最新深圳市中考数学全真模拟测试卷含答案
数学中考全真模拟测试卷(附答案)
A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,
2023年广东省深圳市中考数学模拟试卷(二)(含解析)
2023年广东省深圳市中考数学模拟试卷(二)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图是一个正方体的展开图,把展开图折叠成小正方体后,和“中”字所在面相对的面上的字是( )A. 20B. 23C. 必D. 胜2. 2023的相反数是( )A. 2023B. −2023C. −2023D. 20233. 一元一次不等式x+4≥2的解集是( )3A.B.C.D.4. 某高速(限速120km/ℎ)某路段的车速监测仪监测到连续6辆车的车速分别为:118,106,105,120,118,112(单位:km/ℎ),则这组数据的中位数为( )A. 115B. 116C. 118D. 1205. 下列运算正确的是( )A. (−a2)3=a6B. (−a3)2=−a6C. (2a2b)3=6a6b3D. (−3b2)2=9b46.一块含30°角的直角三角板和直尺如图放置,若∠1=145°,则∠2的度数为( )A. 63°B. 64°C. 65°D. 66°7. 某商店需要购进甲乙两种商品,已知甲的进价比乙多50元,分别用2万元进货甲乙两种商品,购买乙的件数比甲多20件,现设乙的进价为x 元,则下列方程正确的是( )A. 20000x +50−20000x =20 B. 20000x−50−20000x =20C. 20000x−20000x +50=20 D. 20000x −20000x−50=208.如图分别是2个高压电塔的位置.已知电塔A ,B 两点水平之间的距离为80米(AC =80m ),∠BAC =α,则从电视塔A 到B 海拔上升的高度(BC 的长)为( )A. 80tanαB. 80tan αC. 80sinαD. 80sin α9. 在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx +c 的图象可能是( )A. B.C. D.10.如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于的值为( )点N,连接MN,则S△AMDS△MBNA. 34B. 23C. 1D. 12二、填空题(本大题共5小题,共15.0分)11. 分解因式:a3−4ab2=______.12. 已知方程2x2−mx+3=0的一个根是−1,则m的值是______ .13. 如图,在△ABC中,AB=AC,分别以点A,B为圆心,AB的长为半径画弧,两弧相交于点M和点N,作直线M大于12N分别交BC、AB于点D和点E,若AC=6,BC=10,则△ADC的周长为______ .14. 如图,正方形ABCD放置在直角坐标系中,反比例函数y=k(k≠0)经过A点和边CD的中x点E,已知B(0,2),则k的值为______ .15. 如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠C=∠E=60°,点D在BC边上,AC与DE相交于点F,DFCF =3,则ADBD=______ .三、解答题(本大题共7小题,共55.0分。
2023年广东省深圳市福田区中考数学模拟试卷及答案解析
2023年广东省深圳市福田区中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.(3分)函数y=中自变量x的取值范围是()A.x≥0B.x>1C.x≥1D.x≠02.(3分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为()A.3.51×105B.3.51×106C.3.51×107D.0.351×107 4.(3分)下列所给方程中,没有实数根的是()A.x2+2x=0B.x2﹣x﹣2=0C.3x2﹣4x+1=0D.4x2﹣3x+2=0 5.(3分)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.(3分)在平面直角坐标系中,将抛物线y=﹣x2﹣1先向右平移1个单位长度,再向下平移3个单位长度,得到的新抛物线的解析式为()A.y=﹣(x﹣1)2﹣4B.y=﹣(x+1)2﹣4C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+37.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高BH=()A.4.6B.4.8C.5D.5.28.(3分)如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为()A.B.C.1D.29.(3分)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=bx﹣a在坐标系内的大致图象为()A.B.C.D.10.(3分)如图,反比例函数图象经过正方形OABC的顶点A,BC边与y 轴交于点D,若正方形OABC的面积为12,BD=2CD,则k的值为()A.3B.C.D.二、填空题(本大题共5小题,共15.0分)11.(3分)分解因式:2ab2﹣8ab+8a=.12.(3分)二次函数y=(x+1)2﹣1的图象的顶点坐标为.13.(3分)已知是方程ax+4y=2的一个解,那么a=.14.(3分)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=14.8m.则建筑物CD的高是m.15.(3分)如图,在Rt△ABC中,BC=4,∠ABC=90°,以AB为直径的⊙O交AC于点D,弧AD沿直线AD翻折后经过点O,那么阴影部分的面积为.三、解答题(本大题共7小题,共55.0分。
2022年广东省深圳市中考数学全真模拟试卷(5)(学生版+解析版)
2022年广东省深圳市中考数学全真模拟试卷(5)一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×1064.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25 6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√710.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分)16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0;(2)(√2+1)(√2−1)+(√3−2)2.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数) 频率 A4 0.04 Bm 0.51 Cn D合计100 1(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.19.(8分)如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为6,OE =EM ,求MN 的长.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.21.(9分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以CF为底的等腰三角形,若存在,求出此时CD的长;若不存在,试说明理由.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.2022年广东省深圳市中考数学全真模拟试卷(5)参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数【解答】解:A.﹣4<8,故本选项符合题意;B.如果a>b,那么|b﹣a|=a﹣b,故本选项不合题意;C.﹣|﹣(+0.8)|=﹣0.8,故本选项不合题意;D.没有最小的有理数,故本选项不合题意.故选:A.2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图的第二层由原来的两个小正方形变为一个小正方形,故选:B.3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×106【解答】解:将720000用科学记数法表示为7.2×105元.故选:B.4.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°【解答】解:如图:根据题意:AB∥CD.∴∠1=∠CBA.∴∠CBA=40°.根据折叠有∠2=∠DBC.∴∠2=180°−∠CBA2=70°.故选:B.5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25【解答】解:由作图可知,EF垂直平分线段AC,∴DA=DC,∴△ABD的周长=AB+BC+AD=AB+BD+DC=AB+BC=5+13=18,故选:C.6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个【解答】解:①平分弦(不是直径)的直径垂直于弦,故错误,是假命题;②√81的算术平方根是3,故错误,是假命题;③方程1x2−1−2x+1=3x−1的解x=0,正确,是真命题;④这组数据6,7,8,9,10的中位数是8,故错误,是假命题;真命题有1个,故选:A.7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm【解答】解:过E作EF⊥CG于F,设投射在墙上的影子DE长度为xcm,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC﹣x),则240:120=160:(160﹣x),解得:x=80.即:投射在墙上的影子DE长度为80cm.故选:B.8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.【解答】解:在函数y=kx和y=kx+2(k≠0)中,当k>0时,函数y=kx的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数y=kx的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选:B.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√7【解答】解:如图,设D(0,m).由题意:B(3,0),∴OD=m,OB=3,过E作EH⊥x于H,∴∠EHB=∠BOD=90°,∵把线段BD绕B点逆时针旋转90°得到线段BE∴∠DBE=90°,BD=BE,∴∠ODB+∠OBD=∠OBD+∠EBH=90°,∴∠BDO=∠EBH,∴△BOD≌△EHB(AAS),∴EH=OB=3,BH=OD=m,∵点C(﹣1,0),∴OC=1,∴CH=4﹣m,∴CE=√CH2+EH2=√(4−m)2+32=√(m−4)2+9,∴当m=4时,CE长度最小,∴D(0,4),∴OD=4,∴CD=2+OD2=√12+42=√17,故选:B.10.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴∠ABG=∠CDE,∵CE⊥BD于E,AG⊥BD于G,∴∠AGB=∠CED=90°,∴△AGB≌△CED(AAS),∴BG=DE,∴BE=DG,故①正确,∵∠BAD=90°,F A平分∠BAD,∴∠BAN =45°, ∵∠ABN =90°, ∴∠ANB =45°, ∴AB =BN ,∵AB =3,AD =BC =6, ∴BC =2AB ,∴BN =12AD ,故②正确, ∵AB =NB =3, ∴AN =3√2, ∵BN ∥AD , ∴NM AM=BN AD=12,∴MN =13AN =√2,故③正确, 连接AC ,易证∠ECB =∠BAC ,∵∠ECB =45°+∠F ,∠BAC =45°+∠CAF , ∴∠F =∠CAF , ∴CA =CF ,∵四边形ABCD 是矩形, ∴AC =BD ,∵BD =CF ,故④正确, ∵∠BAD =90°,AG ⊥BD ,∴△AGB ∽△DGA ,可得AG 2=BG •DG ,故⑤正确, 故选:D .二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=3x(x﹣y)2.【解答】解:3x3﹣6x2y+3xy2,=3x(x2﹣2xy+y2),=3x(x﹣y)2.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为6【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=×120π×18180,解得r=6.故答案为:6.13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为9.【解答】解:∵DE∥FG∥BC,∴AD:DF:FB=AE:EG:GC,∵AD:DF:FB=3:2:1,∴AE:EG:GC=3:2:1,设AE=3x,EG=2x,GC=x,∵AG=15,∴3x+2x=15,解得:x=3,即AE=9,EG=6,GC=3,∴EC=EG+GC=6+3=9,故答案为:9.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有3个.【解答】解:观察反比例函数y=kx(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于3√2或3.【解答】解:①当AF=AD=6时,△AEF是等腰直角三角形,∴AF =√2AE , ∴AE =3√2.②当AF =DF 时,△ADF 是等腰直角三角形, ∴AD =√2AF =6, ∴AF =3√2,在等腰直角三角形AEF 中,AF =√2AE , ∴AE =3.③当AD =DF 时,∠AFD =45°,此时点F 与点C 重合,点E 与点B 重合,不符合题意; 综上所述,当△ADF 是等腰三角形时,AE 的长度等于3√2或3; 故答案为:3√2或3.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分) 16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0; (2)(√2+1)(√2−1)+(√3−2)2. 【解答】解:(1)原式=4+√2−3+2×1﹣1 =2+√2;(2)原式=2﹣1+3﹣4√3+4 =8﹣4√3.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.【解答】解:原式=a−2a+3•2(a+3)(a+2)(a−2)−5a+2=2a+2−5a+2 =−3a+2, 当a =﹣5时, 原式=−3−5+2=1.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数)频率 A 4 0.04 B m 0.51 C n D 合计1001(1)求m = 51 ,n = 30 ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.【解答】解:(1)参加本次比赛的学生有:4÷0.04=100(人); ∴m =0.51×100=51(人),D 组人数=100×15%=15(人), ∴n =100﹣4﹣51﹣15=30(人), 故答案为:51,30;(2)B 等级的学生共有:50﹣4﹣20﹣8﹣2=16(人), ∴所占的百分比为:16÷50=32%,∴C 等级所对应扇形的圆心角度数为:360°×30%=108°; (3)由题意可得,树状图如下图所示,选出的两名同学中至少有一名是女生的概率是1012=56.19.(8分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=√32+62=3√5,∴MN=√2OM=3√10.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.【解答】解:(1)设第一次购进苹果的进价为x 元,则第二次购进苹果的进价为 1.25x 元, 由题意得:600x=6001.25x+30,解得:x =4,经检验x =4是原方程的解,则1.25x =5,答:第一次购进苹果的进价为4元,第二次购进苹果的进价为5元; (2)5(1+40%)=7(元),6004=150(斤),150﹣30=120(斤),设销售y 斤苹果后开始打八折,由题意得:7y +7×0.8(150+120﹣y )﹣2×600=592, 解得:y =200,答:销售200斤苹果后开始打八折.21.(9分)如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的一个动点,以CD 为直径的⊙O 交AD 于点E ,过点C 作CF ∥AB ,交⊙O 于点F ,连接CE 、EF .(1)当∠CFE =45°时,求CD 的长; (2)求证:∠BAC =∠CEF ;(3)是否存在点D ,使得△CFE 是以CF 为底的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.【解答】(1)解:∵∠CDE =∠CFE =45°,∵∠ACB=90°,∴∠DAC=∠CDA=45°,∴CD=AC=6;(2)证明:∵CF∥AB,∴∠B=∠FCB,∵∠FCB=∠DEF,∴∠B=∠DEF,又∠BAC+∠B=90°,∵CD是圆O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)解:存在点D,使得△CFE是CF为底的等腰三角形,则EF=CE.如图,连接FD,并延长和AB相交于G,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,AC=AG=6,∵∠ACB=90°,AB=10,AC=6,∴BC=2−AC2=8,在Rt△BDG中,设CD=x,则BD=BC﹣CD=8﹣x,BG=AB﹣AG=10﹣6=4,DG=CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.【解答】解:(1)将A (﹣3,0),B (9,0)代入y =ax 2+bx +3√3,得:{9a −3b +3√3=081a +9b +3√3=0,解得:{a =−√39b =2√33, ∴抛物线的表达式为y =−√39x 2+2√33x +3√3⋯①;(2)由题意得:∠ACO =∠OBC =30°,∠ACB =90°,将点B 、C (0,3√3)的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−√33x +3√3⋯②;①点P 的坐标为(﹣3+12t ,√32t ), 点Q (9﹣2t ,0),将点Q 的坐标代入①式并整理得:点D (9﹣2t ,4√39(6t ﹣t 2)); ②当PQ =PD 时,则DQ 中点的纵坐标=点P 的纵坐标,即:12(4√39(6t ﹣t 2))=√32t ,解得:t =154; (3)点P 的坐标为(﹣3+12t ,√32t )、点D (9﹣2t ,4√39(6t ﹣t 2)), 点E 是PQ 的中点,则点E (3−34t ,√34t +2√39(6t ﹣t 2)), 将点E 的坐标代入②式并整理得:t 2﹣6t +9=0,解得:t =3,即点P (−32,3√32)即点P 是AC 的中点, 作点P 关于直线BC 的对称点P ′,过点P ′作P ′H ⊥x 轴、交BC 于点M ,过点P 作PN ⊥y 轴于点N ,则MH=12MB,则此时,PM+12BM=PM+MH=P′H为最小值,∵∠ACB=90°,PC=P′C,∠P′CM=∠NCP,∠P′MC=∠PNC=90°,∴△P′MC≌△PNC(AAS),∴MC=NC=12OC,OM=32OC=9√32=P′H,故PM+12BM的最小值为9√32.。
【中考数学】2023-2024学年广东省深圳市学情摸底仿真模拟试卷(2套)(含解析)
2023-2024学年广东省深圳市中考数学专项突破仿真模拟试题(4月)一、选一选(3分×10=30分)1.抛物线22(3)1y x =-+的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)2.若二次函数y =x 2+bx +4配方后为y =(x -2)2+k ,则b 、k 的值分别为()A.0,5B.0,1C.-4,5D.-4,03.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A.b=2,c=﹣6 B.b=2,c=0C.b=﹣6,c=8D.b=﹣6,c=24.已知二次函数2115722y x x =--+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是()A.y 1>y 2>y 3B.y 1<y 2<y 3C.y 2>y 3>y 1D.y 2<y 3<y 15.已知抛物线y =x 2-2x +m +1与x 轴有两个没有同的交点,则函数y =mx的大致图象是()A.(A )B.(B )C.(C )D.(D )6.烟花厂为扬州4·18烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到点处引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s7.如图,在平面直角坐标系中,抛物线21y x 2=平移得到抛物线21y x 2x 2=-,其对称轴与两段抛物线所围成的阴影部分的面积为A.2B.4C.8D.168.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.-3a+c<0C.b2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个没有相等的实数根,则k的取值范围是【】A.k<-3B.k>-3C.k<3D.k>310.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为A. B.C. D.二、填空题(3分×10=30分)11.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y=________.12.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.13.已知下列函数:①2y x =;②2y x =-;③()2y x 12=-+,其中,图象通过平移可以得到函数2y x 2x 3=+-的图像的有_____(填写所有正确选项的序号)14.二次函数y =x 2-(m -4)x -m 的图象与x 轴的两个交点关于y 轴对称,则其顶点坐标为___________.15.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s =1100v 2,一辆小汽车速度为100km/h ,在前方80m 处停放一辆故障车,此时刹车_______(填“会”或“没有会”)有危险.16.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是_____,值是____.17.开口向下的抛物线y =(m 2-2)x 2+2mx +1的对称轴点(-1,3),则m =_____.18.请选择一组你喜欢的a 、b 、c 的值,使二次函数()2y ax bx c a 0=++≠的图象同时满足下列条件:①开口向下;②当x 2<时,y 随x 的增大而增大;当x 2>时,y 随x 的增大而减小.这样的二次函数的解析式可以是________.19.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛,成就了五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若没有考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为米.20.如图,抛物线y=x 2在象限内的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,….将抛物线y=x 2沿直线L:y=x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线L:y=x 上;②抛物线依次点A 1,A 2,A 3…A n ,….则顶点M 2018的坐标为(),____________).三、解答题(共60分)21.二次函数2y=x +bx+c 的图象点(4,3),(3,0).(1)求b 、c 的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数2y=x +bx+c 的图象.22.已知函数y=mx2﹣6x+1(m是常数).(1)求证:没有论m为何值,该函数的图象都y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.23.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y 轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(没有包括△OAB 的边界),求m的取值范围(直接写出答案即可).24.某商场购进一种每件价格为100元的新商品,在商场试销发现:单价x(元/件)与每天量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润,利润是多少?25.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的值.26.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当单价是25元时,每天的量为250件,单价每上涨1元,每天的量就减少10件(1)写出商场这种文具,每天所得的利润(元)与单价(元)之间的函数关系式;(2)求单价为多少元时,该文具每天的利润;(3)商场的营销部上述情况,提出了A、B两种营销A:该文具的单价高于进价且没有超过30元;B:每天量没有少于10件,且每件文具的利润至少为25元请比较哪种的利润更高,并说明理由27.如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若没有存在,请说明理由.2023-2024学年广东省深圳市中考数学专项突破仿真模拟试题(4月)一、选一选(3分×10=30分)1.抛物线22(3)1y x =-+的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【正确答案】A【分析】直接根据二次函数的顶点式进行解答即可.【详解】解: 抛物线的解析式为:22(3)1y x =-+,∴其顶点坐标为:(3,1).故选:A .本题考查的是二次函数的性质,二次函数的顶点式为2()y a x h k =-+,此时顶点坐标是(,)h k ,对称轴是直线x h =,此题考查了学生的应用能力.2.若二次函数y =x 2+bx +4配方后为y =(x -2)2+k ,则b 、k 的值分别为()A.0,5B.0,1C.-4,5D.-4,0【正确答案】D【详解】∵二次函数y =x 2+bx +4配方后是y =(x -2)2+k ∴a=1,-2ba=2,c=4∴b=-4∴k=244ac b a-=1故选D.点睛:此题主要考查了二次函数的顶点,解决此类问题的关键是掌握形如y=ax 2+bx+c (a 、b 、c为常数,a≠0)的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a -).3.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A.b=2,c=﹣6B.b=2,c=0C.b=﹣6,c=8D.b=﹣6,c=2【正确答案】B【详解】函数()2y x 14=--的顶点坐标为(1,﹣4),∵函数()2y x 14=--的图象由2y x bx c =++的图象向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为()2y x 11=+-,即y=x 2+2x .∴b=2,c=0.故选B .4.已知二次函数2115722y x x =--+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是()A.y 1>y 2>y 3B.y 1<y 2<y 3C.y 2>y 3>y 1D.y 2<y 3<y 1【正确答案】A【分析】根据x 1、x 2、x 3与对称轴的大小关系,判断y 1、y 2、y 3的大小关系:【详解】∵二次函数2115722y x x =--+,∴此函数的对称轴为:771222bx a-=-=-=-⎛⎫⨯- ⎪⎝⎭.∵7-<0<x 1<x 2<x 3,三点都在对称轴右侧,a <0,∴对称轴右侧y 随x 的增大而减小.∴y 1>y 2>y 3.故选:A5.已知抛物线y =x 2-2x +m +1与x 轴有两个没有同的交点,则函数y =mx的大致图象是()A.(A )B.(B )C.(C )D.(D )【正确答案】A【详解】抛物线y=x 2-2x+m+1与x 轴有两个没有同的交点,可得△=(-2)2-4(m+1)>0,解得m <0,因此可得函数y=mx的图象位于二、四象限,故选A .6.烟花厂为扬州4·18烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到点处引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s【正确答案】B【详解】解:h=-52t 2+20t+1=-52(t-4)2+41 -52<0∴这个二次函数图象开口向下,∴当t=4时,升到点,故选B .7.如图,在平面直角坐标系中,抛物线21y x 2=平移得到抛物线21y x 2x 2=-,其对称轴与两段抛物线所围成的阴影部分的面积为A.2B.4C.8D.16【正确答案】B【详解】试题分析:过点C 作CA ⊥y 轴于点A ,根据抛物线的对称性可知:OBD 的面积等于的面积,从而阴影部分的面积等于矩形ACBO 的面积.∵,∴顶点坐标为C (2,-2).∴对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4.故选B .8.已知二次函数y =ax 2+bx +c 的图象如图,则下列叙述正确的是()A.abc <0B.-3a +c <0C.b 2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y =ax 2+c 【正确答案】B【详解】解:A .由开口向下,可得a <0;又由抛物线与y 轴交于负半轴,可得c <0,然后由对称轴在y 轴右侧,得到b 与a 异号,则可得b >0,故得abc >0,故本选项错误;B .根据图知对称轴为直线x =2,即2ba=2,得b =﹣4a ,再根据图象知当x =1时,y =a +b +c =a ﹣4a +c =﹣3a +c <0,故本选项正确;C .由抛物线与x 轴有两个交点,可得b 2﹣4ac >0,故本选项错误;D.y=ax2+bx+c=224(24b ac ba xa a-++,∵2ba-=2,∴原式=224(2)4ac ba xa--+,∴向左平移2个单位后所得到抛物线的解析式为2244ac by axa-=+,故本选项错误;故选B.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个没有相等的实数根,则k的取值范围是【】A.k<-3B.k>-3C.k<3D.k>3【正确答案】D【详解】根据题意得:y=|ax2+bx+c|的图象如右图,∵|ax2+bx+c|=k(k≠0)有两个没有相等的实数根,∴k>3.故选D.10.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为A. B.C. D.【正确答案】B【详解】①0≤x≤4时,y=S △ABD ﹣S △APQ =12×4×4﹣12•x•x=﹣12x 2+8,②4≤x≤8时,y=S △BCD ﹣S △CPQ =12×4×4﹣12•(8﹣x )•(8﹣x )=﹣12(8﹣x )2+8,∴y 与x 之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B 选项图象符合.故选B .二、填空题(3分×10=30分)11.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y=________.【正确答案】a (1+x )2【详解】试题分析:∵一月份新产品的研发资金为a 元,2月份起,每月新产品的研发资金与上月相比增长率都是x ,∴2月份研发资金为(1)a x +,∴三月份的研发资金为2(1)(1)(1)y a x x a x =++=+.故答案为2(1)a x +.考点:根据实际问题列二次函数关系式.12.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.【正确答案】直线x =2【分析】根据抛物线与x 轴交于(1,0),(3,0)两点,计算横坐标的和除以2即可得到对称轴.【详解】∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x =132+=2,故直线x =2.此题考查了抛物线的性质,抛物线上两个点的纵坐标相等时,这两个点关于对称轴对称.13.已知下列函数:①2y x =;②2y x =-;③()2y x 12=-+,其中,图象通过平移可以得到函数2y x 2x 3=+-的图像的有_____(填写所有正确选项的序号)【正确答案】①③.【详解】二次函数图象与平移变换.把原式化为顶点式的形式,根据函数图象平移的法则进行解答:∵()22y x 2x 3=x+14=+--∴由函数图象平移的法则可知,进行如下平移变换①()()14222y x y x+1y=x+14=→=→-向左平移个单位向下平移个单位,故①正确.②2y x 2x 3=+-的图象开口向上,2y x =-的图象开口向下,没有能通过平移得到,故②错误.③()()()26222y x 12y x+12y=x+14=-+→=+→-向左平移个单位向下平移个单位,,故③正确.∴图象通过平移可以得到函数2y x 2x 3=+-的图像的有①2y x =,③()2y x 12=-+.14.二次函数y =x 2-(m -4)x -m 的图象与x 轴的两个交点关于y 轴对称,则其顶点坐标为___________.【正确答案】(0,-4)【分析】由抛物线与x 轴的两个交点关于y 轴对称,可以判断对称轴是y 轴,根据对称轴公式求m 的值,代入抛物线解析式求顶点坐标.【详解】根据二次函数y =x 2-(m -4)x -m 的图象与x 轴的两个交点关于y 轴对称,可知抛物线关于y 轴对称,所以421m -⨯=0,解得m=4,则顶点坐标为(0,-4).故答案为(0,-4).此题考查了二次函数的对称性,提高学生分析能力.15.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s =1100v 2,一辆小汽车速度为100km/h ,在前方80m 处停放一辆故障车,此时刹车_______(填“会”或“没有会”)有危险.【正确答案】会【分析】由题意把100v =代入21100s v =即可求得s 的值,与80比较即可判断.【详解】解:在21100s v =中,当100v =时,2110010080100s =⨯=>则此时刹车会有危险.本题考查二次函数的应用是初中数学的和难点,因而是中考的,尤其在压轴题中极为常见,一般难度没有大,需熟练掌握.16.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是_____,值是____.【正确答案】①.-5②.4【详解】试题解析:抛物线y =-x 2+4,开口向下,有值为4,当x=3时有最小值为-5.17.开口向下的抛物线y =(m 2-2)x 2+2mx +1的对称轴点(-1,3),则m =_____.【正确答案】-1【详解】由于抛物线y=(m 2-2)x 2+2mx+1的对称轴点(-1,3),∴对称轴为直线x=-1,x=2222(2)b m a m -=--=-1,解得m 1=-1,m 2=2.由于抛物线的开口向下,所以当m=2时,m 2-2=2>0,没有合题意,应舍去,∴m=-1.故答案为-1.18.请选择一组你喜欢的a 、b 、c 的值,使二次函数()2y ax bx c a 0=++≠的图象同时满足下列条件:①开口向下;②当x 2<时,y 随x 的增大而增大;当x 2>时,y 随x 的增大而减小.这样的二次函数的解析式可以是________.【正确答案】答案没有,只要满足b =-4a ,a <0即可,如y =-x 2+4x +3,y =-2x 2+8x -3等.【详解】试题分析:仔细分析题中要求根据二次函数的性质即可得到结果.答案没有,如y =-(x +1)2或y =-(x +1)2-2.考点:二次函数的性质点评:二次函数的性质是初中数学的,是中考必考题,一般难度没有大,需熟练掌握.19.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛,成就了五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若没有考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为米.【正确答案】5【分析】试题分析:根据羽毛球飞出的水平距离即为抛物线与x 轴正半轴交点到原点的距离求出即可.【详解】当y=0时,22810x x 0999-++=,解得:x 1=﹣1(舍),x 2=5.∴羽毛球飞出的水平距离为5米.20.如图,抛物线y=x2在象限内的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次点A1,A2,A3…A n,….则顶点M2018的坐标为(),____________).【正确答案】①.4035②.4035【详解】试题解析:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a12+a1,x=1(a1+1).2∵x为整数点∴a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(x-a2)2+a2=x2-2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2-2a2x+a22+a2,∴2a2x=a22+a2,x=1(a2+1).2∵x为整数点,∴a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(x-a3)2+a3=x2-2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2-2a3x+a32+a3,∴2a3x=a32+a3,x=1(a3+1).2∵x为整数点∴a3=5,M3(5,5),∴点M2014,两坐标为:2014×2-1=4027,∴M2014(4027,4027).考点:二次函数图象与几何变换.三、解答题(共60分)y=x+bx+c的图象点(4,3),(3,0).21.二次函数2(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;y=x+bx+c的图象.(3)在所给坐标系中画出二次函数2【正确答案】见解析y=x+bx+c 【分析】(1)根据点在曲线上,点的坐标满足方程的关系,将(4,3),(3,0)代入2得关于b、c的方程组,解之即得.(2)求出二次函数的顶点式(或用公式法)即可求得该二次函数图象的顶点坐标和对称轴.(3)描点作图.y=x+bx+c的图象点(4,3),(3,0),【详解】解:(1)∵二次函数2∴3=16+4b+c 0=9+3b+c ⎧⎨⎩,解得b=4c=3-⎧⎨⎩.(2)∵该二次函数为()22y=x 4x+3=x 21---.∴该二次函数图象的顶点坐标为(2,-1),对称轴为x =1.(3)列表如下:x ···01234···y ···30103···描点作图如下:22.已知函数y=mx 2﹣6x+1(m 是常数).(1)求证:没有论m 为何值,该函数的图象都y 轴上的一个定点;(2)若该函数的图象与x 轴只有一个交点,求m 的值.【正确答案】解:(1)当x=0时,y=1.所以没有论m 为何值,函数y=mx 2﹣6x+1的图象都y 轴上一个定点(0,1);(2)①当m=0时,函数y=﹣6x+1的图象与x 轴只有一个交点;②当m≠0时,若函数y=mx 2﹣6x+1的图象与x 轴只有一个交点,则方程mx 2﹣6x+1=0有两个相等的实数根,所以△=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx ﹣6x+1的图象与x 轴只有一个交点,则m 的值为0或9.【详解】略23.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣2,4),过点A作AB⊥y 轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(没有包括△OAB 的边界),求m的取值范围(直接写出答案即可).【正确答案】(1)4;(2)①4;②1<m<3.【分析】(1)由A点坐标可得AB=2,OB=4,再利用三角形面积易求△OAB的面积;(2)①把(-2,4)的值代入函数解析式,即可求c;②先求出AO的解析式,再求出二次函数顶点的坐标,再求出AB的中点E的坐标和OA的中点F的坐标,那么进而可求m.【详解】解:(1)∵点A的坐标是(﹣2,4),AB⊥y轴,∴AB=2,OB=4.∴△OAB的面积为:×AB×OB=×2×4=4,(2)①把点A的坐标(﹣2,4)代入y=﹣x2﹣2x+c中,﹣(﹣2)2﹣2×(﹣2)+c=4,∴c=4,②∵y=﹣x2﹣2x+4=﹣(x+1)2+5,∴抛物线顶点D的坐标是(﹣1,5),AB的中点E的坐标是(﹣1,4),OA的中点F的坐标是(﹣1,2),∴m的取值范围是:1<m<3,本题考查了二次函数图象的几何变换.解题时需要注意题干中的性条件:平移后的抛物线顶点落在△OAB 的内部,没有包括△OAB 的边界.24.某商场购进一种每件价格为100元的新商品,在商场试销发现:单价x(元/件)与每天量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润,利润是多少?【正确答案】(1)y =-x +180;(2)售价定为140元/件时,每天利润W =1600元.【详解】(1)设y 与x 之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb 的关系式,求出k、b 的值即可;(2)把每天的利润W 与单价x 之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.解:(1)设y 与x 之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,1305015030k b k b +=⎧⎨+=⎩,解得1180k b =-⎧⎨=⎩.故y 与x 的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,∴当x=140时,W=1600,∴售价定为140元/件时,每天利润W=1600元.25.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的值.【正确答案】(1)y =-x 2+9x (0<x ≤4)(2)20【分析】(1)分别表示出PB 、BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【详解】解:(1)∵PBQ 1S PB BQ 2∆=⋅,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4).(2)由(1)知:y =-x 2+9x =2981x +24⎛⎫-- ⎪⎝⎭.∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 20=最大值.∴△PBQ 的面积是20cm 2.本题考查了矩形的性质,二次函数的最值问题,根据题意表示出PB 、BQ 的长度是解题的关键.26.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当单价是25元时,每天的量为250件,单价每上涨1元,每天的量就减少10件(1)写出商场这种文具,每天所得的利润(元)与单价(元)之间的函数关系式;(2)求单价为多少元时,该文具每天的利润;(3)商场的营销部上述情况,提出了A 、B 两种营销A:该文具的单价高于进价且没有超过30元;B:每天量没有少于10件,且每件文具的利润至少为25元请比较哪种的利润更高,并说明理由【正确答案】(1)w=-10x2+700x-10000;(2)即单价为35元时,该文具每天的利润;(3)A利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求值.(3)分别求出A、B中x的取值范围,然后分别求出A、B的利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有值2250,即单价为35元时,该文具每天的利润.(3)A利润高,理由如下:A中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有值,此时,值为2000元.B中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有值,此时,值为1250元.∵2000>1250,∴A利润更高27.如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C 关于抛物线对称轴的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,请求出点P 的坐标;若没有存在,请说明理由.【正确答案】(1)A 点坐标为(4,0),D 点坐标为(-2,0),C 点坐标为(0,-3);(2)(2,3)-或(1或(1;(3)在抛物线上存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形;点P 的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程2333084--=x x 可得到A 点和D 点坐标;令x=0,求出y=-3,可确定C 点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标值相等,得出点M 的纵坐标为:3±,分别代入函数解析式求解即可;(3)分BC 为梯形的底边和BC 为梯形的腰两种情况讨论即可.【详解】(1)在233384y x x =--中令2330384x x =--,解得122,4x x =-=,∴A(4,0)、D(-2,0).在233384y x x =--中令0x =,得3y =-,∴C (0,-3);(2)过点C 做x 轴的平行线a ,交抛物线与点1M ,做点C 关于x 轴的对称点C ',过点C '做x 轴的平行线b ,交抛物线与点23M M 、,如下图所示:∵△MAD 的面积与△CAD 的面积相等,且它们是等底三角形∴点M 的纵坐标值跟点C 的纵坐标值相等∵点C 的纵坐标值为:33-=∴点M 的纵坐标值为:3m y =∴点M 的纵坐标为:3±当点M 的纵坐标为3-时,则2333384x x -=--解得:2x =或0x =(即点C ,舍去)∴点1M 的坐标为:(2,3)-当点M 的纵坐标为3时,则2333384x x =--解得:1x =±∴点2M的坐标为:(1+,点3M的坐标为:(1-∴点M 的坐标为:(2,3)-或(1+或(1;(3)存在,分两种情况:①如图,当BC 为梯形的底边时,点P 与D 重合时,四边形ADCB 是梯形,此时点P 为(-2,0).②如图,当BC 为梯形的腰时,过点C 作CP//AB ,与抛物线交于点P ,∵点C ,B 关于抛物线对称,∴B(2,-3)设直线AB 的解析式为11y k x b =+,则111140{23k b k b +=+=-,解得113{26k b ==-.∴直线AB 的解析式为362y x =-.∵CP//AB ,∴可设直线CP 的解析式为32y x m =+.∵点C 在直线CP 上,∴3m =-.∴直线CP 的解析式为332y x =-.联立2332{33384y x y x x =-=--,解得110{3x y ==-,226{6x y ==∴P(6,6).综上所述,在抛物线上存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形,点P 的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.2023-2024学年广东省深圳市中考数学专项突破仿真模拟试题(5月)一、选一选(共12小题,每小题3分,满分36分)1.-5的倒数是A.15 B.5 C.-15 D.-52.()22-的算术平方根是()A.2 B.2- C.2± D.3.下列运算正确的是()A.a 3+a 3=2a 6B.(x 2)3=x 5C.2a 6÷a 3=2a 2D.x 3•x 2=x 54.明天数学课要学“勾股定理”,小颖在“”搜索引擎中输入“勾股定理”,能搜到与之相关的结果个数约为,这个数用科学记数法表示为()A.51.2510⨯ B.61.2510⨯ C.71.2510⨯ D.81.2510⨯5.下列图形中,由AB ∥CD ,能得到∠1=∠2的是()A. B. C. D.6.下列图形中,既是轴对称图形又是对称图形的是()A. B. C. D.7.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差8.如图是由若干个同样大小的正方体搭成几何体从上往下看到的图形,小正方形中的数字表示该位置立方体的个数,则这个几何体从正面看应该是()A.B.C.D.9.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中没有能判断△ABC ∽△AED 的是()A.∠AED=∠BB.∠ADE=∠CC.AD AC AE AB =D.AD AE AB AC=10.下列是必然的是()A.今年6月20日双柏的天气一定是晴天B.2008年奥运会刘一定能夺得110米跨栏C.在学校操场上抛出的篮球会下落D.打开电视,正在播广告11.若没有等式组0122x a x x +⎧⎨->-⎩>有解,则a 的取值范围是()A.1a >- B.1a < C.1a ≤ D.1a ≥-12.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二、填空题:13.sin30°﹣|﹣2|+(π﹣3)0=_____.14.如图,O 的弦CD 与直径AB 相交,若50BAD ∠=︒,则ACD ∠=_____________°.15.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20m ,则电梯楼的高BC 为____________米(到0.1).(参考数据:≈1.41416.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧(»AB)对应的圆心角(∠AOB )为120°,OC 的长为2cm ,则三角板和量角器重叠部分的面积为_____.17.在△ABC 中,AD 是BC 边上的高,AD=6,AC=10,tan∠BAD=13,则△ABC 的面积为_____.三、解答题(本大题共8小题,计69分)18.先化简,再求值.(2212111x x x x -+++-)÷11x x -+,其中+1.19.今年苏州市在全市中小学中开展以感恩和生命为主题的教育,各中小学学生实际,开展了形式多样的感恩教育.下面图①,图②分别是某校部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:(1)求本次被学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?20.“学雷锋日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与,内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项内容.(1)若随机选一个年级的学生代表和一项内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.21.如图,函数y1=﹣x+2的图象与反比例函数y2=kx的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=13,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.22.商场某种商品平均每天可30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件没有变、正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?。
广东省深圳市宝安、罗湖、福田、龙华四区2024届中考数学全真模拟试卷含解析
广东省深圳市宝安、罗湖、福田、龙华四区2024届中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是263.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步) 1.0 1.2 1.1 1.4 1.3天数 3 3 5 7 12在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.44.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.705.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=13C.a=1 D.a=26.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB7.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数8.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习9.若一个多边形的内角和为360°,则这个多边形的边数是()A.3 B.4 C.5 D.6 10.3点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°11.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.(12)﹣1=2 C.x+y=xy D.x6÷x2=x312.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN =__________.14.分解因式:2x 2﹣8=_____________15.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x =-上的概率是_________.16.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 17.如图,在圆O 中,AB 为直径,AD 为弦,过点B 的切线与AD 的延长线交于点C ,AD =DC ,则∠C =________度.18.如图,用10 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m 1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(≈1.73).20.(6分)如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边于点D .则∠ADC 的度数为( )A .40°B .55°C .65°D .75°21.(6分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.22.(8分)解不等式组: .23.(8分)在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.求证:四边形BFDE 是矩形;若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.(10分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 25.(10分)如图,∠AOB=90°,反比例函数y=﹣2x(x <0)的图象过点A (﹣1,a ),反比例函数y=k x (k >0,x>0)的图象过点B ,且AB ∥x 轴. (1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=kx于另一点C ,求△OBC 的面积.26.(12分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.27.(12分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.2、C【解题分析】根据众数、中位数、平均数以及方差的概念求解.【题目详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【题目点拨】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.3、B【解题分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【题目详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B . 【题目点拨】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 4、C 【解题分析】根据中位数和众数的概念进行求解. 【题目详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80 众数为:1.75; 中位数为:1.1. 故选C . 【题目点拨】本题考查1.中位数;2.众数,理解概念是解题关键. 5、A 【解题分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断. 【题目详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ; (2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当a =a a =-=,此时a a >-,∴当a =“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A. 【题目点拨】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.6、A【解题分析】根据三角形中位线定理判断即可.【题目详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7、C【解题分析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.8、B【解题分析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形. 详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.9、B【解题分析】利用多边形的内角和公式求出n即可.【题目详解】由题意得:(n-2)×180°=360°,故答案为:B. 【题目点拨】本题考查多边形的内角和,解题关键在于熟练掌握公式. 10、B 【解题分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 【题目详解】解:3点40分时针与分针相距4+2060=133份, 30°×133=130, 故选B . 【题目点拨】本题考查了钟面角,确定时针与分针相距的份数是解题关键. 11、B 【解题分析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果. 详解:A. (a ﹣3)2=a 2﹣6a+9,故该选项错误; B. (12)﹣1=2,故该选项正确; C.x 与y 不是同类项,不能合并,故该选项错误; D. x 6÷x 2=x 6-2=x4,故该选项错误. 故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键. 12、B 【解题分析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程, 【题目详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B .此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN 的长.【题目详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴12CN CQAM AQ==,21CP CDAP AM==,设CN=x,AM=1x,∴82 21x=,解得,x=1,∴CN=1,故答案为1.【题目点拨】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.14、2(x+2)(x﹣2)【解题分析】先提公因式,再运用平方差公式.【题目详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【题目点拨】考核知识点:因式分解.掌握基本方法是关键.15、320【解题分析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y b ax y -=⎧⎨+=⎩和双曲线3y x =-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,则(a ,b )的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x=-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的概率是:320.故答案为320. 点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.16、429b a8b c 【解题分析】(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【题目详解】(1)(23b a )2=429b a; 故答案为429b a; (2)210ab c 54a c ÷=21045ab c c a ⨯=8b c.故答案为8b c. 【题目点拨】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.17、1【解题分析】利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC 为等腰直角三角形,从而得到∠C 的度数.【题目详解】解:∵AB 为直径,∴∠ADB=90°,∵BC 为切线,∴AB ⊥BC ,∴∠ABC=90°,∵AD=CD ,∴△ABC 为等腰直角三角形,∴∠C=1°.故答案为1.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质.18、2【解题分析】设与墙平行的一边长为xm ,则另一面为202x - , 其面积=2201·1022x x x x -=--, ∴最大面积为241005042ac b a -== ; 即最大面积是2m 1.故答案是2.【题目点拨】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、简答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的长约为635m.【解题分析】试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA==1500×=500m在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.20、C.【解题分析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.21、见解析【解题分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【题目详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【题目点拨】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC ≌△DCB .难度不大,属于基础题.22、x<2.【解题分析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可. 试题解析:,由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.23、(1)见解析(2)见解析【解题分析】 试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA =∠FAB ,根据等腰三角形的判定与性质,可得∠DAF =∠DFA ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC ,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .【题目点拨】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DFA 是解题关键.24、22(1)a +,15. 【解题分析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a =9,∴(a +1)2=1.∴原式=21105=. 25、(1)a=2,k=8(2)OBC S=1.【解题分析】 分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),∴a=﹣21-=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.26、(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解题分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【题目详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值()()221330--+-. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴2,25∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1), ∴OA=1,CO=1.∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=21025=AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【题目点拨】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.27、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.。
2023年广东省深圳市中考模拟数学试题(含答案解析)
2023年广东省深圳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________....A .B .C .D .7.如图,三角板的直角顶点落在矩形纸片的一边上.若250∠=︒,则1∠=()A .35°B .40°C .45°D .50°8.下列说法错误..的是()A .对角线垂直且互相平分的四边形是菱形B .同圆或等圆中,同弧对应的圆周角相等C .对角线相等的四边形是矩形D .对角线垂直且相等的平行四边形是正方形9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A .3元,3.5元B .3.5元,3元C .4元,4.5元D .4.5元,4元10.如图,AB 与O 相切于点F ,AC 与O 交于C D 、两点,45BAC ∠=︒,BE CD ⊥于点E ,且BE 经过圆心,连接OD ,若5OD =,8CD =,则BE 的长为()A .523+B .5二、填空题11.若226,3a b a b =--=-,则12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有13.若1-是关于x 的一元二次方程14.在平面直角坐标系xOy 中,将一块含有的坐标为(1,0),AB =22析式______.三、解答题AB= 21.如图①,已知线段8半圆C上的一个动点(P与点(1)判断线段AP 与PD 的大小关系,并说明理由;(2)连接PC ,当60ACP ∠=︒时,求弧AD 的长;(3)过点D 作DE AB ⊥,垂足为E (如图②),设AP x OE y ==,,求y 与关系式,并写出x 的取值范围.22.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 点,连接DE ,交AC 于点F .(1)如图①,当13CE EB =时,求CEF CDF S S △△的值;(2)如图②当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图③,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:参考答案:【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n 次幂的形式(1≤a <10,n 为正整数.)5.B【分析】逐一进行判断即可得出答案.【详解】A.844a a a ÷=,故错误;B.326()a a =,故正确;C.235a a a ∙=,故错误;D.4442a a a +=,故错误;故选:B .【点睛】本题主要考查同底数幂的乘除法,幂的乘方,合并同类项,掌握同底数幂的乘除法,幂的乘方运算法则,合并同类项的法则是解题的关键.6.C【分析】根据一次函数交点与不等式关系直接求解即可得到答案;【详解】解:由图像可得,在P 点右侧3y ax =-的图像在3y x b =+的下方,∴不等式的解集为:2x >-,故选C .【点睛】本题考查一次函数交点与不等式的关系,解题的关键是看懂一次函数图像.7.B【分析】根据题意可知AB ∥CD ,∠FEG =90°,由平行线的性质可求解∠2=∠3,利用平角的定义可求解∠1的度数.【详解】解:如图,由题意知:AB ∥CD ,∠FEG =90°,∴∠2=∠3,∵∠2=50°,∴∠3=50°,∵∠1+∠3+90°=180°,∴∠1+∠3=90°,∴∠1=40°,故选:B .【点睛】本题主要考查平行线的性质,找到题目中的隐含条件是解题的关键.8.C【分析】根据平行四边形、矩形、菱形、正方形的判定方法及圆周角定理,分别分析得出答案.【详解】解:A .对角线垂直且互相平分的四边形是菱形,所以A 选项说法正确,故A 选项不符合题意;B .同圆或等圆中,同弧对应的圆周角相等,所以A 选项说法正确,故B 选项不符合题意;C .对角线相等的四边形是不一定是矩形,所以C 选项说法不正确,故C 选项符合题意;D .对角线垂直且相等的平行四边形是正方形,所以D 选项说法正确,故D 选项不符合题意.故选:C .【点睛】本题主要考查了圆周角定理,平行四边形的判定与性质,菱形的判定等知识,熟练掌握圆周角定理,平行四边形的判定与性质,菱形的判定方法等进行求解是解决本题的关键.9.A【分析】设1听果奶为x 元,1听可乐y 元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【详解】设1听果奶为x 元,1听可乐y 元,由题意得:42030.5x y y x +=-⎧⎨-=⎩,解得:3y 3.5x =⎧⎨=⎩,故选A .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量∵AB 与O 相切于点F ,∴OF AB ⊥,∵45BAC ∠=︒,BE CD ⊥,∴ABE 是等腰直角三角形,∴45B A ∠=∠=︒,∴OBF 是等腰直角三角形,∴5BF OF OD ===,∴252OB OF ==,∵OE CD ⊥,∴142DE CD ==,∴223OE OD DE =-=,∴523BE OB OE =+=+,故选:A .【点睛】本题主要考查了切线的性质、等腰直角三角形的判定和性质、垂径定理、勾股定理等知识,熟练掌握切线的性质是解题的关键.11.2-【详解】为正三角形,=︒,AB BE60==∠-∠=︒45ABE ABN是正方形ABCD的对角线,=︒45(4)由函数图象可得性质:①当0x<②该函数与x轴有唯一交点.【点睛】本题考查的是函数的自变量的取值范围,求解函数值,画函数图象,归纳函数图象的性质,掌握“画函数图象以及根据图象总结函数的性质=,理由见解析21.(1)AP PD∵OA 是半圆C 的直径,∴90APO ∠=︒,即OP 又∵AD 是圆O 的弦,∴AP PD =;(2)解:如图①,连接由(1)知,AP PD =.又∵AC OC =,∴.PC OD ∥∴60AOD ACP ∠=∠=︒∵8AB =,又∵A A ∠=∠,∴APO AED △∽△,∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x xy =-,∴2142y x =-+,当点E 落在O 点时,AP 则x 的取值范围是0x <②当点E 落在线段OB 上时,如图③,连接OP ,同①可得,APO AED △∽△∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x y x =+,∴2142y x =-,理解正方形的性质是关键.。
深圳中考一模数学试题及答案
深圳中考一模数学试题及答案一、选择题部分1. 某商场举办促销活动,针对一个商品进行特价优惠,原价800元,现价600元。
每天销售量平均为50件,活动进行了10天后,销售了多少件该商品?答案:500件2. 若一个等差数列的首项是2,末项是98,公差为6,求该等差数列的项数。
答案:17项3. 若log₈(3x+4)=2,则x的值是多少?答案:24. 已知函数f(x) = 3x² + 2x - 1,求f(2)的值。
答案:175. 一个正方形的周长是36cm,求其面积。
答案:81cm²二、解答题部分1. 已知一个圆的半径为3cm,求其面积。
解答:根据圆的面积公式,面积= π * 半径²。
代入已知数据,面积 = 3.14 * 3² = 28.26 cm²。
2. 风筝的竖直高度与水平距离的比为3:4,如果风筝线的长度为50m,求风筝线与地面的夹角的正弦值。
解答:设风筝竖直高度为3x,水平距离为4x。
根据勾股定理,风筝线的长度可以表示为:(3x)² + (4x)² = 50²。
化简得:9x² + 16x² = 2500。
解得:x = 5。
所以,风筝竖直高度为15m,水平距离为20m。
夹角正弦值 = 风筝竖直高度 / 风筝线的长度 = 15 / 50 = 0.3。
3. 已知如下等差数列:10,13,16,...,50,求该等差数列的项数。
解答:设该等差数列的项数为n,则最后一项可以表示为:a + (n-1)d = 50,其中a为首项,d为公差。
根据已知数据,a = 10,d = 3。
代入方程,10 + (n-1) * 3 = 50。
化简并解方程得:3n - 2 = 50,3n = 52,n ≈ 17.33。
所以,该等差数列的项数约为17。
4. 某种商品原价100元,商场搞促销活动,活动期间每件打7折,现售价是原价的多少?解答:打折后的价格 = 原价 * 折扣 = 100 * 0.7 = 70元。
2024年广东省深圳市中考数学模拟题临考安心卷(含解析)
2024年广东深圳中考数学模拟题临考安心卷7一.选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.12024的倒数是( )A.﹣2024B.2024C.12024D.―120242.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是( )A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣64.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm)分别是:23,24,23,25,26,23,25.则这组数据的众数和中位数分别是( )A.24,25B.23,23C.23,24D.24,245.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°(第5题图)(第7题图)6.下列运算正确的是( )A.3a+2b=5ab B.5a2﹣2a2=3C.7a+a=7a2 D.(x﹣1)2=x2+1﹣2x7.如图△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=8,则四边形AEDF 的周长是( )A.24B.32C.40D.488.我国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步.如果设宽为x 步,则可列出方程( )A .x (x ﹣6)=864B .x (x ﹣12)=864C .x (x +6)=864D .x (x +12)=8649.如图,一个长方体木箱沿斜面滑至如图位置时,AB =2m ,木箱高BE =1m ,斜面坡角为α,则木箱端点E 距地面AC 的高度表示为( )m .A .1cosα+2sin αB .2cos α+sin αC .cos α+2sin αD .tan α+2sin α(第9题图) (第10题图)10.如图1,在△ABC 中,∠ABC =60°.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 随x 变化的关系图象,其中M 为曲线DE 的最低点,则△ABC 的面积为( )A .43B .433C .23D .233二.填空题(本大题共5小题,每小题3分,共15分)11.因式分解:ab 2﹣4a = .12.一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是 .13.如图,点A ,B ,C 都在⊙O 上,如果∠AOC =∠ABC ,那么∠A +∠C 的度数为 .14.如图,在平面直角坐标系中,AB ⊥OB 交y 轴于点A ,BC ⊥OC ,∠AOB =∠BOC =30°,AB =1,反比例函数y =k x(k ≠0)恰好经过点C ,则k 的值为 .(第14题图)(第15题图)15.如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF 分别交BD,DE于点M,N,且AF⊥DE,连接PN,则PN的长为 .三.解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)计算:8―(π―3.14)0―2sin45°+|2―2|.17.(7分)先化简,再求值:(2a―12aa+2)÷a―4a2+4a+4,其中a=2.18.(8分)某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有 人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,恰好四位同学中有两名是男同学,两名是女同学.现决定从这四人中任选两名参加全市书法大赛,用画树状图求恰好选中一男一女的概率.19.(8分)超市购进A、B两种商品,购进4件A种商品比购进5件B种商品少用10元,购进20件A 种商品和10件B种商品共用去160元.(1)求A、B两种商品每件进价分别是多少元?(2)若该商店购进A、B两种商品共200件,都标价10元出售,售出一部分商品后降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进A种商品的件数少30件,该商店此次销售A、B两种商品共获利不少于640元,求至少购进A种商品多少件?20.(8分)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.21.(9分)嘉琪同学经常运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C1:y=a (x﹣1)2+3.2;若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系C2:y =﹣0.4x+b,且当羽毛球的水平距离为1m时,飞行高度为2.4m:(1)求a,b的值;(2)①嘉琪经过分析发现,若选择扣球的方式,刚好能使球过网,求球网AB的高度为多少m?并通过计算判断如果选择吊球的方式能否使球过网;②要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.(3)通过对本次训练进行分析,若吊球路线的形状、最大高度均保持不变,直接写出他应该向正前方移动 米吊球,才能让羽毛球经过点C正上方0.7m处?22.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E 点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出S△ACGS△AHG的值.2024年广东深圳中考数学模拟题临考安心卷7参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.12024的倒数是( )A.﹣2024B.2024C.12024D.―12024【分析有据】根据倒数的定义即可得到结论.【解题有法】解:12024的倒数是2024,故选:B.2.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析有据】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【解题有法】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.3.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是( )A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析有据】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解题有法】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.4.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm)分别是:23,24,23,25,26,23,25.则这组数据的众数和中位数分别是( )A.24,25B.23,23C.23,24D.24,24【分析有据】根据众数、中位数的定义进行解答即可.【解题有法】解:这组数据中,出现次数最多的是23,共出现3次,因此众数是23,将这组数据从小到大排列,处在中间位置的一个数是24,因此中位数是24,即:众数是23,中位数是24,故选:C.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【分析有据】先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补,即可得出结论.【解题有法】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.下列运算正确的是( )A.3a+2b=5ab B.5a2﹣2a2=3C.7a+a=7a2 D.(x﹣1)2=x2+1﹣2x【分析有据】由合并同类项法则及完全平方公式依次判断每个选项即可.【解题有法】解:A.3a和2b不是同类项,不能合并,A错误,故选项A不符合题意;B.5a2和2b2不是同类项,不能合并,B错误,故选项B不符合题意;C.7a+a=8a,C错误,故选项C不符合题意;D.(x﹣1)2=x2﹣2x+1,D正确,选项D符合题意.故选:D.7.如图△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=8,则四边形AEDF的周长是( )A.24B.32C.40D.48【分析有据】由DE∥AC,DF∥AB证出四边形AEDF为平行四边形,再证出∠FAD=∠FDA,得出FA =FD,则平行四边形AEDF为菱形,由菱形的性质即可得出答案.【解题有法】解:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA,∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.∴AE=DE=DF=AF=8,∴四边形AEDF的周长=4AF=4×8=32.故选:B.8.我国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步.如果设宽为x步,则可列出方程( )A.x(x﹣6)=864B.x(x﹣12)=864C.x(x+6)=864D.x(x+12)=864【分析有据】依据它的宽比长少12步.也就是长比宽多12步,设宽为x步,则长为(x+12)步,然后根据长方形面积公式列出方程即可.【解题有法】解:依据它的宽比长少12步.也就是长比宽多12步,设宽为x步,则长为(x+12)步,由题意得,x(x+12)=864,故选:D.9.如图,一个长方体木箱沿斜面滑至如图位置时,AB=2m,木箱高BE=1m,斜面坡角为α,则木箱端点E距地面AC的高度表示为( )m.A .1cosα+2sin αB .2cos α+sin αC .cos α+2sin αD .tan α+2sin α【分析有据】过E 作EN ⊥AC 于N ,交AB 于M ,过B 作BG ⊥AC 于G ,BH ⊥EN 于H ,由锐角三角函数定义分别求出BG 、EH ,即可求解.【解题有法】解:过E 作EN ⊥AC 于N ,交AB 于M ,过B 作BG ⊥AC 于G ,BH ⊥EN 于H ,如图所示:则四边形BHNG 是矩形,∴HN =BG ,在Rt △ABG 中,∠BAG =α,sin ∠BAG =BG AB ,∴BG =AB •sin ∠BAG =2sin α(m ),∴HN =2sin α(m ),∵∠EBM =∠ANM =90°,∠BME =∠AMN ,∴∠BEM =∠MAN =α,在Rt △EHB 中,∠BEM =α,BE =1m ,∵oos ∠BEM =EH BE,∴EH =BE •cos ∠BEM =1×cos α=cos α(m ),∴EN =EH +HN =(cos α+2sin α)m ,即木箱端点E 距地面AC 的高度为(cos α+2sin α)m ,故选:C .10.如图1,在△ABC 中,∠ABC =60°.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 随x 变化的关系图象,其中M 为曲线DE 的最低点,则△ABC 的面积为( )A .43B .433C .23D .233【分析有据】作AD ⊥BC ,当动点P 运动到点D 时,线段AP 的长度最短,此时AB +BD =23,当动点P 运动到点C 时,运动结束,此时AC =2213,根据直角三角形的性质结合勾股定理求解即可.【解题有法】解:作AD ⊥BC ,垂足为D ,当动点P 运动到点D 时,线段AP 的长度最短,此时点P 运动的路程为23,即AB +BD =23,当动点P 运动到点C 时,运动结束,线段AP 的长度就是AC 的长度,此时AC =2213,∵∠ABC =60°,∴∠BAD =30°,∴AB =2BD ,∴AB +BD =3BD =23,∴BD =233,AB =433,∴AD =AB 2―BD 2=2,在Rt △ABD 中,AC =2213,∴CD =AC 2―AD 2=433,∴BC =BD +CD =23,∴△ABC 的面积为12BC ×AD =12×23×2=23,故选:C .二.填空题(本大题共7小题,共55分)11.因式分解:ab 2﹣4a = a (b +2)(b ﹣2) .【分析有据】原式提取公因式,再利用平方差公式分解即可.【解题有法】解:原式=a (b 2﹣4)=a (b +2)(b ﹣2),故答案为:a (b +2)(b ﹣2)12.一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是 13 .【分析有据】根据题目中的数据,可以计算出从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率.【解题有法】解:∵一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,∴从这个箱子里随机摸出一个球,一共有6种可能性,其中出的球上所标数字大于4的有2种可能性,∴出的球上所标数字大于4的概率是26=13,故答案为:13.13.如图,点A,B,C都在⊙O上,如果∠AOC=∠ABC,那么∠A+∠C的度数为 .【分析有据】先利用圆周角定理以及周角是360°可得∠AOC+2∠ABC=360°,再结合已知可得3∠AOC=360°,从而可得∠AOC=∠ABC=120°,然后利用四边形内角和是360°进行计算即可解答.【解题有法】解:如图:∵∠AOC+∠1=360°,∠1=2∠ABC,∴∠AOC+2∠ABC=360°,∵∠AOC=∠ABC,∴3∠AOC=360°,∴∠AOC=∠ABC=120°,∴∠A+∠C=360°﹣∠AOC﹣∠ABC=120°,故答案为:120°.14.如图,在平面直角坐标系中,AB⊥OB交y轴于点A,BC⊥OC,∠AOB=∠BOC=30°,AB=1,反比例函数y=kx(k≠0)恰好经过点C,则k的值为 9316 .【分析有据】解直角三角形得到点C坐标即可求出k.【解题有法】解:根据题意可知,△AOB和△BOC是直角三角形,∵AB=1,∠AOB=30°,∴OB=3,∵OB=3,∠BOC=30°,∴OC=3 2,作CD⊥x轴,垂足为D,∠COD=90°﹣∠AOB﹣∠BOC=30°,∵OC =32,∴CD =34,OD =334,C (334,34),∵点C 在反比例函数图象上,∴k =9316.故答案为:9316.15.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则PN 的长为 26515 .【分析有据】作PH ⊥AN 于H .证明△ADF ≌△DCE (ASA ),由全等三角形的性质得出DF =CE =1,AF =DE =5,由三角形ADF 的面积求出DN ,由勾股定理求出AN ,由比例线段求出AH ,HN 的长,根据勾股定理可得出答案.【解题有法】解:作PH ⊥AN 于H .∵正方形ABCD 的边长为2,点E 是BC 的中点,∴AB =BC =CD =AD =2,∠ABC =∠C =∠ADF =90°,CE =BE =1,∴AE =AB 2+BE 2=5,∵AF ⊥DE ,∴∠DAF +∠ADN =∠ADN +∠CDE =90°,∴∠DAN =∠EDC ,在△ADF 与△DCE 中,{∠ADF =∠CAD =CD ∠DAF =∠CDE ,∴△ADF ≌△DCE (ASA ),∴DF =CE =1,AF =DE =5,∵S △ADF =12×AD ×DF =12×AF ×DN ,∴DN =AD ⋅DF AF=255,∴AN =AD 2―DN 2=455,NE =355,∵BE ∥AD ,∴PA PE =AD BE =2,∴PA AE =23,∵PH ∥EN ,∴PH EN =AH AN =AP AE =23,∴HN =13AN =4515,PH =23EN =255,∴PN =HN 2+PH 2=26515,故答案为:26515.三.解答题(共7小题)16.计算:8―(π―3.14)0―2sin 45°+|2―2|.【分析有据】先化简各式,然后再进行计算即可解答.【解题有法】解:8―(π―3.14)0―2sin 45°+|2―2|=22―1﹣2×22+2―2=22―1―2+2―2=1.17.先化简,再求值:(2a ―12aa +2)÷a ―4a 2+4a +4,其中a =2.【分析有据】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可.【解题有法】解:原式=2a (a +2)―12aa +2÷a ―4(a +2)2=2a 2―8a a +2•(a +2)2a ―4=2a (a ―4)a +2•(a +2)2a ―4=2a (a +2)=2a 2+4a ,当a =2时,原式=2×22+4×2=8+8=16.18.某校在课后服务中,成立了以下社团:A .计算机,B .围棋,C .篮球,D .书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D 所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有 360 人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,恰好四位同学中有两名是男同学,两名是女同学.现决定从这四人中任选两名参加全市书法大赛,用画树状图求恰好选中一男一女的概率.【分析有据】(1)由D的人数除以所占比例即可;(2)求出C的人数,即可解决问题;(3)由该校共有学生人数除以参加篮球社团的学生所占的比例即可;(4)画树状图,共有12种等可能的结果,其中恰好选中一男一女的结果有8种再由概率公式求解即可.【解题有法】解:(1)∵D所占扇形的圆心角为150°,∴这次被调查的学生共有:150÷150360=360(人);故答案为:360.(2)C组人数为:360﹣120﹣30﹣150=60(人),故补充条形统计图如下图:(3)1800×60360=300(人),答:这1800名学生中有300人参加了篮球社团,(4)设甲乙为男同学,丙丁为女同学,画树状图如下:∵一共有12种可能的情况,恰好选择一男一女有8种,∴P (一男一女)=812=23.19.超市购进A 、B 两种商品,购进4件A 种商品比购进5件B 种商品少用10元,购进20件A 种商品和10件B 种商品共用去160元.(1)求A 、B 两种商品每件进价分别是多少元?(2)若该商店购进A 、B 两种商品共200件,都标价10元出售,售出一部分商品后降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进A 种商品的件数少30件,该商店此次销售A 、B 两种商品共获利不少于640元,求至少购进A 种商品多少件?【分析有据】(1)根据“购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(200﹣a ) 件,“利润不少于640元”列出不等式解答即可.【解题有法】(1)设A 甲种商品每件进价x 元,B 乙种商品每件进价y 元,根据题意,得{5y ―4x =1020x +10y =160,解得:{x =5y =6,答:A 种商品每件进价5元,B 种商品每件进价6元.(2)设A 种商品购进a 件,则乙种商品(200﹣a )件,根据题意,得10(a ﹣30)+0.8×10[200﹣(a ﹣30)]﹣5a ﹣6(200﹣a )≥640,解得:a ≥100,答:至少购进A 种商品100件.20.如图,已知Rt △ABC 中,∠C =90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC 的角平分线AD ,交BC 于点D ;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.【分析有据】(1)①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于12AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;(2)根据线段垂直平分线及角平分线的性质推出角之间的关系,再根据平行线的判定得出OD∥AC,从而得出OD⊥BC即可;(3)根据题意得到线段之间的关系:OM=2BM,BO=3BM,AB=5BM,再根据相似三角形的性质求解即可.【解题有法】解:(1)如图所示,①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC 的平分线;②分别以点A、点D为圆心,以大于12AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;③如图,⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线,且点O在EF上,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=12AM,AM=4BM,∴OM=2BM,BO=3BM,AB=5BM,∴BOAB=3BM5BM=35,由(2)可知Rt△BOD与Rt△BAC有公共角∠B,∴Rt△BOD∽Rt△BAC,∴DOCA=BOBA,即DO10=35,解得DO=6,故⊙O的半径为6.21.嘉琪同学经常运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C1:y=a(x﹣1)2+3.2;若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系C2:y=﹣0.4x+b,且当羽毛球的水平距离为1m时,飞行高度为2.4m:(1)求a,b的值;(2)①嘉琪经过分析发现,若选择扣球的方式,刚好能使球过网,求球网AB的高度为多少m?并通过计算判断如果选择吊球的方式能否使球过网;②要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.(3)通过对本次训练进行分析,若吊球路线的形状、最大高度均保持不变,直接写出他应该向正前方移动 1.5 米吊球,才能让羽毛球经过点C正上方0.7m处?【分析有据】(1)根据一次函数解析式和过点(1,2.4)解得b,再求得点P,代入二次函数求得a;(2)①选择扣球,利用一次函数求得网AB高;选择吊球,结合OA,利用二次函数求得值与网高进行判断即可;②令y=0,分别解得对应函数的水平距离,再与OC做差比较大小即可知选择吊球,球的落地点到C点的距离更近;(3)向正前方移动m米吊球,二次函数关系变为y=﹣0.4×(x﹣m﹣1)2+3.2,将点C(5,0.7),即可求得向正前方移动距离.【解题有法】解:(1)羽毛球的水平距离为1m时,飞行高度为2.4m,则2.4=﹣0.4+b,解得b=2.8,那么一次函数关系C2:y=﹣0.4x+2.8,当x=0,y=2.8,则点P(0,2.8),2.8=a(0﹣1)2+3.2,解得a=﹣0.4,故a=﹣0.4,b=2.8;(2)①选择扣球,一次函数C2:y=﹣0.4x+2.8,且OA=3,则y=﹣0.4×3+2.8=1.6,那么球网AB的高度为1.6m;选择吊球,二次函数关系C1:y=﹣0.4×(3﹣1)2+3.2=1.6,那么选择吊球的方式也刚好能使球过网;②令y=0,﹣0.4×(x﹣1)2+3.2=0,解得x1=22+1,x2=1―22(舍去),﹣0.4x+2.8=0,解得x=7,∵OA=3m,CA=2m,∴OC=OA+AC=5,∵7﹣5=2,|22+1―5|=4―22<2,∴选择吊球,使球的落地点到C点的距离更近;(3)向正前方移动m米吊球,二次函数关系为:y=﹣0.4×(x﹣m﹣1)2+3.2根据题意过点(5,0.7),则﹣0.4×(5﹣m﹣1)2+3.2=0.7,解得m1=1.5,m2=6.5(舍去),故他应该向正前方移动1.5米吊球.故答案为:1.5.22.已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE的周长;(2)如图2,当D 点在△ABC 外部时,E 、F 分别是AB 、BC 的中点,连接EF 、DE 、DF ,将DE 绕E 点逆时针旋转90°得到EG ,连接CG 、DG 、FG ,若∠FDG =∠FGE ,请探究FD 、FG 、CG 之间的数量关系并给出证明;(3)如图3,当D 在△ABC 内部时,连接AD ,将AD 绕点D 逆时针旋转90°,得到ED ,若ED 经过BC 中点F ,连接AE 、CE ,G 为CE 的中点,连接GF 并延长交AB 于点H ,当AG 最大时,请直接写出S △ACG S △AHG的值.【分析有据】(1)过点E 作EH ⊥AB 交BA 的延长线于H ,利用AAS 证明△DEH ≌△CDA ,可得EH =AD =2,DH =AC =4,AH =DH ﹣AD =4﹣2=2,运用勾股定理可得AE =22,即可得出答案;(2)连接AF 、AG ,过点F 作FH ⊥FG 交AG 于H ,利用SAS 证明△EAG ≌△EFD ,可得AG =FD ,∠AGE =∠FDE ,再利用SAS 证明△AFH ≌△CFG ,可得AH =CG ,即可得出答案;(3)设AE 、GH 交于点M ,作AB 中点P ,连接PC 、PE 、BE 、AF ,作PC 中点Q ,连接AQ 、QG ,设AB =AC =4a ,则QG =a ,PA =2a ,运用勾股定理可得PC =25a ,进而可得AQ =12PC =5a ,当A 、Q 、G 三点共线时,AG =AQ +QG =5a +a =(5+1)a ,取得最大值,利用ASA 证得△AHM ≌△AGM ,可得HM =GM ,AH =AG =(5+1)a ,根据S △ACG S △AHG=S △AEG 2S △AMG=12AE ⋅MG 2×12AM ⋅MG =12×AE AM=5―12,即可求得答案.【解题有法】解:(1)过点E 作EH ⊥AB 交BA 的延长线于H ,如图1,∵点D 是AB 的中点,且AB =4,∴AD =BD =12AB =2,在Rt △ACD 中,∠CAD =90°,AC =AB =4,∴tan ∠ACD =AD AC=24=12,CD =AD 2+AC 2=22+42=25,由旋转得:DE =CD =25,∠CDE =90°,即∠ADC +∠ADE =90°,∵∠ADC +∠ACD =90°,∴∠ADE =∠ACD ,在△DEH 和△CDA 中,{∠DHE =∠CAD =90°∠ADE =∠ACD DE =CD ,∴△DEH ≌△CDA (AAS ),∴EH =AD =2,DH =AC =4,∴AH =DH ﹣AD =4﹣2=2,在Rt △AEH 中,AE =AH 2+EH 2=22+22=22,∴△ADE 的周长=AD +DE +AE =2+25+22;(2)猜想:FD =CG +2FG ,理由如下:如图2,连接AF 、AG ,过点F 作FH ⊥FG 交AG 于H ,∵△ABC 是等腰直角三角形,E 、F 分别是AB 、BC 的中点,∴AE =EF ,AE ⊥EF ,AF =CF ,∴∠AEG +∠FEG =90°,由旋转得ED =EG ,∠DEG =90°,∴∠FED +∠FEG =90°,∠EDG =∠EGD =45°,∴∠AEG =∠FED ,在△EAG 和△EFD 中,{AE =EF ∠AEG =∠FED EG =ED,∴△EAG ≌△EFD (SAS ),∴AG =FD ,∠AGE =∠FDE ,∵∠FDG =∠FGE ,∴∠AGE +∠FGE =∠FDE +∠FDG =∠EDG =45°,即∠AGF =45°,∵∠GFH =90°,∴∠FHG =45°=∠FGH ,∴△FGH 是等腰直角三角形,∴FH =FG ,HG =2FG ,∵∠AFH +∠CFH =∠CFG +∠CFH =90°,∴∠AFH =∠CFG ,在△AFH 和△CFG 中,{AF =CF∠AFH =∠CFG FH =FG,∴△AFH ≌△CFG (SAS ),∴AH =CG ,∵AG =AH +HG ,∴FD =CG +2FG ;(3)设AE 、GH 交于点M ,作AB 中点P ,连接PC 、PE 、BE 、AF ,作PC 中点Q ,连接AQ 、QG ,如图,∵将AD 绕点D 逆时针旋转90°,得到ED ,∴△AED 是等腰直角三角形,∴AE AD =21,∠EAD =45°,∵△ABF 是等腰直角三角形,∴ABAF =21,∠BAF =45°,∴AB AF =AE AD ,∵∠BAF ﹣∠EAF =∠EAD ﹣∠EAF ,即∠BAE =∠FAD ,∴△BAE ∽△FAD ,∴∠BEA =∠FAD =90°,∵点P 是AB 的中点,∴PE =12AB ,∵Q 是PC 的中点,G 是EC 的中点,∴QG是△CPE的中位线,∴QG=12PE=14AB,QG∥PE,设AB=AC=4a,则QG=a,PA=2a,在Rt△PAC中,PC=PA2+AC2=(2a)2+(4a)2=25a,AQ=12PC=12×25a=5a,当A、Q、G三点共线时,AG=AQ+QG=5a+a=(5+1)a,取得最大值,又∵QG∥PE,∴AG∥PE,∴∠PEA=∠GAE,∵PE=PA,∴∠PAE=∠PEA=∠EAG,∵F是BC的中点,G是EC的中点,∴FG是△BEC的中位线,∴FG∥BE,∴AE⊥HG,∴△AHM≌△AGM(ASA),∴HM=GM,AH=AG=(5+1)a,∴AEAM=AHAB=4a(5+1)a=5―1,∴S△ACGS△AHG=S△AEG2S△AMG=12AE⋅MG2×12AM⋅MG=12×AEAM=5―12,∴S△ACGS△AHG的值为5―12.。
2023年中考数学全真模拟卷(含答案)
2023年中考数学全真模拟卷第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。
每小题给出的四个选项中只有一个选项是最符合题意的)1.2020的相反数是()A .12020B .-12020C .-2020D .±20202.据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm ,已知1nm =10﹣9m ,则90nm 用科学记数法表示为()A .0.09×10﹣6mB .0.9×10﹣7mC .9×10﹣8mD .90×10﹣9m3.如右图是某个几何体的三视图,该几何体为()A .长方体B .四面体C .圆柱体D .四棱锥4.下列运算正确的是()A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2b 3)3=a 5b 6D .(a 2)3=a 65.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =,则下列结论错误的是()A .AB CD =B .AC ∠=∠C .//AB CD D .OA OD=6.对一批校服进行抽查,统计合格校服的套数,得到合格校服的频率频数表如下:抽取件数501001502005008001000合格频数3080120140445720900合格频率0.60.80.80.70.890.90.9估计出售1200套校服,其中合格校服大约有()A .1080套B .960套C .840套D .720套8.已知函数3y x =-,113y x =-+,6y kx =+的图象交于一点,则k 值为().A .2B .2-C .3D .3-8.如图,将长方形纸片ABCD ,沿折痕MN 折叠,B 分别落在A 1,B 1的位置,A 1B 1交AD 于点E ,若∠BNM =65°,以下结论:①∠B 1NC =50°;②∠A 1ME =50°;③A 1M ∥B 1N ;④∠DEB 1=40°.正确的个数有()A .1个B .2个C .3个D .4个9.如图,某社会实践学习小组为测量学校A 与河对岸江景房B 之间的距离,在学校附近选一点C ,利用测量仪器测得60A ∠=︒,90C ∠=︒,AC =300米.由此可求得学校与江景房之间的距离AB 等于()A .150米B .600米C .800米D .1200米10.如图是二次函数y =ax 2+bx +c 的图象,对于下列说法:其中正确的有()①ac >0,②2a +b >0,③4ac <b 2,④a +b +c <0,⑤当x >0时,y 随x 的增大而减小,A .5个B .4个C .3个D .2个二、填空题(本大题共7小题,每小题4分,共28分)11.函数16y x =-中,自变量x 的取值范围是_____.12.在创建“平安校园”活动中,鄂州市某中学组织学生干部在校门口值日,其中五位同学5月份值日的次数分别是4,4,5,x ,6.已知这组数据的平均数是5,则这组数据的中位数是________.13.如图,已知AB ∥CD ∥EF ,FC 平分∠AFE ,∠C =25°,则∠A 的度数是_____.14.如图,在矩形ABCD 中,8AB =,6BC =,以B 为圆心,适当的长为半径画弧,交BD ,BC 于M ,N 两点;再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交CD 于点F ;再以B 为圆心,BD 的长为半径画弧,交射线BP 于点E ,则EF 的长为______.15.如图,在平面直角坐标系中,矩形ABCD 的BC 边落在y 轴上,其它部分均在第二象限,双曲线k y x=过点A ,延长对角线CA 交x 轴于点E ,以从AD 、AE 为边作平行四边形AEFD ,若平行四边形AEFD 的面积为2,则k 的值为_____.16.如图,将△ABC 沿BC 边上的中线AD 平移到△A′B′C′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为8,若AA′=1,则A′D 的值为______.17.如图,由两个长为2,宽为1的长方形组成“7”字图形.(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OBOA的值为____.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点1F ,摆放第三个“7”字图形得顶点2F ,依此类推,…,摆放第a 个“7”字图形得顶点-1n F ,…,则顶点2019F 的坐标为_____.三、解答题(本大题共3小题,每小题6分,共18分)18.先化简再求值:223422)1121x x x x x x ++-÷---+(,其中x 取﹣1、+1、﹣2、﹣3中你认为合理的数.19.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.20.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E.若D 为AC 的中点,求证:DE 是⊙O 的切线.四、解答题(本大题共3小题,每小题8分,共24分)21.已知点()11,A x y ,()22,B x y 是反比例函数(0)ky k x=≠图象上两点.(1)若点A ,B 关于原点中心对称,求122157x y x y -的值(则用含k 的代数式表示).(2)设11x a =-,21x a =+,若12y y <,求a 的取值范围.22.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.23.关于三角函数有如下的公式:①cos(α+β)=cos αcos β﹣sin αsin β;②sin(α+β)=sin αcos β+cos αsin β;③()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-⋅≠-⋅;利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如()(11tan 45tan 60tan105tan 456021tan 45tan 60+︒+︒︒=︒+︒==-+-︒⋅︒.根据上面的知识,你可以选择适当的公式解决下面的实际问题:(1)求tan 75︒,cos75°的值;(2)如图,直升机在一建筑物CD 上方的点Α处测得建筑物顶端点D 的俯角α为60°,底端点C 的俯角为75°,此时直升机与建筑物CD 的水平距离BC 为30m 求建筑物CD 的高.五、解答题(本大题共2小题,每小题10分,共20分)24.在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=12∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.25.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2023年中考数学全真模拟卷(答案)第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。
2023广东省深圳中学共同体中考一模数学试题及答案
2022—2023学年度第二学期模拟考试初三年级数学试卷一、选择题1. 下列各数中,绝对值最小的是( )A. ﹣2B. 3C. 0D. ﹣32. 已知点(1)A a -,与点(4)B b -,关于原点对称,则a b -的值为( )A 5- B. 5 C. 3 D. 3-3. 如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是( )AB.C. D.4. 如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,如果添加一个条件,可推出ABCD Y 菱形,那么这个条件可以是( )A. AB AC =B. AC BD =C. AC BD ⊥D.AB AC⊥5. 因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为( )A. 53.5110⨯ B. 63.5110⨯ C. 73.5110⨯ D.70.35110⨯..是6. 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A. 115°B. 120°C. 145°D. 135°7. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R < B. I 与R 的函数关系式是()2000I R R=>C. 当1000R >时,0.22I > D. 当8801000R <<时,I 的取值范围是0.220.25I <<8 如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为41,则直角三角形较短的直角边a 与较长的直角边b 的比ab的值是( )A.12B.23C.34D.459. 在△ABC 中,∠ACB =90°,AC =BC ,AB =10,用尺规作图的方法作线段AD 和线段DE ,保留作图痕迹如图所示,认真观察作图痕迹,则△BDE 的周长是( ).A. 8B. C.D. 1010. 如图,在ABC 中,90ACB ∠=︒,作CD AB ⊥于点D ,以AB 为边作矩形ABEF ,使得AF AD =,延长CD ,交EF 于点G ,作AH AC ⊥交EF 于点H ,作HN AH ⊥分别交DG ,BE 于点M 、N ,若HM MN =,1FH =,则边BD 的长为( )A.12B.C.D.二、填空题11. 因式分解:x 2y ﹣y =_____.12. 一个不透明的箱子里装有2个白球,3个红球,它们除颜色外均相同.从箱子里摸出1个球,是红球的概率为______.13. 紫砂並是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制壶艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,则这个紫砂壶的壶口半径r 的长为______mm .14. 如图,在直角坐标系中点()0,4A ,()3,4B ,将ABO 向右平移,某一时刻,反比例函数()0ky k x=≠图像恰好经过点A 和OB 的中点,则k 的值为______.15. 如图,点E 是正方形ABCD 边AB 上的一点,已知45DEF ∠=︒,EF 分别交边AC ,CD 于点G ,F,且满足AG DF ⋅=EG 的长为______.三、解答题16. 计算:()020236cos45-+-︒+.17. 先化简,再求值:2210511293x x x x --⎛⎫⎛⎫--÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3x =.18. 某校对九年级学生进行了一次防疫知识竞赛,并随机抽取甲、乙两班各50名学生的竞赛成绩(满分100分)进行整理,描述分析.下面给出部分信息:甲班成绩的频数分布直方图如图所示(数据分为6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),其中90分以及90分以上的人为优秀;甲班的成绩在7080x ≤<这一组的是:72,72,73,75,76,77,77,78,78,79,79,79,79.甲、乙两班成级的平均数、中位数、众数和优秀人数如下表:的平均数中位数众数优秀人数甲班成绩78m 853乙班成绩7573826根据以上信息,回答下列问题:(1)表中的m =______;(2)在此次竞赛中,你认为甲班和乙班中,______班表现的更优异,理由是______;(3)如果该校九年级学生有600名,估计九年级学生成绩优秀的有多少人?19. 探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数26y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.x (2)-1-012345…y…654a21b7…(1)写出函数关系式中m 及表格中a ,b 的值;m =______,=a ______,b =______;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数()228y x =--+的图象如图所示,结合你所画的函数图象,不等式()22628x x m x +-++>--+的解集为______.20. 红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?21. 【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,APB ∠是点P 对线段AB 的视角.【应用】(1)如图②,在直角坐标系中,已知点(A ,(2,B ,(C ,则原点O 对三角形ABC 的视角为______;(2)如图③,在直角坐标系中,以原点O ,半径为2画圆1O ,以原点O ,半径为4画圆2O ,证明:圆2O 上任意一点P 对圆1O 的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45︒的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为5x =-,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.22. 【探究发现】(1)如图①所示,在等腰直角ABC 中,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,则有下列命题:①BDO BCA ∽△△;②EDA ECO ∽△△;③BDO EDA ∽△△;请你从中选择一个命题证明其真假,并写出证明过程;【类比迁移】(2)如图②所示,在等腰ABC 中,5AB AC ==,8BC =,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,若2OB =,求AE 的值;【拓展应用】(3)在等腰ABC 中,AB AC a ==,BC b =,()2a b a <<,点D ,O 分别为射线BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,当ADO △为等腰三角形时,请直接写出OB的长(用a,b表示).2022—2023学年度第二学期模拟考试初三年级数学试卷一、选择题1. 下列各数中,绝对值最小的是( )A. ﹣2 B. 3C. 0D. ﹣3【答案】C 【解析】【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:|-2|=2,|3|=3,|0|=0,|-3|=3,所以绝对值最小的是0.故选:C .【点睛】本题考查了绝对值及有理数大小比较,正确求出各数的绝对值是解题的关键.2. 已知点(1)A a -,与点(4)B b -,关于原点对称,则a b -的值为( )A. 5- B. 5C. 3D. 3-【答案】C 【解析】【分析】根据关于原点对称两点横纵坐标都互为相反数,可得出a 、b 的值,即可计算a b -的值.【详解】∵(1)A a -,与点(4)B b -,关于原点对称,∴4a =,1b =,∴413a b -=-=.故选:C【点睛】本题考查中心对称,理解关于原点对称两点的关系是解题的关键.3. 如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是( )的的A. B.C. D.【答案】B 【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看主视图为长方形,且长方形内有一条斜线.故选:B .【点睛】此题考查了三视图的知识,解题的关键是知道主视图是从物体的正面看得到的视图.4. 如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,如果添加一个条件,可推出ABCD Y 是菱形,那么这个条件可以是( )A. AB AC =B. AC BD =C. AC BD ⊥D.AB AC⊥【答案】C 【解析】【分析】根据四边形ABCD 是平行四边形,AC BD ⊥,即可得四边形ABCD 是菱形.【详解】解:∵四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形,故选:C .【点睛】本题考查了菱形的判定,解题的关键是掌握菱形的判定方法.5. 因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为( )A. 53.5110⨯ B. 63.5110⨯ C. 73.5110⨯ D.70.35110⨯【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:63.35151000001=⨯,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6. 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A. 115°B. 120°C. 145°D. 135°【答案】D【解析】【分析】由下图三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF ∥MN (已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D .【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.7. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R=>C. 当1000R >时,0.22I > D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R =>,利用待定系数法求出()2200I R R =>,然后求出当1000R =时, 2200.221000I ==,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可.【详解】解:设I 与R 的函数关系式是()0U I R R=>,∵该图象经过点()8800.25P ,,∴()0.250880U R =>,∴220U =,∴I 与R 的函数关系式是()2200I R R =>,故B 不符合题意;当1000R =时, 2200.221000I ==,∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.8. 如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为41,则直角三角形较短的直角边a 与较长的直角边b 的比a b的值是( )A. 12 B. 23 C. 34 D. 45【答案】D【解析】【分析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到2ab 的值,然后根据(a +b )2=a 2+b 2+2ab 即可求得(a +b )的值;根据小正方形的面积为(b −a )2=1即可求得b -a =1,进而联立方程组求得a 与b 的值,则可求出答案.【详解】解:∵大正方形的面积是41,设边长为c ,∴c 2=41,∴a 2+b 2=c 2=41,∵四个直角三角形的面积是41−1=40,又∵一个直角三角形的面积是12ab ,∴2ab =40,∴(a +b )2=a 2+b 2+2ab =c 2+2ab =41+40=41+40=81,∴a +b =9.∵小正方形的面积为(b −a )2=1,b >a ,∴b -a =1,联立91a b b a +=⎧⎨-=⎩,解得:45a b =⎧⎨=⎩∴45a b =.故答案为:D .【点睛】本题考查了勾股定理、解二元一次方程组以及完全平方公式.注意完全平方公式的展开:(a +b )2=a 2+b 2+2ab ,还要注意图形的面积和a ,b 之间的关系.9. 在△ABC 中,∠ACB =90°,AC =BC ,AB =10,用尺规作图的方法作线段AD 和线段DE ,保留作图痕迹如图所示,认真观察作图痕迹,则△BDE 的周长是( )A. 8B. C. D. 10【答案】D【解析】【分析】根据等腰直角三角形的性质得到∠B=45°,根据尺规作图可知AD 平分∠CAB ,根据角平分线的性质定理解答即可.【详解】解:∵∠ACB=90°,AC=BC ,∴∠B=45°,由尺规作图可知,AD 平分∠CAB ,DE ⊥AB 又,∠ACB=90°,∴DE=DC ,又∠B=45°,∴DE=BE ,∴△BDE 的周长=BD+BE+DE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=10,故选D .【点睛】本题考查等腰直角三角形的性质以及尺规作图,掌握等腰直角三角形的性质和基本尺规作图是解题关键.10. 如图,在ABC 中,90ACB ∠=︒,作CD AB ⊥于点D ,以AB 为边作矩形ABEF ,使得AF AD =,延长CD ,交EF 于点G ,作AH AC ⊥交EF 于点H ,作HN AH ⊥分别交DG ,BE 于点M 、N ,若HM MN =,1FH =,则边BD 的长为( )A. 12B.C.D. 【答案】B【解析】【分析】依据条件可判定(ASA)ADC AFH ≅ ,即可得到1CD FH ==,AC AN =,易证四边形AFGD 是矩形,四边形BEGD 是矩形,则AB FE = ,AD FG =,GE BD =,CG BE ∥,又HM MN =,则HG GE =,设HG GE x ==,则1FG x AD =+=,BD GE x ==,112AB AD DB x x x =+=++=+,再证ACB ADC ∽△△,得AC AB AD AC=,则()()2112AC AD AB x x =⋅=++,在Rt AFH 中,由勾股定理,得()2222211AH AF FH x =+=++,因为AC AH =,所以()()()2211211x x x ++=++,即21x x +=,解之求出x 值,即可求解.【详解】解:CD AB ⊥ ,90F ∠=︒,90ADC F ∴∠=∠=︒,AH AC ⊥ ,90DAF ∠=︒,90FAH DAH DAC DAH ∴∠+∠=∠+∠=︒,FAH DAC ∴∠=∠.在ADC △和AFH 中,ADC F AD AFDAC FAH ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ADC AFN ∴ ≌,1CD FH ∴==,AC AH =.∵矩形ABEF ,CD AB ⊥,∴四边形AFGD 是矩形,四边形BEGD 是矩形,∴AB FE = ,AD FG =,GE BD =,CG BE ∴∥,又∵HM MN =,HG GE ∴=,设HG GE x ==,则1FG x AD =+=,BD GE x ==,112AB AD DB x x x =+=++=+,∵CD AB ⊥,∴90ADC ∠=︒∵90ACB ∠=︒,∴ACB ADC∠=∠∵CAB DAC∠=∠∴ACB ADC∽△△∴AC AB AD AC=,∴2AC AD AB =⋅,∴()()2112AC AD AB x x =⋅=++,在Rt AFH 中,由勾股定理,得()2222211AH AF FH x =+=++,∵AC AH=∴()()()2211211x x x ++=++,化简整理,得21x x +=.解得:x =x =,∴BD =故选:B .【点睛】本题主要考查了矩形的性质,相似三角形判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理,解一元二次方程,本题属四边形综合题目,熟练掌握相似三角形判定与性质,全等三角形判定与性质是解题的关键.二、填空题11. 因式分解:x 2y ﹣y =_____.【答案】y (x +1)(x ﹣1).【解析】【分析】首先提公因式y ,再利用平方差进行二次分解即可.【详解】解:原式=y (x 2﹣1)=y (x +1)(x ﹣1),故答案为y (x +1)(x ﹣1).【点睛】本题考查因式分解.熟练掌握因式分解的方法是解题的关键.12. 一个不透明的箱子里装有2个白球,3个红球,它们除颜色外均相同.从箱子里摸出1个球,是红球的概率为______.【答案】35【解析】【分析】先求出总的球数,再根据概率公式进行计算即可.【详解】解:在一个不透明的箱子里装有2个白球,3个红球,共5个球,随机从中摸出一个球,摸到红球的概率是35.故答案为:35.【点睛】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件A 的概率()m P A n =,熟练掌握上述知识点是解答本题的关键.13. 紫砂並是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制壶艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,则这个紫砂壶的壶口半径r 的长为______mm .【答案】25【解析】【分析】根据题意,得到()5mm OD r =-,115mm,=mm 2BD AB OB r ==,利用勾股定理计算即可.【详解】∵30mm AB =,5mm CD =,半径r ,l AB ⊥,∴()5mm OD r =-,115mm,=mm 2BD AB OB r ==,根据勾股定理,得()2225+15r r -=,解得()25mm r =,故答案为:25.【点睛】本题考查了垂径定理,勾股定理,熟练掌握垂径定理,勾股定理是解题的关键.14. 如图,在直角坐标系中点()0,4A ,()3,4B ,将ABO 向右平移,某一时刻,反比例函数()0k y k x=≠的图像恰好经过点A 和OB 的中点,则k 的值为______.【答案】6【解析】【分析】先作出平移后的图形,设ABO 平移距离为a ,如下图,分别表示出点C 、F 坐标,利用k 的几何意义即可求解.【详解】设ABO 平移距离为a ,CDE 为平移后的图形,则()()()4034C a E a D a +,、,、,又∵点F 是DE 中点∴322F a ⎛⎫+ ⎪⎝⎭,∵点C 、F 在()0k y k x=≠图像上,根据k 的几何意义∴3422a a ⎛⎫=+ ⎪⎝⎭解得32a =∴46k a ==故答案为6.【点睛】本题考查了反比例函数中k 的几何意义,熟练掌握上述知识点是解答本题的关键.15. 如图,点E 是正方形ABCD 边AB 上的一点,已知45DEF ∠=︒,EF 分别交边AC ,CD于点G ,F ,且满足AG DF ⋅=EG 的长为______.【解析】【分析】先判定A 、E 、G 、D 四点共圆,从而得出EGD 是等腰直角三角形,则ED =,再证明ADG EFD ∽,得出AG DG ED DF=,即DG ED AG DF ⋅=⋅= ,把EG DG =,ED =代入即可求出EG 的长.【详解】解:∵正方形ABCD ,∴90BAD ADF ∠=∠=︒,45BAC CAD ∠=∠=︒,∵45DEF ∠=︒,∴DEG CAD ∠=∠,∴A 、E 、G 、D 四点共圆,如图,∴1801809090DGE EAD ∠=︒-∠=︒-︒=︒,∵45DEF ∠=︒,∴45DEG EDG ∠=∠=︒,∴EG DG =,ED =,∴90DGF ∠=︒,∴90GFD GDF ∠+∠=︒,∵90ADG GDF ADC ∠+∠=∠=︒,∴ADG GFD ∠=∠,∵45DEG GAD ∠=∠=︒,∴ADG EFD ∽,∴AGDGED DF =,即DG ED AG DF ⋅=⋅=,∵EG DG =,ED =,∴EG =∴ED =,【点睛】本题考查正方形的性质,四点共圆,圆内接四边形的性质,等腰直角三角形的判定,勾股定理,相似三角形的判定与性质,得出A 、E 、G 、D 四点共圆是解题的关键.三、解答题16. 计算:()020236cos45-+-︒+.【答案】1.【解析】【分析】先计算乘方和开方,并求绝对值和把特殊角三角函数值代入,再计算乘法,最后计算加减即可.【详解】解:原式16=1=+1=.【点睛】本题考查实数的混合运算,熟练掌握零指数幂、特殊的三角函数值和求绝对值运算是解题的关键.17. 先化简,再求值:2210511293x x x x --⎛⎫⎛⎫--÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3x =.【答案】43x +,【解析】【分析】先化简括号,再算乘除,最后计算加减,再代值求解即可.【详解】解:原式=22211193x x x x x -+--÷--=2(1)31(3)(3)1x x x x x ---⨯-+-=113x x --+=43x +当3x =-时,原式=【点睛】本题主要考查了分式的化简求值以及二次根式的计算,正确的计算能力是解决问题的关键.18. 某校对九年级学生进行了一次防疫知识竞赛,并随机抽取甲、乙两班各50名学生的竞赛成绩(满分100分)进行整理,描述分析.下面给出部分信息:甲班成绩的频数分布直方图如图所示(数据分为6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),其中90分以及90分以上的人为优秀;甲班的成绩在7080x ≤<这一组的是:72,72,73,75,76,77,77,78,78,79,79,79,79.甲、乙两班成级的平均数、中位数、众数和优秀人数如下表:平均数中位数众数优秀人数甲班成绩78m 853乙班成绩7573826根据以上信息,回答下列问题:(1)表中的m =______;(2)在此次竞赛中,你认为甲班和乙班中,______班表现的更优异,理由是______;(3)如果该校九年级学生有600名,估计九年级学生成绩优秀的有多少人?【答案】(1)78 (2)甲,甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高;(3)该校九年级600名学生中成绩优秀的大约有54人【解析】【分析】(1)根据甲班的中位数是从小到大排列后的第25个和26个数据的平均数进行求解即可;(2)根据各统计量进行分析解答即可;(3)根据样本估计总体,用该校九年级总人数乘以抽取学生中优秀人数的占比即可求解.【小问1详解】解:由题意可知甲班的中位数是从小到大排列后的第25个和26个数据的平均数,即7878782m +==,、故答案为:78【小问2详解】甲班成绩优异,理由是:甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高;故答案为:甲;甲班的平均分(中位数、众数)比乙班的平均分(中位数、众数)高【小问3详解】由题意得:960054100⨯=(人),答:该校九年级600名学生中成绩优秀的大约有54人.【点睛】此题考查了频数分布直方图、平均数、中位数、众数、样本估计总体等知识,读懂题意,准确求解是解题的关键.19. 探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数26y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.x (2)-1-012345…y…654a21b7…(1)写出函数关系式中m 及表格中a ,b 的值;m =______,=a ______,b =______;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数()228y x =--+的图象如图所示,结合你所画的函数图象,不等式()22628x x m x +-++>--+的解集为______.【答案】(1)2-,3,4 (2)见解析 (3)0x <或4x >【解析】【分析】(1)将表格中的已知数据任意选择一组代入到解析式中,即可求出m ,然后得到完整解析式,即可求解;(2)根据表格所给数据描点、连线即可;(3)结合函数图象与不等式之间的联系,利用数形结合思想求解.【小问1详解】解:由表格可知,点()3,1在该函数图象上,∴将点()3,1代入函数解析式可得:13236m =+-⨯++,解得:2m =-,∴原函数的解析式为:|26|2y x x =+-+-;当1x =时,3y =;当4x =时,4y =;∴2m =-,3a =,4b =,故答案为:2-,3,4;小问2详解】解:通过列表—描点—连线的方法作图,如图所示;【小问3详解】解:要求不等式()22628x x m x +-++>--+的解集,实际上求出函数|26|y x x m =+-++的图象位于函数()228y x =--+图象上方的自变量的范围,∴由图象可知,当0x <或4x >时,满足条件,故答案为:0x <或4x >.【点睛】本题考查新函数图象探究问题,掌握研究函数的基本方法与思路,熟悉函数与不等式或者方程之间的联系是解题的关键.20. 红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?【答案】(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对(2)乙种灯笼的销售单价为65元时,一天获得利润最大,最大利润是2040元【解析】【分析】(1)设甲种灯笼单价为x 元/对,则乙种灯笼的单价为(x +9)元/对,根据用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,列分式方程求解即可;【(2)设乙灯笼每对涨价x 元,一天通过乙灯笼获得利润为y 元,首先利用总利润等于每对灯笼的利润乘以卖出的灯笼的实际数量,可以列出函数的解析式;再由函数为开口向下的二次函数,可知有最大值,结合问题的实际意义,可得答案.【小问1详解】解:设甲种灯笼单价为x 元/对,则乙种灯笼的单价为(x +9)元/对根据题意得:312042009x x =+ 解得26x =经检验:26x =是原方程的解,且符合题意故x +9=26+9=35答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对【小问2详解】解:设乙灯笼每对涨价x 元,一天通过乙灯笼获得利润为y 元根据题意得:y =(50+x -35)(98-2x )=-2x 2+68x +14702<0a =-∴函数y 有最大值,该二次函数的对称轴所在直线为()681722x =-=⨯-物价部门规定其销售单价不高于每对65元5065x ∴+≤ 15x ∴≤<17x 时,y 随x 的增大而增大∴当x =15时,y 有最大值,最大值为:221568151470=2040-⨯+⨯+50+15=65答:乙种灯笼的销售单价为65元时,一天获得利润最大,最大利润是2040元【点睛】本题考查了分式方程和二次函数的应用,由于前后步骤有联系,第一问解对,后面才能做对.本题还需要根据问题的实际意义来确定销售单价的取值.21. 【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,APB ∠是点P 对线段AB 的视角.【应用】(1)如图②,在直角坐标系中,已知点(A ,(2,B ,(C ,则原点O 对三角形ABC 的视角为______;(2)如图③,在直角坐标系中,以原点O ,半径为2画圆1O ,以原点O ,半径为4画圆2O ,证明:圆2O 上任意一点P 对圆1O 的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45︒的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为5x =-,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.【答案】(1)30︒;(2)证明见解析;(3)(15,2P -或(25,2P ---.【解析】【分析】(1)延长BA 交x 轴于点D ,过点C 作CE x ⊥轴于点E ,可得AB y ∥轴,CE =3OE =,进而得到BD =,2OD =,再由锐角三家函数可得60,30BOD COE ∠=︒∠=︒,即可求解;(2)过圆2O 上任一点P 作圆1O 两条切线交圆1O 于A ,B ,连接,OA OB ,OP ,则有OA PA ⊥,OB PB ⊥,根据锐角三家函数可得30OPA ∠=︒,30OPB ∠=︒,从而得到60APB ∠=︒,即可求证;(3)分三种情况:当在直线AB 与直线CD 之间时,视角是APD ∠,此时以()4,0E -为圆心,EA 半径画圆,交直线于3P ,6P ;当在直线AB 上方时,视角是BPD ∠,此时以()2,2A -为圆心,AB 半径画圆,交直线于1P ,5P ;当在直线CD 下方时,视角是APC ∠,此时以()22D ,--为圆心,DC 半径画圆,交直线于2P ,4P ,即可求解.【详解】解:(1)延长BA 交x 轴于点D ,过点C 作CE x ⊥轴于点E ,∵点(A,(2,B,(C ,∴AB y ∥轴,CE =3OE =,∴AB x ⊥轴,∴BD =,2OD =,∴tan BD BOD OD ∠==,tan CE COE OE ∠==,∴60,30BOD COE ∠=︒∠=︒,∴30BOC BOD COE ∠=∠-∠=︒,即原点O 对三角形ABC 的视角为30︒过答案为:30︒(2)证明:如图,过圆2O 上任一点P 作圆1O 的两条切线交圆1O 于A ,B ,连接,OA OB ,OP ,则有OA PA ⊥,OB PB ⊥,的在Rt PAO △中,2OA =,4OP =,∴1sin 2OA OPA OP ∠==,∴30OPA ∠=︒,同理可求得:30OPB ∠=︒,∴60APB ∠=︒,即圆2O 上任意一点P 对圆1O 的视角是60︒,∴圆2O 上任意一点P 对圆1O 的视角是定值.(3)当在直线AB 与直线CD 之间时,视角是APD ∠,此时以()4,0E -为圆心,EA 半径画圆,交直线于3P ,6P ,∵3345DP B DP A ∠>∠=︒,6645AP C DP C ∠>∠=︒,不符合视角的定义,3P ,6P 舍去.同理,当在直线AB 上方时,视角是BPD ∠,此时以()2,2A -为圆心,AB 半径画圆,交直线于1P ,5P ,5P 不满足;过点1P 作1PMD A ⊥交DA 延长线于点M ,则114,523AP PM ==-=,∴AM ==,∴(15,2P -当在直线CD 下方时,视角是APC ∠,此时以()22D ,--为圆心,DC 半径画圆,交直线于2P ,4P ,4P 不满足;同理得:(25,2P --;综上所述,直线上满足条件的位置坐标(15,2P -或(25,2P --.【点睛】本题主要考查了切线的性质,圆周角定理,解直角三角形,勾股定理等知识,熟练掌握切线的性质,圆周角定理,解直角三角形,勾股定理是解题的关键.22. 探究发现】(1)如图①所示,在等腰直角ABC 中,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,则有下列命题:①BDO BCA ∽△△;②EDA ECO ∽△△;③BDO EDA ∽△△;请你从中选择一个命题证明其真假,并写出证明过程;【类比迁移】(2)如图②所示,在等腰ABC 中,5AB AC ==,8BC =,点D ,O 分别为边BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,若2OB =,求AE 的值;【拓展应用】(3)在等腰ABC 中,AB AC a ==,BC b =,()2a b a <<,点D ,O 分别为射线BA ,BC 上一点,且OB OD =,延长OD 交射线CA 于点E ,当ADO △为等腰三角形时,请直接写出OB 的长(用a ,b 表示).【。
2024年广东省深圳市中考数学全真模拟卷(三)
2024年广东省深圳市中考数学全真模拟卷(三)一、单选题1.下列实数中,最大的数是( )A .πB C .2-D .32.下列图形中,是轴对称图形的是( )A .B .C .D .3.下列计算正确的是( ) A .224a a a +=B .2a -a =1C .22(3)6a a a ⋅-=-D .()325a a =4.如图,已知直线a //b ,c 为截线,若∠1=60°,则∠2的度数是( )A .30°B .60°C .120°D .150°5.若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过第( )象限. A .四B .三C .二D .一6.如图,以点O 为位似中心,把ABC V 放大为原图形的2倍得到A B C '''V ,以下说法错误的是( )A .:1:2ABC ABC S S '''=△△B .:1:2AB A B ''=C .点A ,O ,A '三点在同一条直线上D .BC B C ''∥7.某学习小组的5名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、89分,则下列结论正确的是( ) A .平均分是91B .众数是94C .中位数是90D .极差是88.下列命题中,错误的是( ) A .矩形的对角线互相平分且相等 B .对角线互相垂直的四边形是菱形C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上 9.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<010.如图,在Rt ABC △中,90ACB ∠=︒,43AC BC =,D 为AB 上一点,H 为AC 上一点,若ABC HDC ∠=∠,CB CD =,则DHHC的值为( )A .35B .720C D二、填空题11.已知23x y +=,则124x y ++=.12.不透明袋子中装有2个黑球,3个白球,这些球除了颜色外无其他差别,从袋子中随机摸出1个球,“摸出黑球”的概率是.13.如图,在Rt ABC V 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则C A D ∠的度数为.14.如图,平行四边形ABCD 的顶点A 在x 轴上,点D 在y =kx(k >0)上,且AD ⊥x 轴,CA的延长线交y 轴于点E .若S △ABE =32,则k =.15.如图,四边形ABCD 中,∠ADC =90°,AC ⊥BC ,∠ABC =45°,AC 与BD 交于点E ,若AB =CD =2,则△ABE 的面积为.三、解答题16()012π-+-︒.17.先化简,再求值:2221244x xxx x x⎛⎫---÷⎪--+⎝⎭,其中12x=-.18.“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:(1)表中m=,n=,p=;(2)将条形图补充完整;(3)若制成扇形图,则C组所对应的圆心角为°;(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?19.I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m 处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式. (2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.20.(1)请在图中作出ABC V 的外接圆O e (尺规作图,保留作图痕迹,不写作法);(2)如图,O e 是ABC V 的外接圆,AE 是O e 的直径,点B 是»CE的中点,过点B 的切线与AC 的延长线交于点D .①求证:BD AD ⊥; ②若6AC =,3tan 4ABC ∠=,求O e 的半径. 21.根据以下素材,探索完成任务.”,水位内的水就可以的原理制作22.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD 沿对角线AC 剪开,得到ΔABC 和ACD ∆.并且量得2AB cm =,4AC cm =. 操作发现:(1)将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转α∠,使BAC α∠=∠,得到如图2所示的'AC D ∆,过点C 作'AC 的平行线,与'DC 的延长线交于点E ,则四边形'ACEC 的形状是________.(2)创新小组将图1中的ACD ∆以点A 为旋转中心,按逆时针方向旋转,使B 、A 、D 三点在同一条直线上,得到如图3所示的'AC D ∆,连接'CC ,取'CC 的中点F ,连接AF 并延长至点G ,使FG AF =,连接CG 、'C G ,得到四边形'ACGC ,发现它是正方形,请你证明这个结论. 实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将ΔABC 沿着BD 方向平移,使点B 与点A 重合,此时A 点平移至'A 点,'A C 与'BC 相交于点H ,如图4所示,连接'CC ,试求tan 'C CH ∠的值.。
2024年广东省深圳市中考数学模拟考试卷及答案
2024年中考数学模拟卷数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。
2.全卷共6页。
考试时间90分钟,满分100分。
3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。
写在本试卷或草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
第一部分选择题一.选择题(共10小题,满分30分,每小题3分)1.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的从正面、左面、上面三个不同的方向观察看到的平面图形,下列说法正确的是()A.从正面看与从左面看到的图形相同B.从正面看与从上面看到的图形相同C.从左面看与从上面看到的图形相同D.从正面、左面、上面看到的图形都相同2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=3,则m的值是()A.﹣6B.﹣3C.3D.63.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.23B.20C.15D.104.(3分)将方程x2﹣4x﹣3=0化成(x﹣m)2=n(m、n为常数)的形式,则m、n的值分别为()A.m=2,n=7B.m=﹣2,n=1C.m=2,n=4D.m=﹣2,n=45.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BE的长为()A.B.4C.D.67.(3分)如图是小明实验小组成员在小孔成像实验中的影像,蜡烛在刻度尺50cm处,遮光板在刻度尺70cm处,光屏在刻度尺80cm处,量得像高3cm,则蜡烛的长为()A.5cm B.6cm C.4cm D.4.5cm8.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=25009.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.17310.(3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△F AB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1B.2C.3D.4第二部分非选择题二.填空题(共5小题,满分15分,每小题3分)11.(3分)若3m=7n,则=.12.(3分)2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:.13.(3分)五一期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《九龙城寨之围城》、《维和防暴队》中随机选择一部观看,则他们选择的影片相同的概率为.14.(3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣4,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.15.(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.第14题第15题三.解答题(共7小题,满分55分)16.(5分)解方程:x2+2x﹣8=0.17.(7分)班级开展迎新年联欢晚会时,在教室悬挂了如图所示的四个福袋A,B,C,D.在抽奖时,每次随机取下一个福袋,且取A之前需先取下B,取C之前需先取下D,直到4个福袋都被取下.(1)第一个取下的是D福袋的概率为;(2)请用画树状图或列表的方法,求第二个取下的是A福袋的概率.18.(8分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.19.(8分)某景区在2024年“五一”小长假期间,接待游客达2万人次,预计在2022年“五一”小长假期间,接待游客2.88万人次,该景区一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.(1)求出2020至2022年“五一”小长假期间游客人次的年平均增长率;(2)为了更好地维护景区形象,物价局规定每碗售价不得超过20元,当每碗售价定为多少元时,店家才能实现每天净利润600元?(净利润=总收入﹣总成本﹣其它各种费用)20.(8分)如图,点E是矩形ABCD对角线AC上的点(不与A,C重合),连接BE,过点E作EF⊥BE交CD于点F.连接BF交AC于点G,BE=AD.(1)求证:∠FEC=∠FCE;(2)试判断线段BF与AC的位置关系,并说明理由.21.(9分)【建立模型】(1)在数学课上,老师出示这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,AD⊥l,BE⊥l,垂足分别为点D和点E,求证:△ADC≌△CEB,请你写出证明过程:【类比迁移】(2)勤奋小组在这个模型的基础上,继续进行探究问题;如图2,在平面直角坐标系中,直线y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,将线段AC绕点C顺时针旋转90°得到线段CB,反比例函数的图象经过点B,请你求出反比例函数的解析式;【拓展延伸】(3)创新小组受到勤奋小组的启发,结合抛物线的图象继续深入探究:如图3,一次函数y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,创新小组的同学发现在第一象限的抛物线y=﹣x2+2x+3的图象上存在一点P,连接PA,当∠PAC=45°时,请你和创新小组的同学一起求出点P的坐标.22.(10分)如图①,点D为△ABC上方一动点,且∠BDC=60°.(1)在BD左侧构造△BDE∽△BCA,连接AE,请证明△BAE∽△BCD;(2)如图②,在BD左侧构造△BDE∽△BCA,在CD右侧构造△CDF∽△CBA,连接AF,AE,求证:四边形AFDE是平行四边形;(3)如图③,当△ABC满足∠A=150°,,AC=2.运用(2)中的构造图形的方法画出四边形AFDE;(Ⅰ)求证:四边形AFDE是矩形;(Ⅱ)直接写出在点D运动过程中线段EF的最大值.2024年中考模拟考试参考答案及评分标准一、选择题题号12345678910答案A D B A B A B C D D 二、填空题题号1112131415答案 6.3×10514﹣4﹣5 16.解:x2+2x﹣8=0(x﹣2)(x+4)=0-------------------------------------------------------------------------------3分x﹣2=0或x+4=0x1=2,x2=﹣4-----------------------------------------------------------------------------------5分17.解:(1);-----------------------------------------------------------------------------------2分(2)由题意,画树状图为:---------------------------------------------------------------------------------5分共有4种等可能的结果,其中第二个取下的是A福袋的结果数有1种,∴第二个摘下A灯笼的概率为.------------------------------------------------------------------7分18.(8分)解:(1)∵抽样调查的家庭总户数为:80÷8%=1000(户),-----------1分∴m%==20%,m=20,---------------------------------------------------------------------2分n%==6%,n=6.----------------------------------------------------------------------------3分(2)C类户数为:1000﹣(80+510+200+60+50)=100,-----------------------------------4分条形统计图补充如下:--------------------------------6分(3)180×10%=18(万户)若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.----8分19.(8分)解:(1)可设年平均增长率为x,依题意有2(1+x)2=2.88,--------------------------------------------2分解得:x1=0.2=20%,x2=﹣2.2(舍去).-------------------3分答:年平均增长率为20%;--------------------------------------4分(2)设每碗售价定为y元时,店家才能实现每天利润600元,依题意得:(y﹣10)[120﹣(y﹣15)]﹣168=600,----------------------6分解得y1=18,y2=22,----------------------------------------------7分∵每碗售价不得超过20元,∴y=18.答:当每碗售价定为18元时,店家才能实现每天利润600元-----------------8分.20.(8分)(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠DCB=90°,----------------------------------------------------------------------1分∵BE=AD,∴BC=BE,∴∠BEC=∠BCE,-----------------------------------------------------------------------------------2分∵EF⊥BE,∴∠BEF=∠DCB=90°,∴∠FEC=∠FCE;------------------------------------------------------------------------------------4分(2)解:BF⊥AC.------------------------------------------------------------------------------------5分理由:∵∠FEC=∠FCE,∴EF=CF,--------------------------------------------------------------------------------------------6分∵BE=BC,∴BF垂直平分CE,即BF⊥AC.--------------------------------------------------------------------------------------------8分21.(9分)(1)证明:如图1,∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,---------------------------------------------------------1分∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,---------------------------------------------------------------------2分∴△ACD≌△CBE(AAS);---------------------------------------------------------3分(2)如图2,过点B作BG⊥x轴于点G,则∠CGB=∠AOC=90°,∴∠ACO+∠CAO=90°,∵将线段AC绕点C顺时针旋转90°得到线段CB,∴AC=CB,∠ACB=90°,∴∠ACO+∠BCG=90°,∴∠CAO=∠BCG,∴△ACO≌△CBG(AAS),----------------------------------------------------------------------4分∴OA=CG,OC=BG,∵直线y=﹣3x+3与y轴交于点A,与x轴交于点C,∴A(0,3),C(1,0),∴OA=3,OC=1,∴CG=3,BG=1,∴OG=OC+CG=1+3=4,∴B(4,1),---------------------------------------------------------------------------------------5分将B(4,1)代入y=,得1=,∴k=4,∴反比例函数的解析式为y=;-------------------------------------------------------------------6分(3)如图3,过点C作CE⊥AC,且CE=AC,连接AE交抛物线于P,过点E作EF⊥x轴于点F,则∠CFE=∠ACE=∠AOC=90°,∴∠ACO+∠CAO=∠ACO+∠ECF=90°,∴∠CAO=∠ECF,∴△ACO≌△CEF(AAS),------------------------------------------------------------------------7分∴OA=CF=3,OC=EF=1,∴OF=OC+CF=1+3=4,∴E(4,1),设直线AE的解析式为y=kx+b,将E(4,1),A(0,3)代入得:,解得:,∴直线AE的解析式为y=﹣x+3,----------------------------------------------------------------8分联立方程组得,解得:(舍去),,∴点P的坐标为(,).------------------------------------------------------------------------9分22.(10分)(1)证明:∵△EBD∽△ABC,∴∠EBD=∠ABC,,-----------------------------------------------------------------1分∴∠EBD+∠ABD=∠ABC+∠ABD,∴∠EBA=∠DBC,∴△BAE∽△BCD;----------------------------------------------------------------------------------2分(2)证明:由(1)得:△BAE∽△BCD,∴,∵△CDF∽△CBA,∴,∴,∴AE=DF,-----------------------------------------------------------------------------------------3分同理(1)可得△CFA∽△CDB,∴,∵△BDE∽△BAC,∴∴∴DE=AF,---------------------------------------------------------------------------------------------4分∴四边形AFDE是平行四边形;---------------------------------------------------------------------5分(3)(Ⅰ)证明:由(1)知:△BAE∽△BCD,∴∠AEB=∠BDC=60°,---------------------------------------------------------------------------6分∵△EBD∽△ABC,∴∠BED=∠BAC=150°,∴∠AED=∠BED﹣∠AEB=150°﹣60°=90°,-------------------------------------------7分∴▱AFDE是矩形;-------------------------------------------------------------------------------------8分(Ⅱ)解:如图,EF的最大值为:,-------------------------------------------------------10分理由如下:作△BCD的外接圆,圆心为O,连接OA并延长交⊙O于D,此时AD最大,作BG⊥AC,交CA的延长线于G,∵∠BAC=150°,∴∠BAG=30°,∴BG=AB=,AG=AB=,∴CG=AC+AG=5,∴BC=,∴⊙O的直径为:,连接OB,OC,作OQ⊥BC于Q,作AT⊥OQ于T,∴OB=OC=,CQ=BQ=,∵∠CDB=60°∴∠BOC=2∠CDB=120°,∴∠OBC=∠OCB=30°,∴OQ=OB=,=,∵S△ABC∴AH=,∴CH===,∴AT=QH=CQ﹣CH==,∵OT=OQ﹣TQ=OQ﹣AH=﹣=,∴OA===,∴AD=OA+OD=,最大∵四边形AEDF是矩形,∴EF=AD=,∴EF的最大值为:.。
中考全真模拟测试 数学试卷 含答案解析
一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .1032.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( ) A.84010⨯B.9410⨯C.104010⨯D.110.410⨯3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .4.下列运算正确的是( ) A.5510a aaB.76a a aC.326a a aD.236aa5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >16. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.188. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2 D .y =(x -4)2-29. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )2π2πC.πD.2π10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.. 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为 .14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.15. 如图,矩形ABCD 中,AB =,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.18.(9分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.19.(9分)如图,⊙O 与△ABC 的AC 边相切于点C ,与AB 、BC 边分别交于点D 、E ,DE ∥OA ,CE 是⊙O 的直径. (1)求证:AB 是⊙O 的切线; (2)若BD =4,CE =6,求AC 的长.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y 关于x 的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (3) 由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PMQN 的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PMQN的值(用含β的式子表示).23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.图1G FED C B AQ NM PE 2F 2图2F 1E 1D CBA答案与解析一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A所以3<4,,故选项A 正确.2.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( )A.84010⨯B.9410⨯C.104010⨯D.110.410⨯【答案】B.【解析】本题考查了科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.因此40亿可用科学记数法表示为9410⨯,故选B.3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .【答案】B【解析】俯视图是上面往下观察所得的图形,观察可知第一层一个靠左边,第二层两根,故选B. 4.下列运算正确的是( ) A.5510aa aB.76aa aC.326aa aD.236a a【答案】B【解析】A.合并同类项得5552aa a ,B.同底数幂除法底数不变指数相减,故正确,C.同底数幂乘法,底数不变指数相加,应为325aa a ,C.指数乘方运算底数不变指数相乘,且负数的偶次幂应为正数,故结果应为236a a .5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >1【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.6. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°【答案】C【解析】△ABC 中,AB =AC,∠A =30°,∴∠B =75°,∵∠1=145°,∴∠FDB =35°过点B 作BG ∥a ∥b,∴∠FDB=∠DBG,∠2=∠CBG,∵∠B =∠ABG+∠CBG,∴∠2=40°,故选C7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.18【答案】B【解析】从-1,2,3,-6这四个数中任取两个数,所有可能的结果有12种,每种结果的可能性相同,其中,两数乘积为6的结果有4种,当两数乘积为6时,点(m,n)必定在函数6y x =的图象上,因此P =41=123.故选B. 8. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-2 【答案】D【解析】y =x 2-6x +5= (x -3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后, 得y = (x -3-1) 2-4+2,即y =(x -4)2-2.9. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π2πC.πD.2π【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE⊥AB 于点E,∵AB =∴AO =OD ∴DE =32,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =-2π2π,故选A.10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 【答案】D【解析】由题目可以得出OP 为AOB ∠的平分线,所以1302AOP BOP AOB ∠=∠=∠=︒,又因为15POC ∠=︒,考虑到点C 有可能在AOP ∠内也有可能在BOP ∠内,所以当点C 在AOP ∠内时BOC ∠45BOP POC =∠+∠=︒,当点C 在BOP ∠内时BOC ∠15BOP POC =∠-∠=︒.二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.【答案】【解析】∵正数的平方根有两个,且互为相反数,故5的平方是 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.【答案】1【解析】解原分式方程,去分母得:x -2m =2m(x -2),若原分式方程有增根,则x =2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为.【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-.14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.【答案】10-【解题过程】∵∠BAC=90°,∠BAD=15°,∴∠DAF=75°由旋转可知,∠ADF=45°,过点A作AM⊥DF于点M,∴AM AD=∴AF=∵AC=AB=10,∴FC=AC-AF=10-15. 如图,矩形ABCD中,AB=,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是________.【答案】【解析】连接CE,∵点E是AD的中点,∴AE=ED=EG,∠EGC=∠D,∴△EGC≌△EDC,∴GC=AB=,设AF=GF=x,∴FB=x,在Rt△FBC中,FB2+BC2=FC2,即(x)2+122=(x+)2,解之,得:x=在Rt△AFE中,EF.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.【答案】解:原式=[-]•=•=解不等式组,得1≤x<3,则不等式组的整数解为1、2.当x=1时,原式无意义;当x=2,∴原式=.【解析】先化简分式,再解不等式,找出符合条件的值,最后代入求值.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【答案】解:(1)40(2)90°;(3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【解析】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人) (2)三等奖所对应的圆心角=4010×360°=90°; 18.(9分)如图,已知反比例函数y =(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【答案】解:(1)y=,y=﹣x+4;(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)∵反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于点A(1,3),∴3=,3=﹣1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=﹣x+4;19.(9分)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.【答案】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∵OD为⊙O的半径,∴AB是⊙O的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴222BO BD OD=+,∵BD=4,∴OB=5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B,∴△BDO∽△BCA,∴BD OD BC AC=,∴438AC=,OEDCBA∴AC =6. 【解析】先连接切点和半径,再证明垂直,即可得出第一问; 利用三角形相似,即可得出第二问.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).【答案】解:如图,设DA 与CB 的交点为O . ∵96tan tan 2DC O OC OCα∠====, ∴48OC =同理,∵96tan tan 4DC DBC BC BCβ∠==== ∴24BC =.∴482424OB OC BC =-=-=.设AE x =米,则 则由i =1:1得BE x =,12OE x =; ∴1242x x +=, ∴16x =∴山顶A 的高度AE 为16米.【解析】利用坡比的定义,找出同角的正切值即可.21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y关于x的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(3) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值【答案】(1)设y与x的函数关系式为y=kx+b,依题意有,50100 6080k bk b+=⎧⎨+=⎩,解得,k=-2,b=200,y与x的函数关系式是y=-2x+200;(2)将售价50,周销售量100,周销售利润1000,带入周销售利润=周销售量×(售价-进价)得到,1000=100×(50-进价),即进价为40元/件;周销售利润w=(x-40)y=(x-40)(-2x+200)=-2(x-70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元,故答案为40,70,1800;(3)依题意有,w=(-2x+200)(x-40-m)=-2x2+(2m+280)x-8000-200m=221401260180022m x m m +⎛⎫--+-+ ⎪⎝⎭∵m >0, ∴对称轴140=702m x +>, ∵-2<0, ∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x =65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m =5.【解析】注意进价、售价、利润之间的关系,第三问注意销售单价、销售量、销售总价之间的关系. 22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PM QN的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PM QN的值(用含β的式子表示).【答案】解:(1)∵∠ACB =90°,D 为AB 的中点, ∴CD=DB , ∴∠DCB =∠B ∵∠B =60°,∴∠DCB =∠B =∠CDB =60°.图1G FEC B Q NM PE 2F 2图2F 1E 1CB∴∠CDA =120°. ∵∠EDC =90°, ∴∠ADE =30°;(2)∵∠C =90°,∠MDN =90°, ∴∠DMC +∠CND =180°. ∵∠DMC +∠PMD =180°, ∴∠CND =∠PMD . 同理∠CPD =∠DQN . ∴△PMD ∽△QND过点D 分别做DG ⊥AC 于G ,DH ⊥BC 于H . 可知DG,DH 分别为△PMD 和△QND 的高. ∴DH DGQN PM =∵DG ⊥AC 于G,DH ⊥BC 于H , ∴DG ∥BC . 又∵D 为AB 中点,∴G 为AC 中点. ∵∠C =90°,∴四边形CGDH 为矩形,有CG =DH =AG ,Rt △AGD 中, ,3330tan tan 0===∠AG GD A . 即33=HD GD . 33=∴QN PM (3)tan(90°﹣β)(或=βtan 1. 【解析】利用旋转和三角形相似是解决本题的关键,最后要注意三角函数的定义.23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.【答案】解:(1)将点A(-1,0),点B(3,0),点D(2,3)代入2y ax bx c =++得0930423a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为223y x x =--(2)如图,设PD 与y 轴相交于点F,OD 与抛物线相交于点G,设P 坐标为(2,23m m m --),则直线PD 的解析式为23y mx m =--,它与y 轴的交点坐标为F(0,-2m-3),则OF =2m+3.∴()()()21112323222ODP S OF D P m m m m ∆=⨯-=+-=-++点的横坐标点的横坐标 由于点P 在直线OD 下方,所以322m -<<.∴当()1122214b m a =-=-=⨯-时,△POD 面积的最大值2211114933242416ODP S m m ∆⎛⎫=-++=-+⨯+= ⎪⎝⎭ (3)①由223y x x =--得抛物线与y 轴的交点C(0,-3),结合A(-1,0)得直线AC 的解析式为33y x =--, ∴当OE ∥AC 时,△OBE 与△ABC 相似;此时直线OE 的解析式为3y x =-.又∵2233y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩∴Q的坐标为1322⎛-- ⎝⎭和1322⎛⎫--+ ⎪ ⎪⎝⎭. ②如图,作EN ⊥y 轴于N,由A(-1,0),B(3,0),C(0,-3)得AB =3-(-1)=4,BO =3,BC=当BE OB BA BC=即4BE =时 ,△OBE 与△ABC 相似;此时BE= 又∵△OBC ∽△ONE,∴NB =NE =2,此时E 点坐标为(1,-2),直线OE 的方程为2y x =-.又∵2232y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎨=-⎪⎩,22x y ⎧=⎪⎨=⎪⎩ ∴Q的坐标为-和(. 综上所述,Q的坐标为13,22⎛-+- ⎝⎭,1322⎛-+ ⎝⎭,-,(. 【解析】(1)方法二、∵抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0), ∴设抛物线的解析式为()()13y a x x =+-.又∵抛物线过点 D(2,-3),∴()()21233a +-=-∴1a =∴()()211323y x x x x =⨯+-=--. (2)注意平面直角坐标系中线段的表示方法,注意求三角形面积时可以构造同底等高.(3)注意相似中的对应,应进行分类讨论。
2024年广东省深圳市中考模拟数学试题(含答案)
2024年初三年级质量检测数学(6月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-10题,共30分,第Ⅱ卷为11-22题,共70分。
全卷共计100分。
考试时间为90分钟。
注意事项:1、答题前,请将学校、姓名、班级、考场和座位号写在答题卡指定位置,将条形码贴在答题卡指定位置。
2、选择题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动请用2B 橡皮擦干净后,再涂其它答案,不能答在试题卷上。
非选择题,答题不能超出题目指定区域。
3、考试结束,监考人员将答题卡收回。
第I 卷 (本卷共计30分)一、选择题:(每小题只有一个选项符合题意,每小题3分,共计30分)1.深圳的最高峰是梧桐山,海拔943.7米,被誉为“鹏城第一峰”如果把海平面以上943.7米记为米,那么“深中通道”海下沉管位于海平面以下40米,应记为( )A .米B .米C .米D .米2.深圳图书馆北馆是坐落在深圳市龙华区深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册.其中8000000用科学记数法表示为( )A .B .C .D .3.2009年9月联合国教科文组织保护非物质文化遗产政府间委员会,中国申报的中国剪纸项目入选“人类非物质文化遗产”.在下列剪纸作品中,是轴对称图形的是()A .B .C .D .4.建设“超充之城”,深圳勇于先行示范。
从2023年6月推出首个全液冷超充示范站并官宣启动“超充之城”建设,到率先发布实施超充“深圳标准”,深圳用一个个实际行动诠释建设一流超充之城的超级速度,将“规划图”变为“实景图”.截止2024年3月22日,全市累计建成超充站306座,具体分布如下表:龙岗区宝安区龙华区福田区南山区罗湖区光明区坪山区大鹏新区盐田区深汕特别合作943.7+943.7+943.7-40+40-2810⨯5810⨯6810⨯70.810⨯区474742383828241512114在表格中所列数据的中位数是( )A .33B .28C .26D .275.下列运算正确的是( )A .B .C .D .6.如图是某商场售卖的躺椅其简化结构示意图,扶手AB 与底座CD 都平行于地面,靠背DM 与支架OE 平行,前支架OE 与后支架OF 分别与CD 交于点G 和点D ,AB 与DM 交于点N ,当时,人躺着最舒服,则此时扶手AB 与靠背DM 的夹角的度数为()A .B .C .D .7.苯(分子式为)的环状结构是由德国化学家凯库勒提出的.随着研究的不断深入,发现阳苯分子中的6个碳原子组成了一个完美的正六边形(如图1),图2是其平面示意图,点O为正六边形ABCDEF的中心,则的度数为()图1 图2A .B .C .D .8.如图,将一片枫叶固定在正方形网格中,若点A 的坐标为,点C 的坐标为,则点B 的坐标为()21(2)4--=-0(2)1-=sin 451︒=|5|5-=-90,30EOF ODC ∠∠=︒=︒ANM ∠120︒60︒110︒90︒66C H CBF COD ∠-∠30︒45︒60︒90︒(2,1)-(1,2)-A .B .C .D .9.“指尖上的非遗——麻柳刺绣”,针线勾勒之间,绣出世间百态.在一幅长,宽的刺绣风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为(风景画四周的金色纸边宽度相同),则列出的方程为()A .B .C .D .10.如图所示平面直角坐标系中A 点坐标,B 点坐标,的平分线与AB 相交于点C ,反比例函数经过点C ,那么k 的值为( )A .24 B.C .D .30第Ⅱ卷(本卷共计70分)二、填空题:(每小题3分,共计15分)11.分解因式:___________。
【2022】广东省深圳市中考数学模拟试卷(及答案解析)
广东省深圳市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1083.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤25.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13. 5 D.14(3分)下列图形中,是轴对称图形但不是中心对称图形的是()6.A.等边三角形B.平行四边形C.正六边形 D.圆7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=19.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC 的度数为()A.70°B.45°C.35°D.30°10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2二、填空题(本大题6小题,每小题4分,共24分)11.(4分)分解因式:mn2﹣2mn+m= .12.(4分)一个正多边形的一个外角为30°,则它的内角和为.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有人.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.三、解答题(一)(每小题6分,共18分)17.(6分)解不等式组:,并在所给的数轴上表示解集.18.(6分)先化简,再求值:(a﹣),其中a=﹣1,b=3.19.(6分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?四、解答题(二)(每小题7分,共21分)20.(7分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.21.(7分)某市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.22.(7分)如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的长.五、解答题(三)(每小题9分,共27分)23.(9分)如图,已知直线y=kx+b与反比例函数y=的图象交于A (1,m)、B两点,与x 轴、y轴分别相交于C(4,0)、D两点.(1)求直线y=kx+b的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出关于x的不等式kx+b<的解集是.24.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC 交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求的长.(3)若tanC=2,AE=8,求BF的长.25.(9分)如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【解答】解:6700000=6.7×106.故选:B.3.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°【解答】解:∵直线a∥b,∠1=100°,∴∠2=180°﹣∠1=70°.故选:B.4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤2【解答】解:根据题意得:不等式组的解集为1<x≤2.故选:D.5.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.14【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选:B.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()6.A.等边三角形B.平行四边形C.正六边形 D.圆【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意;.故选:A.7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=1【解答】解:A、错误.(a3)2=a6.B、正确.a2•a3=a5.C、错误.a6÷a2=a4.D、错误.3a2﹣2a2=a2,故选:B.9.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC 的度数为()A.70°B.45°C.35°D.30°【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选:C.10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2【解答】解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选:C.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:mn2﹣2mn+m= m(n﹣1)2.【解答】解:原式=m(n2﹣2n+1)=m(n﹣1)2,故答案为:m(n﹣1)212.(4分)一个正多边形的一个外角为30°,则它的内角和为1800°.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为 3 .【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有680 人.【解答】解:估计该校学生中最喜欢的课外体育运动项目为足球的学生有1600×=680人,故答案为:680.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是27π.【解答】解:设扇形的半径为r.则=6π,解得r=9,∴扇形的面积==27π.故答案为:27π.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠E AC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,则S△AEC=EC•AD=4.故答案为:4.三、解答题(一)(每小题6分,共18分)17.(6分)解不等式组:,并在所给的数轴上表示解集.【解答】解:,由不等式①,得x≥﹣1,由不等式②,得x<3,故原不等式组的解集是﹣1≤x<3,在数轴表示如下图所示,.18.(6分)先化简,再求值:(a﹣),其中a=﹣1,b=3.【解答】解:原式=÷=×=a+b,当a=﹣1,b=3时,原式=﹣1+3=2.19.(6分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得: =28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).答:共有8个队参加足球联赛.四、解答题(二)(每小题7分,共21分)20.(7分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.【解答】(1)解:如图所示,BQ为所求作;(2)证明:∵BQ平分∠ABC,∴∠ABQ=∠CBQ,∵∠BAC=90°∴∠AQP+∠ABQ=90°,∵AD⊥BC,∴∠ADB=90°,∴∠CBQ+∠BPD=90°,∵∠ABQ=∠CBQ,∴∠AQP=∠BPD,又∵∠BPD=∠APQ,∴∠AQP=∠AQP,∴AP=AQ.21.(7分)某市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为1000 ,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.【解答】解:(1)总人数=200÷20%=1000,故答案为1000,B组人数=1000﹣200﹣400﹣200﹣50﹣50=100人,条形图如图所示:(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人,答:全市学生中选择体育锻炼的人数约有16000人.(3)设两名女生分别用A1,A2,一名男生用B表示,树状图如下:共有6种情形,恰好一男一女的有4种可能,所以恰好选到1男1女的概率是=.22.(7分)如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的长.【解答】解:(1)四边形ACC′A′是菱形,理由如下:由平移的性质可得:AA'=CC',且AA'∥CC'∴四边形ACC′A′是平行四边形,由AA'∥CC'得:∠AA'C=∠A'CB',由题意得:CD平分∠ACB',∴∠ACA'=∠A'CB',∴∠ACA'=∠AA'C,∴AA'=AC,∴平行四边形ACC′A′是菱形;(2)在Rt△ABC中,∠B=90°,AB=8,∴cos∠BAC==,∴AC=10,∴BC===6,由平移的性质可得:BC=B'C'=6,由(1)得四边形ACC′A′是菱形,∴AC=CC'=10,∴CB'=CC'﹣B'C'=10﹣6=4.五、解答题(三)(每小题9分,共27分)23.(9分)如图,已知直线y=kx+b与反比例函数y=的图象交于A (1,m)、B两点,与x 轴、y轴分别相交于C(4,0)、D两点.(1)求直线y=kx+b的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出关于x的不等式kx+b<的解集是0<x<1或x>3..【解答】解:(1)将A(1,m)代入y=,得m=3,∴A(1,3),将A(1,3)和C(4,0)分别代入y+kx+b,得:,解得:k=﹣1,b=4,∴直线解析式为:y=﹣x+4.(2)联立,解得或,∵A(1,3),∴B(3,1),∴S△AOB=S△AOC﹣S△BOC=•OC•|y A|﹣•OC•|y B|=×4×3﹣×4×1=4,∴△AOB的面积为4.(3)观察图象可知:不等式kx+b<的解集是0<x<1或x>3.故答案为0<x<1或x>3.24.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC 交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求的长.(3)若tanC=2,AE=8,求BF的长.【解答】解:(1)连接OD,∵AB=AC,∴∠ABC=∠C,∵OD=OB,∴∠ABC=∠ODB,∴∠C=∠ODB,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,即OD⊥EF,∴EF是⊙O的切线;(2)∵AB=AC=12,∴OB=OD=AB=6,由(1)得:∠C=∠ODB=60°,∴△OBD是等边三角形,∴∠BOD=60°∴的长为=2π,即的长=2π;(3)连接AD,∵DE⊥AC∠DEC=∠DEA=900在Rt△DEC中,tanC==2,设CE=x,则DE=2x,∵AB是直径,∴∠ADB=∠ADC=90°,∴∠ADE+∠CDE=90°,在Rt△DEC中,∠C+∠CDE=90°,∴∠C=∠ADE,在Rt△ADE中,tan∠ADE==2,∵AE=8,∴DE=4,则CE=2,∴AC=AE+CE=10,即直径AB=AC=10,则OD=OB=5,∵OD∥AE,∴△ODF∽△AEF,∴=即: =,解得:BF=,即BF的长为.25.(9分)如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.【解答】(1)解:∵CQ=t,OP=t,CO=8,∴OQ=8﹣t.∴S△OPQ=(0<t<8);(2)证明:∵S四边形OPBQ=S矩形ABCO﹣S△CBQ﹣S△PAB==32;∴四边形OPBQ的面积为一个定值,且等于32;(3)解:当△OPQ与△PAB和△QPB相似时,△QPB必须是一个直角三角形,依题意只能是∠QPB=90°,又∵BQ与AO不平行,∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ,∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP,∴=,∴,解得:t1=4,t2=8经检验:t=4是方程的解且符合题意,t=8不是方程的解,舍去;(从边长关系和速度考虑),∴QO=4,∴直线QB的解析式为:y=x+4,此时P(,0);∵B(,8)且抛物线经过B、P两点,∴抛物线是,直线BP是:.设M(m,)、N(m,).∵M在BP上运动,∴∵与交于P、B两点且抛物线的顶点是P;∴当时,y1<y2∴MN=|y1﹣y2|=|m2﹣2m+8﹣(m﹣8)|=m﹣8﹣(m2﹣2m+8)=m﹣8﹣m2+2m﹣8=﹣m2+3m﹣16=,∴当时,MN有最大值是2;∴设MN与BQ交于H点则,;∴S△BHM==∴S△BHM:S五边形QOPMH==3:29∴当MN取最大值时两部分面积之比是3:29.。
最新版深圳中考九年级数学中考模拟试卷(试卷+答题卡+答案)
初三数学参考答案及评分说明二、填空题:(本大题共4题,每小题3分,共12分)13. 4a(a+2)(a-2); 14. 0.8; 15. 45; 16. (-1, -6),三、解答题:(本题共7小题,其中第17题5分,第18题6分,第19、 20题7分,21题8分,第22题9分,第23题10分,共52分)17.(5分)计算:(﹣1)2018+(﹣)﹣1+|﹣|﹣2sin45°【解答】解:原式=1+(﹣3)+﹣2×……4分=1﹣3+﹣=﹣2.……5分18.(6分)解分式方程:+1=.【解答】解:化为整式方程得:x2﹣4x+4+x2﹣4=16,……2分x2﹣2x﹣8=0,解得:x1=﹣2,x2=4……4分经检验x=﹣2时,x+2=0,所以x=4是原方程的解.……6分19. 解:(1)20÷=200,所以这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=×360°=72°;故答案为200,72°;……2分(2)C类人数为200﹣80﹣20﹣40=60(人),……3分完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P(恰好选中甲、乙两位同学)==.……………7分20. ( 7分) 解:作PE⊥OB于点E,过点P作PF⊥OC,垂足为F.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.……………5分在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.……………7分21. (8分)解:(1)把点A(8,1)代入反比例函数y=(x>0),得:k=1×8=8,即k=8;……………3分(2)设直线AB的解析式为:y=ax+b,根据题意得:,解得:,∴直线AB的解析式为:y=x﹣3;……………6分当t=4时,M(4,2),N(4,﹣1),则MN=3,∴△BMN的面积=×3×4=6;……………8分22. (9分)解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.……………3分(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.……………6分②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.……………9分23. (10分)解:解:(1)∵BC⊥x轴,点C(4,8),∴B(4,0),把B(4,0),C(0,﹣6)代入y=+bx+c得,解得,∴抛物线解析式为y=﹣x﹣6;……………3分(2)设直线AC的解析式为y=px+q,把A(﹣2,0),C(4,8)代入得,解得,∴直线AC的解析式为y=x+,当x=0时,y=x+=,则E(0,),∴DE=+6=;……………6分(3)如图,当点M在x的正半轴,AN交BC于F,作FH⊥AC于H,则FH=FB,易得AH=AB=6,∵AC===10,∴CH=10﹣6=4,∵cos∠ACB==,∴CF==5,∴F(4,3),易得直线AF的解析式为y=x+1,解方程组得或,∴N点坐标为(,);当点M′在x的负半轴上时,AN′交y轴与G,∵∠CAN′=∠M′AN′,∴∠KAM′=∠CAK,而∠CAN=∠MAN,∴∠KAC+∠CAN=90°,而∠MAN+∠AFB=90°,∴∠KAC=∠AFB,而∠KAM′=∠GAO,∴∠GAO=∠AFB,∴Rt△OAG∽Rt△BFA,∴=,即=,解得OG=4,∴G(0,﹣4),易得直线AG的解析式为y=﹣2x﹣4,解方程组得或,∴N′的坐标为(,﹣),综上所述,满足条件的N点坐标为(,);(,﹣).……………10分。
2024年广东省深圳市中考数学全真模拟卷(二)
2024年广东省深圳市中考数学全真模拟卷(二)一、单选题1.下列各数是负数的是( ) A .0B .13C .2.5D .﹣12.下列图形中,不是轴对称图形的是( )A .B .C .D .3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )A .0.1008×106B .1.008×106C .1.008×105D .10.08×1044.如图,AB//CD ,点P 为CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD 的大小为( )A .60°B .70°C .80°D .100°5.下列计算正确的是( ). A .236a a a ⋅= B .()21a a a a +=+C .()222a b a b -=-D .235a b ab +=6.不等式213x -≤的解集在数轴上表示正确的是( ) A . B . C .D .7.下面是九年一班23名女同学每分钟仰卧起坐的测试情况统计表:则该班女同学每分钟仰卧起坐个数的中位数是( ) A .35个B .38个C .42个D .45个8.如图,在ABC V 中,AB AC =,30CAB ∠=︒,BC =①分别以点A 和点B 为圆心,大于12AB 长为半径作弧,两弧相交于E ,F 两点;②作直线EF 交AB于点M ,交AC 于点N .连接BN .则AN 的长为( )A.2 B .3C .D .9.如图,D 是ABC V 的边BC 的中点,4AB =,1AD =,则BAC ∠的最小值为( )A .90︒B .120︒C .135︒D .150︒10.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)二、填空题 11x 的取值范围是. 12.已知73a b =-,则代数式2269a ab b ++的值为.13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt △ABC 是6×6网格图形中的格点三角形,则该图中所有与Rt △ABC 相似的格点三角形中.面积最大的三角形的斜边长是.14.如图,ABC V 的顶点A , B 在双曲线ky x=上,顶点C 在y 轴上,BC 边与双曲线交于点D ,若3BD CD =,ABC V 的面积为50,则k 的值为.15.如图,在ABC V 中,AB AC =,90BAC ∠=︒ ,点D ,E 分别在边AB ,AC 上,且AE BD =,M 为DE 的中点,当CDAM 的值最大时,AE EC的值为.三、解答题16.计算:(11π3tan602-⎛⎫-︒-- ⎪⎝⎭17.先化简234111a a a -⎛⎫+÷⎪--⎝⎭,再从1-,0,1,2中选择一个适当的数作为a 的值代入求值. 18.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A )科技兴趣(B )、民族体育(C )、艺术鉴赏(D )、劳技实践(E ),每个学生每个学期只参加一个社团活动,为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)本次调查的学生共有________人; (2)将条形统计图补充完整;(3)在扇形统计图中,传统国学(A )对应扇形的圆心角度数是_______; (4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D )活动的学生人数.19.为改善城市人居环境,某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾.(1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?20.如图,AB 是O e 的直径,点C ,D 是O e 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O e 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积. 21.综合实践某学校在校西南角开辟如图是其中蔬菜大棚的横截到冬季到来,为防止大雪对大棚造成损坏,学校决定准备在两根支撑柱上架横梁如图所示.22.【基础巩固】(1)如图1,在正方形ABCD 中,点E 在AB 的延长线上,连接AE ,过点D 作⊥DF DE 交BC 的延长线于点F ,求证:DE DF =.【尝试应用】(2)如图2,在菱形ABCD 中,60ABC ∠=︒,点E 在边AD 上,点F 在AB 的延长线上,连接EF ,以E 为顶点作∠=∠FEG BAD ,EG 交BC 的延长线于点G ,若34EF EG =,4AB =,2BF =,求CG 的长.【拓展提升】(3)如图3,在矩形ABCD 中,点E 在边AD 上,点F 在AB 的延长线上,连接BD EF ,,过点C 作CG BD ∥,以E 为顶点作FEG FBD ∠=∠,EG 交CG 于点G ,若AD mAB=,DE nAD=,求EFEG的值(用含m,n的代数式表示).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2018年中考数学模拟测试卷考试时间:100分钟;总分100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.﹣2的相反数是()A. ﹣12B.12C. ﹣2D. 22.如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A. B.C. D.3.数字150000用科学记数法表示为()A. 1.5×104B. 0.15×106C. 15×104D. 1.5×1054.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()(A)(B)(C)(D)A. 162°B. 152°C. 142°D. 128°6.若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A. 1B. ﹣1C. 2D. ﹣27.某商场将一种商品A按标价的9折出售(即优惠10%)仍可获利润10%,若商品A的标价为33元,则该商品的进价为( )A. 27元B. 29.7元C. 30.2元D. 31元8.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP△≌△的根据是()A.SAS B.ASA C.AAS D.SSS9.下列说法中正确的是( )A.原命题是真命题,则它的逆命题不一定是真命题B. 原命题是真命题,则它的逆命题不是命题C.每个定理都有逆定理D.只有真命题才有逆命题10.根据下表中的信息解决问题:若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个11.如图,在2×2正方形网格中,以格点为顶点的△ABC,则sin∠CAB=A. 332B.35C.10D.31012.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.因式分解:2a2-4a+2=______________.14.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,九年级同学获得第一名的概率是_________.15.阅读理解:我们把a bc d称作二阶行列式,规定它的运算法则为=a bad bcc d-,例如13=1423224⨯-⨯=-,如果231xx->,则x的取值范围是16.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F 分别是AD,AC上的动点,则CE+EF的最小值为三、解答题17.计算:.18.先化简,再求值:233111x x xxx x--⎛⎫-+÷⎪-+⎝⎭,其中x的值从不等式组23{241xx-≤-<的整数解中选取.19.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.20.要建一个面积为150m2的长方形养鸡场,为了节约材料,•鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.(1)求鸡场的长与宽各是多少?(2)题中墙的长度a对解题有什么作用.21.直线y=kx+b与反比例函数y=6x(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.22.如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:CD2=BE•BC;(3)当CG=,BE=时,求CD的长.23.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:①CB=CE;②D是BE的中点;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案1.D【解析】解:﹣2的相反数是2.故选D . 2.C【解析】解:该主视图是:底层是3个正方形横放,右上角有一个正方形,故选C . 3.D【解析】解:数字150000用科学记数法表示为1.5×105.故选D . 4.D 【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可。
A 、B 、C 均只是轴对称图形,D 既是轴对称图形,又是中心对称图形, 故选D.考点:本题考查的是中心对称图形与轴对称图形 点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 5.C【解析】解:∵l 1∥l 2,∠1=38°,∴∠ADP =∠1=38°,∵矩形ABCD 的对边平行,∴∠BPD +∠ADP =180°,∴∠BPD =180°﹣38°=142°,故选C . 6.D【解析】试题分析:解不等式2x ﹣a <1,得:x <,解不等式x ﹣2b >3,得:x >2b+3, ∵不等式组的解集为﹣1<x <1,∴,解得:a=1,b=﹣2, 当a=1,b=﹣2时,(a ﹣3)(b+3)=﹣2×1=﹣2, 故选:D .考点:解一元一次不等式组 7.A【解析】设该商品的进价为x 元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,所以该商品的进价为27元,故选A .点睛:本题考查了销售问题的运用,列一元一次方程解实际问题的运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解即可. 8.D【解析】解:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,即OC=OD ; 以点C ,D 为圆心,以大于21CD 长为半径画弧,两弧交于点P ,即CP=DP ;再有公共边OP ,根据“SSS ”即得△OCP≌△ODP. 故选D . 9.A 【解析】原命题是真命题,则它的逆命题不是命题 是错误的,原命题的逆命题依然有条件和结论两部分,依然是命题。
每个定理都有逆定理是错误的,原命题是定理,但逆命题不一定是定理,不能称为逆定理。
只有真命题才有逆命题是错误的,假命题也有逆命题。
A 正确 10.C【解析】解:当a =1时,有19个数据,最中间是:第10个数据,则中位数是38; 当a =2时,有20个数据,最中间是:第10和11个数据,则中位数是38; 当a =3时,有21个数据,最中间是:第11个数据,则中位数是38;当a =4时,有22个数据,最中间是:第11和12个数据,则中位数是38; 当a =5时,有23个数据,最中间是:第12个数据,则中位数是38;当a =6时,有24个数据,最中间是:第12和13个数据,则中位数是38.5; 故该组数据的中位数不大于38,则符合条件的正整数a 的取值共有:5个. 故选C .点睛:此题主要考查了中位数以及频数分布表,正确把握中位数的定义是解题关键. 11.B【解析】过C 作CD⊥AB,根据勾股定理得: AC=AB=2212+ =5 ,S △ABC =4-1212⨯⨯-1212⨯⨯-1112⨯⨯=32, 即12 CD•AB=32,所以12 5⨯ CD =32, 解得:CD=355, 则sin ∠CAB=CD AC =35, 故选B .12.B【解析】解:∵E 为CD 边的中点,∴DE =CE ,又∵∠D =∠ECF =90°,∠AED =∠FEC ,∴△ADE ≌△FCE ,∴AD =CF ,AE =FE ,又∵ME ⊥AF ,∴ME 垂直平分AF ,∴AM =MF =MC +CF ,∴AM =MC +AD ,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,MN BM AN AD<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选B.点睛:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.13.2(a-1)2【解析】2a2-4a+2=2(a2-2a+1)=2(a-1)2故答案为:2(a-1)214.1 2【解析】根据题意列表如下:所有等可能的情况有12种,其中九年级同学获得第一名的情况有6种,则P=612=12.故答案为12.15.A【解析】由题意可得2x−(3−x)>0,解得x>1.故选A.点睛:本题主要考查了解一元一次不等式的能力,关键是看懂题目所给的运算法则,根据题目列出不等式.解不等式啊哟依据不等式的性质:(1)不等式两边同时加上或减去同一个数或式子,不等号的方向不变;(2)不等式两边同时乘以或除以同一个正数,不等号的方向不变;不等式两边同时乘以或除以同一个负数,不等号的方向改变. 14.C【解析】解:如图所示:在AB 上取点C ′,使AC ′=AC ,过点C ′作C ′F ⊥AC ,垂足为F ,交AD 与点E .在Rt △ABC 中,依据勾股定理可知BA =10.∵AC =AC ′,∠CAD =∠C ′AD ,AE =C ′E ,∴△AEC ≌△AEC ′,∴CE =EC ′,∴CE +EF =C ′E +EF ,∴当C ′F ⊥AC 时,CE +EF 有最小值.∵C ′F ⊥AC ,BC ⊥AC ,∴C ′F ∥BC ,∴△AFC ′∽△ACB ,∴''FC AC BC AB =,即'6810FC =,解得FC ′=245.故选C .点睛:本题主要考查的是相似三角形的性质、勾股定理的应用、轴对称图形的性质,熟练掌握相关图形的性质是解题的关键.17.π. 【解析】试题分析:直接利用特殊角的三角函数值以及立方根的性质和绝对值的性质分别化简求出答案.试题解析:解:原式=﹣1+1+3+π﹣3=π.点睛:此题主要考查了实数运算,正确化简各数是解题关键. 18.2x x-,当x =2时,原式=0. 【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x 的值,代入求解可得. 试题解析:原式=()21133111x x x x x x x -⎛⎫--+÷ ⎪+++⎝⎭=()232111x x x x x x -++⋅+-=()()()12111x x x x x x --+⋅+-=2x x - 解不等式组23{241x x -≤-<得:﹣1≤x <52,∴不等式组的整数解有﹣1、0、1、2,∵不等式有意义时x ≠±1、0,∴x =2,则原式=222-=0. 点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.19.(1)30;(2)作图见解析;(3)240;(4)23.【解析】试题分析:(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:解:(1)本次调查的学生人数为6÷20%=30;(2)B选项的人数为30﹣3﹣9﹣6=12,补全图形如下:(3)估计“了解”的学生约有600×1230=240名;(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为46=23.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)当x=10时,鸡场宽为10m长为15m(2)当15≤a<20时,只能为10,即鸡场的长可以为15m,也可以为20m【解析】试题分析:(1)设鸡场垂直于墙的宽度为x,则x(35-2x)=150,解方程可求得长和宽;(2)墙可以作为养鸡场的一边,因而墙长应不小于边长.试题解析:(1)设鸡场垂直于墙的宽度为x,则x(35-2x)=150,解得x=7.5,x=10,若对墙的长度a的面不作限制,则当x=7.5时,鸡场的宽为7.5m,长为20m,当x=10时,鸡场宽为10m长为15m,(2)当15≤a<20时,只能为10,即鸡场的长可以为15m,也可以为20m.21.(1)y=﹣12x+4;(2)(2,0)或(12,0).【解析】试题分析:(1)先根据反比例函数解析式确定出点A、点B的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)分△ADP∽△CDO与△PDA∽△CDO两种情况讨论即可得.试题解析:(1)∵y=kx+b与反比例函数y=6x(x>0)的图象分别交于点A(m,3)和点B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有23{61k bk b+=+=,解得1 {24kb=-=,∴直线AB的解析式为y=﹣12x+4;(2)如图①当PA⊥OD时,∵PA∥OC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣12x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=12,∴P′(12,0),综上所述,满足条件的点P坐标为(2,0)或(12,0).22.(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据三个角是直角的四边形是矩形证明四边形ABCD是矩形,可得结论;(2)证明△ABE∽△CBA,列比例式可得结论;(3)根据F是AC的三等分点得:AG=2BG,设BG=x,则AG=2x,代入(2)的结论解出x的值,可得CD的长.试题解析:证明:(1)∵AC为⊙O的直径,∴∠ABC=∠ADC=90°,∵∠BAD=90°,∴四边形ABCD是矩形,∴AB=CD;(2)∵AE为⊙O的切线,∴AE⊥AC,∴∠EAB+∠BAC=90°,∵∠BAC+∠ACB=90°,∴∠EAB=∠ACB,∵∠ABC=90°,∴△ABE∽△CBA,∴,∴AB2=BE•BC,由(1)知:AB=CD,∴CD2=BE•BC;(3)∵F是AC的三等分点,∴AF=2FC,∵FG∥BE,∴△AFG∽△ACB,∴=2,设BG=x,则AG=2x,∴AB=3x,在Rt△BCG中,CG=,∴BC2=()2﹣x2,BC=,由(2)得:AB2=BE•BC,(3x)2=,4x4+x2﹣3=0,(x2+1)(4x2﹣3)=0,x=±,∵x>0,∴x=,∴CD=AB=3x=.点睛:本题是圆和四边形的综合题,难度适中,注意第2和3问都应用了上一问的结论,与方程相结合,熟练掌握一元高次方程的解法.23.(1)y=14x2﹣x;(2)①证明见解析;②证明见解析;(3)P的坐标为(515+)或(35152).【解析】试题分析:(1)利用待定系数法,设抛物线的解析式,由题意可知函数过(0,0),A(0,4),B(-2,3),解方程组.(2)①过点E作EH∥x轴,交y轴于H,利用勾股定理求CB的长度,求直线BE与对称轴的交点,得到CE.②过点E作EH∥x轴,交y轴于H,证明DFB≌△DHE(SAS), ∴BD=DE,即D是BE的中点.(3)BE垂直平分线上的点,到B,E距离相等,所以直线CD与抛物线的交点,就是P点.试题解析:(1)解:∵点B(﹣2,m)在直线y=﹣2x﹣1上,∴m=﹣2×(﹣2)﹣1=3,∴B(﹣2,3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0),设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(﹣2,3)代入上式,得3=a(﹣2﹣0)(﹣2﹣4),∴a=14,∴所求的抛物线对应的函数关系式为y=14x(x﹣4),即y=14x2﹣x;(2)证明:①直线y =﹣2x ﹣1与y 轴、直线x =2的交点坐标分别为D (0,﹣1),E (2,﹣5),过点B 作BG ∥x 轴,与y 轴交于F 、直线x =2交于G , 则BG ⊥直线x =2,BG =4,在Rt △BGC 中, 225BC CG BG =+=,∵CE =5,∴CB =CE =5.②过点E 作EH ∥x 轴,交y 轴于H ,则点H 的坐标为,H (0,﹣5),又点F 、D 的坐标为F (0,3)、D (0,﹣1), ∴FD =DH =4,BF =EH =2,∠BFD =∠EHD =90°,∴△DFB ≌△DHE (SAS ),∴BD =DE ,即D 是BE 的中点; (3)解:存在.由于PB =PE ,∴点P 在直线CD 上,∴符合条件的点P 是直线CD 与该抛物线的交点,设直线CD 对应的函数关系式为y =kx +b ,将D (0,﹣1),C (2,0)代入,得1{20b k b =-+=,解得k =12,b =﹣1,∴直线CD 对应的函数关系式为y =12x ﹣1, ∵动点P 的坐标为(x , 14x 2﹣x ), ∴12x ﹣1=14x 2﹣x ,解得x 15x 2=35 ∴y 1=152,y 2=152, ∴符合条件的点P 的坐标为(5 152)或(35 152). 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x () (2,0)x ,利用双根式,y = ()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点, 122x x x +=.(3)已知二次函数的顶点坐标,利用顶点式()2y a x h k =-+,(0a ≠)求二次函数解析式. (4)已知条件中a ,b ,c ,给定了一个值,则需要列两个方程求解.(5)已知条件有对称轴,对称轴也可以作为一个方程;如果给定的两个点纵坐标相同1,y x ()(2,)x y ,则可以得到对称轴方程122x x x +=. 2.处理直角坐标系下,二次函数与一次函数图像问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,找出不同点间的关系.如果需要得到一次函数的解析式,依然利用待定系数法求解析式.。