人教版七年级数学有理数的乘方练习题

合集下载

七年级数学有理数的乘方练习题(附答案)

七年级数学有理数的乘方练习题(附答案)

七年级数学有理数的乘方练习题一、单选题1.()20201-等于( )A. 2020-B.2020C.-1D.1 2.已知()2230a b -++=,则下列式子值最小是( )A. a b +B. a b -C. a bD. ab3.下列各对数中,数值相等的数是( )A. 23与32B. 23-与()23-C. ()332⨯与332⨯D. 32-与()32- 4.有理数232(1),(1),1,1,(1)------中,其中等于1的个数是( )A.2个B.3个C.4个D.5个 5.下列计算①21124⎛⎫-= ⎪⎝⎭;②239-=;③22455⎛⎫= ⎪⎝⎭;④21139⎛⎫--= ⎪⎝⎭;⑤()224-=,其中正确的有( )A.1B.2C.3D.46.下列各组数中,不是互为相反数的是( )A.(3)--与(3)+-B.23-与2(3)-C.3--与3+D.3(3)--与337.下列各组数中,结果一定相等的是( )A. 2a -与()2a -B. 2a 与()2a -- C. 2a -与()2a -- D. ()2a -与()2a -- 8.下列各组的两个数中,运算后结果相等的是( )A.34和43B.()53-和53-C.()42-和42-D.323⎛⎫ ⎪⎝⎭和323 9.下列各组数中,数值相等的是( )A.32-和3(2)-B.22-和2(2)-C.32-和23-D.101-和10(1)- 10.32-等于( )A.6-B.6C.8-D.8 11.化简()20201-的值是( ) A.1B.2020-C.2020D.1-二、填空题12.在有理数2223,3.5,(3),2,, 3.14159263⎛⎫------ ⎪⎝⎭中,负数有______个,分数有_____个. 13.若2a =,则2a =_________,3a =__________.14.计算()()2018201911---的结果为_________.15.若5a =,则a = ________;平方得36的数是_________.参考答案1.答案:D解析:2.答案:D解析:3.答案:D解析:4.答案:B解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:8.答案:B解析:9.答案:A解析:10.答案:C解析:11.答案:A解析:12.答案:2;3解析:13.答案:4;±8解析:14.答案:2解析:15.答案:5±,6±解析:。

【新】人教版七年级上册数学 有理数的乘方 练习题

【新】人教版七年级上册数学  有理数的乘方 练习题

有理数的乘方练习题课堂学习检测一、选择题1.-12的计算结果是( ).(A)1 (B)-11 (C)-1 (D)-22.-0.22的计算结果是( ).(A)-0.04 (B)0.04 (C)0.4 (D)-0.43.312-的计算结果是( ). (A)91(B)31- (C)91- (D)314.下列各式中,计算结果得0的是( ).(A)22+(-2)2(B)-22-22 (C)2221)21(-- (D)2221)21(+- 5.下列各数互为相反数的是( ).(A)32与-23(B)32与(-3)2 (C)32与-32(D)-32与-(-3)2二、填空题6.对于(-2)6,6是______的指数,底数是______,(-2)6=______.对-26,6是____的指数,底数是____,-26=______.7.计算:(1)34=______; (2)-34=______; (3)(-3)4=______;(4)-(-3)4=______;=32)5(3______; =3)32)(6( ______; =-3)32)(7(______;=--3)2()8(3______; 8.当n 为正奇数时,(-a )n =______;当n 为正偶数时,(-a )n =______.三、计算题9.6×(-2)2÷(-23)10.222232)32(2)2(-+--11.(3×2)2+(-2)3×5-(-0.28)÷(-2)212.)2131()1()3(3322-⨯---÷-13.|32|)2.0(1)1.0(1323--+--- 14.234)21(211])43()21[(1-+--+综合、运用、诊断一、选择题15.下列说法中,正确的个数为( ).①对于任何有理数m ,都有m 2>0;②对于任何有理数m ,都有m 2=(-m )2;③对于任何有理数m 、n (m ≠n ),都有(m -n )2>0;④对于任何有理数m ,都有m 3=(-m )3.(A)1 (B)2 (C)3 (D)016.下列说法中,正确的是( ).(A)一个数的平方一定大于这个数(B)一个数的平方一定是正数 (C)一个数的平方一定小于这个数(D)一个数的平方不可能是负数二、填空题17.设n 为自然数,则:(1)(-1)2n -1=______;(2)(-1)2n =______;(3)(-1)n +1=______.18.当n 为正奇数时,(-a )n =______;当n 为正偶数时,(-a )n =______.19.用“>”或“<”填空:(1)-32________(-2)3;(2)|-3|3________(-3)2; (3)(-0.2)2________(-0.2)4; (4)2)21(________2)31( 20.如果-a >a ,则a 是________;如果|a 3|=a 3,则a 是________.如果|a 2|=-|a 2|,则a 是________;如果|-a |=-a ,则a 是________.三、解答题21.某种细胞每过30分钟便由1个分裂成2个.请根据你所学知识,描述一下细胞的数量是呈什么方式增长的?并计算5小时后1个细胞可以分裂成多少个细胞.拓展、探究、思考22.已知22×83=2n ,则n 的值为( ).(A)18(B)11 (C)8 (D)7 23.根据数表11+31+3+51+3+5+7……可以归纳出一个含有自然数n 的等式,你所归纳出的等式是_____________.24.实验、观察、找规律计算:31=______;32=______;33=______;34=______;35=______;36=______;37=______;38=______.由此推测32004的个位数字是______。

人教版七年级上册数学 有理数的乘方 同步测试卷

人教版七年级上册数学   有理数的乘方   同步测试卷

有理数的乘方同步测试卷一.选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 下列数据中,是准确数的是( )A. 上海科技馆的建筑面积约98000平方米B. “小巨人”姚明身高2.26米C. 我国的“神舟十三号”飞船有3个舱D. 截至2022年年底中国国内生产总值(GDP)为1210207亿元2. 下列各数是用科学记数法表示的是( )A. 0.1×105B. 10.3×106C. 12×108 D. −7.13×1063. 计算[−5−(−11)]÷(32×4)的结果为( )A. 16B. 1C. −83D. −12834. 某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中126000000用科学记数法可表示为( )A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×10105. 下列四个数中,是负数的是( )A. −(−5)3B. (−2)2C. |−3|3D. −426. 下列各数: ①−12; ②−(−1)2; ③−13; ④−(−1)4中结果等于−1的是( )A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ② ③ ④7. 计算2×(−1)3+4的结果为( )A. 5B. 2C. −1D. −38. 近似数1.50所表示的准确数n的范围是( )A. 1.45≤n<1.55B. 1.45<n<1.55C. 1.495≤n<1.505D. 1.495<n<1.505二.填空题(本大题共8小题,共24分)9. 规定“∗”表示一种运算,且a∗b=3a−2ab,则3∗2=.10. 由四舍五入得到的近似数93.60万精确到位.11. 一种电子计算机每秒可做4×107次计算,也就是说它每秒可做万次计算.12. 太阳半径大约是696000千米,用科学记数法表示为千米,精确到万位的近似数为千米.13. 已知|x|=3,y2=16,xy<0,则x−y的值为.14. 试用“+”“−”号将+3,−8,−10,+12四个数连接起来,使其运算结果最小,这个最小值是.15. 琪琪领取了一笔1500元的稿费,按规定,超过800元的部分,要按20%的税率缴纳个人所得税.琪琪缴纳个人所得税后可领取元.16. 定义新运算:对于任意实数a,b,都有a⊕b=a(a−b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,则3⊕(−2)=;[(−2)⊕3]−[2⊕(−1)]的值为.三.计算题(本大题共1小题,共8分)17. 计算下列各题:(1)(79−56+718)×2×32−74÷(−1.75);(2)23−18−(−13)+(−38);(3)−13×23−0.34×27+13×(−13)−57×0.34.四.解答题(本大题共8小题,共64分。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ; 5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 三、计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

人教版七年级数学上1.5《有理数的乘方》课时练习(有答案)

人教版七年级数学上1.5《有理数的乘方》课时练习(有答案)

七年级数学1.5《有理数的乘方》课时练习一、选择题:1、下列结论中正确的是( )A.绝对值大于1的数的平方一定大于1B.一个数的立方一定大于原数C.任何小于1的数的平方都小于原数D.一个数的平方一定大于这个数2、关于式子(-3)4,正确的说法是( )A.-3是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、下列各组数中,数值相等的是( )A .-23和 (-2)3B .-22和 (-2)2C .-23和 -32D .-110和 (-1)10 4、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个11相加5、下列说法中正确的是( )A 、23表示2×3的积B 、任何一个有理数的偶次幂是正数C 、-32 与 (-3)2互为相反数D 、一个数的平方是94,这个数一定是32 6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A 、-2B 、2C 、4D 、2或-27、一个有理数的平方是正数,则这个数的立方是( )A 、正数B 、负数C 、正数或负数D 、奇数8、(-1)2019+(-1)2020÷1 +(-1)2021的值等于( ) A 、0 B 、 1 C 、-1 D 、2二、填空题:9、算式(-3)×(-3)×(-3)×(-3)用幂的形式可表示为 ,其值为 .10、设水桶里的水为1,第一天用掉它的一半,第二天用掉剩下的一半,第三天又用去剩下的一半,… 第n 天用去 。

(用n 的式子来表示)11、-7的平方是_________;一个数的平方是49,这个数是_________;一个数的立方是-8,这个数是__________.12、计算(-1)2-(-13)3×(-3)3的结果为 .13、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…^…推测到320的个位数字是 ;14、如图用苹果垒成的一个“苹果图”,根据题意,第10行有 个苹果,第n 行有 个苹果。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘方一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。

1.5.1 人教版七年级上册数学 第一章《有理数》乘方 专题训练含答案及解析

1.5.1 人教版七年级上册数学 第一章《有理数》乘方 专题训练含答案及解析

简单1、计算(-3)2的结果是()A.-6 B.6 C.-9 D.9 【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】(-3)2=(-3)×(-3)=9.故选D.2、关于-(-a)2的相反数,有下列说法:①等于a2;②等于(-a)2;③值可能为0;④值一定是正数.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据相反数和平方的概念及性质进行判断.【解答】①∵-(-a)2=-a2,∴它的相反数是a2.显然是正确的.②∵(-a)2=a2,∴也是正确的.③当a=0时,a2=0,∴原式的值可能为0,也是正确的.④是错误的,没有考虑0.故有3个是正确的.故选C.3、与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【分析】32+32+32表示3个32相加.【解答】32+32+32=3×32=33.故选A.4、在-(-2)3,(-2)3,-23中,最大的数是____________.【分析】求出每个式子的值,再判断即可.【解答】∵-(-2)3=8,(-2)3=-8,-23=-8,∴最大的数是-(-2)3,故答案为:-(-2)3.5、下列各组数中:①-52与(-5)2;②-33与(-3)3;③0100与0200;④-(-1)2与(-1)3;⑤1与-12.相等的共有()组.A.2 B.3 C.4 D.5【分析】根据有理数的乘方运算依次化简各组的结果.【解答】①-25与25,不相等;②中-27与-27相等;③0与0,相等;④中-1与-1相等;⑤1与-1不相等故选B.6、某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】2×2×2×2=24=16.故选B.7、若a是负数,则下列各式不正确的是()A.a2=(-a)2B.a2=|a2| C.a3=(-a)3D.a3=-(-a3)【分析】若a是负数,则-a是正数,且a与-a是一对相反数.根据一对相反数的奇次幂互为相反数,一对相反数的偶次幂相等,负数的偶数次幂是正数,进行判断.【解答】∵一对相反数的偶次幂相等,∴a2=(-a)2,故A正确;∵a是负数,负数的偶数次幂是正数,∴|a2|=a2,故B正确;∵一对相反数的奇次幂互为相反数,∴(-a)3=-a3,故C不正确;∵一对相反数的奇次幂互为相反数-(-a)3=-(-a3)=a3,故D正确.故选C.8、已知a、b是实数,且满足(a+2)2+|b-3|=0,则a+b=__________.【分析】根据非负数的性质解答.当两个非负数相加和为0时,必须满足其中的每一项都等于0.【解答】∵(a+2)2+|b-3|=0,∴a=-2,b=3,∴a+b=-2+3=1.9、已知|x+1|=4,(y+2)2=4,且x与y异号.试求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,再根据x、y异号确定出x、y的值,然后代入代数式进行计算即可得解.【解答】∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=-4,y+2=2或y+2=-2,解得x=3或x=-5,y=0或y=-4,∵x与y异号,∴x=3,y=-4,∴x+y=3+(-4)=-1.简单题1、-23的意义是()A.3个-2相乘B.3个-2相加C.-2乘以3 D.23的相反数【分析】根据乘方的意义和相反数的定义判断.【解答】-23的意义是3个2相乘的相反数.故选D.2、一个数的7次幂是负数,那么这个数的2011次幂是_________(填“正数”“负数”或“0”).【分析】根据负数的奇数次幂是负数解答.【解答】∵一个数的7次幂是负数,∴这个是负数,∴这个数的2011次幂是负数.故答案为:负数.3、一个有理数的平方是正数,那么这个数的立方是()A.正数B.负数C.整数D.正数或负数【分析】正数的平方是正数,负数的平方也是正数,而正数的立方是正数,负数的立方是负数.【解答】∵一个有理数的平方是正数,∴这个有理数是正数或负数.又∵正数的立方是正数,负数的立方是负数,∴这个数的立方是正数或负数.故选D.4、一个数的偶次幂是正数,这个数是()A.正数B.负数C.正数或负数D.任何有理数【分析】根据负数的偶次幂是正数,正数的偶次幂是正数得出.【解答】一个数的偶次幂是正数,这个数是正数或负数.故选C.5、计算:-43×(−12)2=___________.【分析】先算乘方再算乘法,注意负数的偶次幂为正数.【解答】-43×(-12)2=-64×14=-16.故本题答案为:-16.6、计算:2×(-3)2−5÷12×2.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减.【解答】2×(-3)2−5÷12×2=2×9-5×2×2 =18-20=-2.7、计算:4−8×(−12)3=__________.【分析】先算乘方,再算乘法,最后算减法.【解答】原式=4-8×(-18)=4+1=5.故答案为:5.难题1、下列计算正确的是()A.-2+1=-1 B.-2-2=0 C.(-2)2=-4 D.-22=4 【分析】根据有理数的加减法、有理数的乘方,即可解答.【解答】A、-2+1=-1,正确;B、-2-2=-4,故错误;C、(-2)2=4,故错误;D、-22=-4,故错误;故选A.2、计算-22+(-2)2-(-12)-1的正确结果是()A.2 B.-2 C.6 D.10 【分析】根据负整数指数幂和有理数的乘方计算即可.【解答】原式=-4+4+2=2.故选A.3、下列各组数中,数值相等的是()A.32和23B.-23和(-2)3C.-|23|和|-23| D.-32和(-3)2【分析】根据a n表示n个a相乘,而-a n表示a n的相反数,而(-a)2n=a2n,(-a)2n+1=-a2n+1(n是整数)即可求解.【解答】A、32=9,23=8,故本选项错误;B、-23=(-2)3=-8,正确;C、-|23|=-8,|-23|=|-8|=8,故本选项错误;D、-32=-9,(-3)2=9,故本选项错误.故选B.4、-42计算的结果是()A.-8 B.8 C.16 D.-16【分析】根据乘方的意义得到42=4×4=16,则有-42=-16.【解答】∵42=4×4=16,∴-42=-16.故选D.5、下列各式中.计算结果得0的是()A.-22+(-2)2B.-22-22C.-22-(-2)2D.(-2)2+22【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【解答】A、-22+(-2)2=-4+4=0,故本选项正确;B、-22-22=-4-4=-8,不是0,故本选项错误;C、-22-(-2)2=-4-4=-8,不是0,故本选项错误;D、(-2)2+22=4+4=8,不是0,故本选项错误.故选A.6、关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂【分析】根据有理数乘方的定义进行解答即可. 【解答】(-3)4中,-3是底数,4是指数,81是幂. 故选D .7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )米.A .31()2B .51()2C .61()2D .121()2【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为21()2米,那么依此类推得到第六次后剩下的绳子的长度为61()2米.【解答】∵11122-=, ∴第2次后剩下的绳子的长度为21()2米;依此类推第六次后剩下的绳子的长度为61()2米.故选C .8、如果n 是正整数,则(-1)2n +1+(-1)2n =_________. 【分析】根据-1的奇数次幂是-1,-1的偶数次幂是1进行计算. 【解答】(-1)2n +1+(-1)2n =-1+1=0.9、如图是一个数值转换机的示意图,当输入x =3时,则输出的结果为________.【分析】根据题意列出关系式,将x=3代入计算即可求出值.【解答】根据题意列得:3x2-1,将x=3代入得:3×9-1=26.故答案为:26难题1、若(a-3)2+|b+4|=0,则(a+b)2014的值是()A.2014 B.-2014 C.1 D.-1 【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】根据题意得:a-3=0,b+4=0,解得:a=3,b=-4,则原式=1.故选C.2、一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).【分析】先分别计算棱长分别为1米、2米、4米的正方体的表面积,再去掉粘合部分的面积即可.【解答】6(1×1+2×2+4×4)-2(1×1+2×2), =6×(1+4+16)-2(1+4), =116m 2,答:模型的涂漆面积116m 2.3、一块面积为1㎡的长方形纸片,第一次裁去它的一半,第二次裁去剩下纸片的一半,如此裁下去,第八次裁完后剩下的纸片的面积是( ) A .132㎡ B .164㎡ C .1128㎡ D .1256㎡ 【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,根据规律,总结出一般式,由此可以求出第八次剩下的纸片的面积.【解答】根据题意,第一次剩下的面积为12m 2,第二次剩下的面积为14m 2,第三次剩下的面积为18m 2,则第n 次剩下的面积为12n m 2.则第八次剩下的面积为812m 2,即1256m 2.故选D .4、算式999032+888052+777072之值的十位数字为何?( ) A .1B .2C .6D .8【分析】分别得出999032、888052、777072的后两位数,再相加即可得到答案. 【解答】999032的后两位数为09, 888052的后两位数为25, 777072的后两位数为49,09+25+49=83,所以十位数字为8, 故选D .5、观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32015的末位数字是()A.3 B.9 C.7 D.1 【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32015=3503+3的个位数字与与32的个位数字相同,应为7.故选C.6、日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33 【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.7、若a=(-3)13-(-3)14,b=(-0.6)12-(-0.6)14,c=(-1.5)11-(-1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 【分析】分别判断出a-b与c-b的符号,即可得出答案.【解答】∵121413141214131433 330.60.633055a b-=-----+-=---+()()()()<,∴a<b,∵11131214 111312141.5 1.50.60.61.5 1.50.60.60c b-=-----+-=-+-+()()()()()>,∴c>b,∴c>b>a.故选D.8、某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔__________支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘方一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对数中,数值相等的是( ) A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是32 5、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-2 7、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系 11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫ ⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----72132224610、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

数学人教版(2024)七年级上册 第二章 有理数的运算 习题 2.3.1 乘方

数学人教版(2024)七年级上册 第二章 有理数的运算 习题 2.3.1 乘方

×5×6×11

(1)12+22+32+42+52=
1
2
3
4
5
6
7
8
9

10
11

55
12

13
14
15
16
2.3.1
乘方
分层检测
(2)12+22+32+42+52+…+122=

650

(3)计算132+142+152+…+242的值.
解:原式=(12+22+33+…+242)-(12+22+32+…+122)
的数是
2m
1
,第③行该列


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.3.1
乘方
分层检测
(3)取每行数的第10个,计算这三个数的和.
解:第①行第10个数为(-2)10=1 024,
第②行第10个数为1 024+2=1 026,
第③行第10个数为1 024×2=2 048,
1 024+1 026+2 048=4 098.
3


解:原式=-16+18+(-6)÷

=-16+18-54
=-52;
1
2
3
4
5
6
7
8
9
10
11
12
13
1415162.3.1乘方
分层检测
1
2
(2)-2 ×(-1 )-32÷(-2)2-27÷
2
−33 .

解:原式=-4×(- )-32÷4-27÷27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《有理数的乘方》练习题
一、选择题
1、下列各式运算结果为正数的是( )
A 、-24×5
B 、(1-2)×5
C 、(1-24)×5
D 、1-(3×5)6
2、118表示( )
A 、11个8连乘
B 、11乘以8
C 、8个11连乘
D 、8个别1相加
3、-32的值是( )
A 、-9
B 、9
C 、-6
D 、6
4、下列各对数中,数值相等的是( )
A 、 -32 与 -23
B 、-23 与 (-2)3
C 、-32 与 (-3)2
D 、(-3×2)2与-3×22
5、下列说法中正确的是( )
A 、23表示2×3的积
B 、任何一个有理数的偶次幂是正数
C 、-32 与 (-3)2互为相反数
D 、一个数的平方是94,这个数一定是3
2 6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )
A 、-2
B 、2
C 、4
D 、2或-2
7、一个数的立方是它本身,那么这个数是( )
A 、 0
B 、0或1
C 、-1或1
D 、0或1或-1
8、如果一个有理数的正偶次幂是非负数,那么这个数是( )
A 、正数
B 、负数
C 、 非负数
D 、任何有理数
9、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
10、两个有理数互为相反数,那么它们的n 次幂的值( )
A 、相等
B 、不相等
C 、绝对值相等
D 、没有任何关系
11、一个有理数的平方是正数,则这个数的立方是( )
A 、正数
B 、负数
C 、正数或负数
D 、奇数
12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )
A 、0
B 、 1
C 、-1
D 、2
二、填空题
1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;5
23⎪⎭⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ;
2、根据幂的意义,(-3)4表示 ,-43表示 ;
3、平方等于641的数是 ,立方等于64
1的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ;
5、平方等于它本身的数是 ,立方等于它本身的数是 ;
6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-3
43 ,=-433 ; 7、()372⋅-,()472⋅-,()5
72⋅-的大小关系用“<”号连接可表示为 ; 8、如果44a a -=,那么a 是 ;
9、()()()()=----20022001433221 ;
10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;
11、若032>b a -,则b 0
三、计算题
1、()42--
2、3
211⎪⎭⎫ ⎝⎛ 3、()20031- 4、()33131-⨯-- 5、()2332-+- 6、()2233-÷- 7、()()3322222+-+-- 8、()34255414-÷-⎪⎭
⎫ ⎝⎛-÷ 9、()⎪⎭
⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷--- 四、解答题1、按提示填写:
2
3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?
4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?
五、探究创新乐园1、你能求出1021018125.0⨯的结果吗?
2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

3、若a 与b 互为倒数,那么2a 与2b 是否互为倒数?3a 与3b 是否互为倒数?
4、若a 与b 互为相反数,那么2a 与2b 是否互为相反数?3a 与3b 是否互为相反数?
5、比较下面算式结果的大小(在横线上填“>”、“<”或“=” ):
2234+ 342⨯⨯ ()22
13+- ()132⨯-⨯ ()()2
222-+- ()()222-⨯-⨯ 通过观察归纳,写出能反映这一规律的一般结论。

6、根据乘方的意义可得4442⨯=,44443⨯⨯=,
则()()5324444444444444=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯,试计算n m a a ⋅(m 、n 是正整数)
7、观察下列等式,2311=,233321=+,23336321=++,23333104321=+++…想一想等式左边各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这种规律用等式写出来
六、数学生活实践
如果今天是星期天,你知道再这1002天是星期几吗?
大家都知道,一个星期有7天,要解决这个问题,我们只需知道1002被7除的余数是多少,假设余数是1,因为今天是星期天,那么再过这么多天就是星期一;假设余数是2,那么再过这么多天就是星期二;假设余数是3,那么再过这么多天就是星期三……
因此,我们就用下面的实践来解决这个问题。

首先通过列出左侧的算式,可以得出右侧的结论:
(1)27021+⨯= 显然12被7除的余数为2;
(2)47022+⨯= 显然22被7除的余数为4;
(3)17023+⨯= 显然32被7除的余数为1;
(4)27224+⨯= 显然42被7除的余数为 ;
(5)52= 显然52被7除的余数为 ;
(6)62= 显然62被7除的余数为 ;
(7)72= 显然72被7除的余数为 ;
……
然后仔细观察右侧的结果所反映出的规律,我们可以猜想出1002被7除的余数是 。

所以,再过1002天必是星期 。

同理,我们也可以做出下列判断:今天是星期四,再过1002天必是星期 。

七、小小数学沙龙
1、用简便算法计算:

个个n n n 9991999999+⨯ 2、你知道1003的个位数字是几吗?
3、计算()()101
10022-+- 4、我们常用的数是十进制数,如91031061022639123+⨯+⨯+⨯=,表示十进制的数要用10个数码:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的是二进制,只要用两个数码:0和1,如二进制中的1202110112+⨯+⨯=等于十进制的5,10111=1212120211234+⨯+⨯+⨯+⨯等于十进制的23,那么二进制中的1101等于十进制中的数是多少?
5、199********+++++= s ,求s 的值
答案: 选择题
1、C
2、A
3、B
4、C
5、B
6、D
7、D
8、D
9、B 10、C 11、C 12、C
1、6,-2,4,1,23-,5,32
243- ; 2、4个-3相乘,3个4的积的相反数;
3、81±,41;
4、负数;
5、0和1, 0,1和-1;
6、4
27,6427,6427---; 7、()572⋅-<()372⋅-<()4
72⋅-; 8、9,0; 9、-1; 10、-1和0,1;11、< 计算题1、-16 2、
8
27 3、-1 4、2 5、1 6、-1 7、2 8、-59 9、-73 10、-1
解答题 1、差,积,商,幂 2、mm 8.20422.010=⨯ 3、2小时 4、1024210=根 探究创新乐园
1、88188125.080125101101101102101=⨯=⨯⨯=⨯
2、0
3、均是互为倒数
4、2a 与2b 不一定互为相反数,3a 与3b 互为相反数
5、>,>,=,两数的平方和大于或等于这两数的积的2倍;
6、n m n m a a a +=⋅
7、等式左边各项幂的底数的和等于右边幂的底数,()23332121n n +++=+++ 数学生活实践
2,47425+⨯=,4,17926+⨯=,1,271827+⨯=,2,2,=,-
小小数学沙龙
1、 个个个n n n 9991999999+⨯=n n n n 10999999999++⨯
个个个=n n n 10)1999(999++⨯ 个个 =n n n 1010999+⨯ 个=n n 10)1999(⨯+ 个=n n 1010⨯= 个
个n n 101010101010⨯⨯⨯⨯⨯⨯⨯ =n 210 2、1003的个位数字是1,提示:331=,932=,2733=,8134=,24335=,72936=……个位数字是按3,9、7、1循环的; 3、1002- 4、13
5、 1
9922221++++= s ① 20003222222++++=∴ s ② 由②-①: 122000-=s。

相关文档
最新文档