.如图,已知点A(0,3),B(3.0),C(1,2).在y轴上找一点P,使PC+PB的值最小.请你估计点P 的坐标是.8.在平面直角坐标系中,有A(3,3),B(1,﹣1)两点,现在y轴上取一点P,当P点的坐标为时,AP+BP的值最小.9.如图,在△ABC中,AB=AC=8,S△ABC=16,点P为角平分线AD上任意一点,PE⊥AB,连接PB,则PB+PE 的最小值为.10.如图,P为∠MON内部的已知点,连接OP,A为OM上的点,B为ON上的点,当△PAB周长的最小值与OP的长度相等,∠MON的度数为°.11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,AC=24,BD平分∠ABC,点E是AB的动点,点F是BD上的动点,则AF+EF的最小值为.12.如图,等腰三角形ABC的底边BC长为5,面积是14,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.13.如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB上有一动点N,则△PMN 的周长的最小值是.三.解答题14.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.15.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.16.如图,要在街道l上修建一个奶吧D(街道用直线l表示).(1)若奶吧D向小区A,B提供牛奶如图①,则奶吧D应建在什么地方,才能使它到小区A,B的距离之和最短?(2)若奶吧D向小区A,C提供牛奶如图②,则奶吧D应建在什么地方,才能使它到小区A,C的距离之和最短?17.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN 的度数是多少?18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.答案一.选择题1.D.2.D.3.D.4.B.5.D.6.B.二.填空题7.(0,1.5).8.(0,0).9.4.10.30.11.12.12.8.1.13.6.三.解答题14.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.15.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形PABQ的周长最小.16.解:(1)奶吧D的位置如图1所示;(2)奶吧D的位置如图2所示.17.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN 的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=80°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°,∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.18.解:(1)∵AB=AC,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,MN是AB的垂直平分线,∴AM=BM,∴∠A=∠ABM=50°,∴∠MBC=∠ABC﹣∠ABM=15°,∴∠AMB=∠MBC+∠C=80°,∴∠NMA=∠AMB=40°.故答案为40度.(2)①∵AB=AC=10,△MBC的周长是18cm,即BM+MC+BC=18∵AM=BM,∴AM+MC+BC=18,∴AC+BC=18,∴BC=8.答:BC的长度为8cm.②当点P与点M重合时,△PBC周长的值最小,答:△PBC的周长的最小值为18cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.4课题学习最短路径问题
知识点:
1.最短路径问题
(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
2.运用轴对称解决距离最短问题
运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3.利用平移确定最短路径选址
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.
同步练习:
1.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.
2.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,
B
A
l
3..在图中直线l上找到一点M,使它到A,B两点的距离和最小.
4. 如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?
(2)若要使厂部到A,B两村的水管最短,应建在什么地方?
5. 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?
参考答案: 1.
2.这时先作点B 关于直线l 的对称点B ′,则点C 是直线l 与AB ′的交点.
为了证明点C 的位置即为所求,我们不妨在直线上另外任取一点C ′,连接AC ′,BC ′,B ′C ′,证明AC +CB <AC ′+C ′B .如下:
证明:由作图可知,点B 和B ′关于直线l 对称,
所以直线l 是线段BB ′的垂直平分线.
因为点C 与C ′在直线l 上,
所以BC =B ′C ,BC ′=B ′C ′.
在△AB ′C ′中,AB ′<AC ′+B ′C ′,
所以AC +B ′C <AC ′+B ′C ′,
所以AC +BC <AC ′+C ′B .
3. 解:如图所示:(1)作点B 关于直线l 的对称点B ′;
(2)连接AB ′交直线l 于点M .
(3)则点M 即为所求的点.
4.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,
则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12
AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.
(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.
5.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.
(2)连接BC与河岸的一边交于点N.
(3)过点N作河岸的垂线交另一条河岸于点M.
则MN为所建的桥的位置.
6.解:如图b.
(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.
7.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B <A′B,所以C′A′-C′B<CA-CB.
点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。

相关文档
最新文档