广东省湛江市小学数学小学奥数系列7-1加法原理(二)
小学数学四年级奥数基础教程目录
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
(精品)小学奥数7-3-1 加乘原理之综合运用.专项练习及答案解析
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?教学目标例题精讲知识要点7-3-1.加乘原理之综合运用【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
小学奥数7-1-2 加法原理之分类枚举(二).专项练习
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 知识要点教学目标7-1-2.加法原理之分类枚举(二)分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲分类枚举——找规律【例1】有一个电子表的表面用2个数码显示“小时”,另用2个数码显示“分”。
小学奥数7-1-3 加法原理之树形图及标数法.专项练习及答案解析
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: ① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.知识要点教学目标7-1-3.加法原理之树形图及标数法模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】 A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【关键词】2005年,小数报【解析】 如图,A 第一次传给B ,到第五次传回A 有5种不同方式.同理,A 第一次传给C ,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.C B CC B AAB A B CCBA【答案】10【巩固】 一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?【考点】加法原理之树形图法 【难度】3星 【题型】解答【解析】 6种,如图,第1步跳到B ,4步回到A 有3种方法;同样第1步到C 的也有3种方法.根据加法原理,共有336+=种方法.AA A BCAB C BA【答案】6【例 2】 甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【考点】加法原理之树形图法 【难度】3星 【题型】解答【解析】 如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一共有 7+7=14(种)可能的情况. 【答案】14例题精讲【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。
广东省珠海市数学小学奥数系列7-1加法原理(一)
广东省珠海市数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)接下来画什么?请你圈一圈。
2. (5分) 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?3. (5分)如果北京到广州的高铁中途要停靠郑州,武汉两个火车站,那这些车站间的往返火车票共需多少种?4. (5分) a,b,c,d,e五个人排成一排,a与b不相邻,共有多少种不同的排法?5. (5分)有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)6. (5分)7. (5分)8. (5分)甲、乙、丙、丁、戊、己六个人站队,要求:甲不能站在队伍左半边,乙不能站在队伍右半边,丙不能站在队伍两端,问一共有多少种站法?9. (1分)放假期间,李老师通知小华所在的小组到校参加活动,小华接到电话马上打电话通知所在小组的同学,其通知情况如图所示,如果每打一个电话需1分钟,那么从小华接到通知后,通知到所在的小组的每一个同学,打电话所用的时间最少是________分。
10. (5分)用1角、2角、5角凑2元,一共有多少种不同的取法?11. (5分)饭店里晚上供应A,B,C,D四种炒菜,E,F,G三种主食,如果一种炒菜和一种主食配成一份套餐,共有多少种不同的搭配方法?12. (5分)有个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?13. (5分)参加世界杯足球赛的国家共有个(称强),每四个国家编入一个小组,在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进行一场比赛,赛出强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生强、强、强,最后决出冠军、亚军、第三名,第四名.至此,本届世界杯的所有比赛结束.根据以上信息,算一算,世界杯的足球赛全程共有几场?14. (1分)某校有五名男乒乓球运动员张铭、李亮、刘欣、孟刚、丁奇,四名女乒乓球运动员赵华、王梅、周华从战术上考虑,张铭不能与周华组队,刘欣只能和王梅组队,则参加混双比赛的组队方案有________种。
小学奥数七大模块个知识
小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。
以下是小学奥数知识清单:2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
广东省东莞市数学小学奥数系列7-1加法原理(一)
广东省东莞市数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)用1、0、5三个数字写出4个不同的三位数,并按从大到小的顺序排列起来.2. (5分)按规律填数。
3. (5分)连一连。
(1)请你连一连,算一算,共有几种不同的搭配?(2)哪一种搭配最贵?一共多少元钱?4. (5分)东东、西西、南南、北北四人进行乒乓球单循环赛,结果有三人获胜的场数相同.问另一个人胜了几场?5. (5分)学校教学楼共16级台阶,规定每次只能跨上1级或2级,要登上第16级,共有多少种不同的走法?6. (5分)食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?7. (5分)桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度.现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?8. (5分)某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出,一场体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?9. (1分) (2020六上·汉中期末) 有8位同学进行乒乓球比赛,每两人之间都要赛一场,一共要赛________场。
10. (5分)小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?11. (5分) 10人围成一圈,从中选出三个人,其中三人均不相邻,共有多少种不同的选法?12. (5分)有个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?13. (5分) (2020四上·龙华期末) 鼹鼠玩钻洞游戏(如图),任选一个洞口进入,向前走,再任选一个洞口钻出来。
小学奥数 加法原理之分类枚举(二) 精选练习例题 含答案解析(附知识点拨及考点)
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;知识要点教学目标7-1-2.加法原理之分类枚举(二)2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲分类枚举——找规律【例1】有一个电子表的表面用2个数码显示“小时”,另用2个数码显示“分”。
小学奥数教程加乘原理之数字问题二全国通用含答案
加乘原理之数字问题(二)7-3-3.教学目标复习乘法原理和加法原理;1. 培养学生综合运用加法原理和乘法原理的能力.2. 让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.3.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.知识要点一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不...........可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”...例题精讲组成一个八位数,其中至少连续四位都是1的有多少个?】用数字1,2【例1 【题型】解答【难度】3星【考点】加乘原理之综合运用;个2和没有2个、3个2、22、1个个【解析】将41看成一个整体,其余4个数有5种情况:42 1可以有5种插法;4①4个2时,个4种插法,共有种;和21个1共有4种排法,每一种排法有②3个2时,3个16?4?4 种;31共有6种排法,每一种排法有种插法,共有2③2个2时,2个和2个18?6?3 种;2种插法,共有种排法,每一种排法有个12和3个1共有4个④12时,8?4?2 1种;⑤没有2时,只有个.所以,总共有:48?1185?16??8? 48个.的有答:至少连续四位都是1 【答案】48,这样的七位数一共有多少个?60七位数的各位数字之和为】2 【例【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】七位数数字之和最多可以为..七位数的可能数字组合为:360?63?63??97①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有个.426?7?③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有种.2105?7?6?三个相同的8放置会产生种重复的放置方式.61?3?2?所以3个8和4个9组成的不同的七位数共有种.35?210?6所以数字和为60的七位数共有.84??42?735【答案】84【例3】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】2个数的和能被4整除,可以根据被4除的余数分为两类:40?4?10(个),10中能被4整除的数共有个中选2个,有第一类:余数分别为0,0.1~4010?9?2?45(种)取法;10?10?100(种)个,有除余1,余3的数也分别都有10第二类:余数分别为1,3.1~40中被4取法;第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有(种)取法.190?45?45?100【答案】190【例 4】从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有个。
加法的基本原理和应用
加法的基本原理和应用加法是数学中最基本的运算之一,它具有广泛的应用。
本文将介绍加法的基本原理和应用,并讨论其在日常生活和实际问题中的运用。
一、加法的基本原理加法是指将两个或多个数值相加的运算。
在加法中,有两个重要的概念:加数和和。
加数是指要相加的数,和是指相加所得的结果。
加法的基本原理可以用以下公式表示:和 = 加数1 + 加数2 + 加数3 + ...在加法中,顺序不影响最终的结果,即加法满足交换律。
例如,1 + 2 + 3 和 3 + 2 + 1 的结果都是相同的,都等于6。
此外,加法还满足结合律,即改变加法的括号位置不会改变最终的结果。
例如,(1 + 2) + 3 和 1 + (2 + 3) 的结果都是相同的,都等于6。
二、加法的应用加法在日常生活中有广泛的应用。
以下是几个常见的例子:1.计算购物总价:在购物时,我们需要将每个商品的价格相加,以计算出购物总价。
例如,如果购买了一本书价值30元和一件衣服价值50元,总价可以通过将这两个数相加得到,即30 + 50 = 80元。
2.时间计算:在时间计算中,加法被用来确定一段时间之后的具体时间。
例如,如果现在是上午9点,我们需要将两个小时加上去,就可以知道结果是上午11点。
3.距离计算:在导航和旅行中,加法用于计算不同路段的距离总和。
例如,如果一辆汽车在第一段行驶了50公里,第二段行驶了30公里,那么总行驶距离就是50 + 30 = 80公里。
4.计算成绩:在学校中,加法用于计算学生的成绩总和。
例如,如果一位学生的考试成绩分别是85、90和95,那么他的总分就是85 +90 + 95 = 270分。
5.货币兑换:在国际贸易和旅行中,加法用于计算不同货币之间的兑换。
例如,如果1美元兑换成人民币是6.5元,那么5美元兑换成人民币就是5 × 6.5 = 32.5元。
加法的应用不仅局限于以上几个方面,它在数学、物理、经济学等学科中都有广泛的应用。
小学奥数系列7-1加法原理(二)及参考答案
小学奥数系列7-1加法原理(二)一、1. 如图所示,沿线段从A到B有多少条最短路线?2. 如图,从点到点的最近路线有多少条?3. 如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有________种不同走法.4. 如图所示,从A点到B点,如果要求经过C点或D点的最近路线有多少条?5. 如图为一幅街道图,从出发经过十字路口,但不经过走到的不同的最短路线有________条.6. 小王在一年中去少年宫学习56次,如图所示,小王家在点,他去少年宫都是走最近的路,且每次去时所走的路线正好互不相同,那么少年宫在________点处.7. 在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种?8. 在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少条?9. 在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少种?10. 如下表,请读出“我们学习好玩的数学”这9个字,要求你选择的9个字里能连续(即相邻的字在表中也是左右相邻或上下相邻),这里共有多少种完整的“我们学习好玩的数学”的读法.11. 如图,沿着“北京欢迎你”的顺序走(要求只能沿着水平或竖直方向走),一共有多少种不同的走法?12. 在下图中,用水平或者垂直的线段连接相邻的字母,当沿着这些线段行走是,正好拼出“APPLE”的路线共有多少条?13. 如图,用水平线或竖直线连结相邻汉字,沿着这些线读下去,正好可以读成“祖国明天更美好”,那么可读成“祖国明天更美好”的路线有________条.14. 下图中的“我爱希望杯”有________种不同的读法.15. 如图所示,科学家“爱因斯坦”的英文名拼写为“Einstein”,按图中箭头所示方向有________种不同的方法拼出英文单词“Einstein”.16. 图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?17. 国际象棋中“马”的走法如图所示,位于○位置的“马”只能走到标有×的方格中,类似于中国象棋中的“马走日”.如果“马”在的国际象棋棋盘中位于第一行第二列(图中标有△的位置),要走到第八行第五列(图中标有@的位置),最短路线有________条.18. 从北京出发有到达东京、莫斯科、巴黎和悉尼的航线,其他城市间的航线如图所示(虚线表示在地球背面的航线),则从北京出发沿航线到达其他所有城市各一次的所有不同路线有多少?19. 一个实心立方体的每个面分成了四部分.如图所示,从顶点出发,可找出沿图中相连的线段一步步到达顶点的各种路径.若要求每步沿路径的运动都更加靠近,则从到的各种路径的数目为几?20. 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?21. 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法.22. 如下图,一只蜜蜂从处出发,回到家里处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?23. 小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由房间到达房间有多少种方法?24. 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?25. 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝?26. 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个?参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
小学奥数7-3-3 加乘原理之数字问题(二).专项练习及答案解析
1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一..不可..的.,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?【考点】加乘原理之综合运用 【难度】3星 【题型】解答【解析】 将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4416⨯=种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6318⨯=种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有428⨯=种;⑤没有2时,只有1种;所以,总共有:516188148++++=个.答:至少连续四位都是1的有48个.【答案】48教学目标 例题精讲 知识要点7-3-3.加乘原理之数字问题(二)【例 2】七位数的各位数字之和为60 ,这样的七位数一共有多少个?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】七位数数字之和最多可以为9763⨯=.63603-=.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7642⨯=个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有765210⨯⨯=种.三个相同的8放置会产生3216⨯⨯=种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210635÷=种.所以数字和为60的七位数共有3542784++=.【答案】84【例 3】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?【考点】加乘原理之综合运用【难度】3星【题型】解答【解析】2个数的和能被4整除,可以根据被4除的余数分为两类:÷=(个),10个中选2个,有第一类:余数分别为0,0.1~40中能被4整除的数共有40410⨯÷=(种)取法;109245⨯=(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有1010100第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有4510045190++=(种)取法.【答案】190【例 4】从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有个。
(精品)小学奥数7-1-3 加法原理之树形图及标数法.专项练习
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: ① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚知识要点教学目标7-1-3.加法原理之树形图及标数法举的时候要注意顺序,这样才能做到不重不漏.模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】 A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【关键词】2005年,小数报 【解析】 如图,A 第一次传给B ,到第五次传回A 有5种不同方式. 同理,A 第一次传给C ,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.C B CC B AB A B CCBA【答案】10【巩固】 一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【解析】 6种,如图,第1步跳到B ,4步回到A 有3种方法;同样第1步到C 的也有3种方法.根据加法原理,共有336+=种方法.AA A BCAB C BA【答案】6【例 2】 甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【解析】 如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一例题精讲共有 7+7=14(种)可能的情况. 【答案】14【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。
小学奥数系列7-1加法原理(一)
小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、 (共25题;共113分)1. (5分) 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?2. (5分)下面哪一行的规律和其他几行不同,请你画“√"。
3. (5分)找规律,数字游戏。
4. (5分)“上升数”是指一个数中右边数字比左边大的自然数(如,,等),上升数不包括一位数。
求所有上升数的个数。
5. (5分)接下来画什么?请你圈一圈。
6. (5分) (2019三上·高密期中) 明明为自己搭配早餐。
饮料有2种:牛奶、果汁;点心有3种:蛋糕、油条、面包。
饮料和点心各选一种。
一共有多少种不同的搭配方法?7. (5分) 3名男生,4名女生,全体排成一行,问下列情形各有多少种不同的排法:(1)甲不在中间也不在两端;(2)男、女生分别排在一起;(3)男女相间.8. (5分)在一次足球比赛中,共有10支足球队参赛.(1)如果10球队进行循环赛,需要比赛多少场?(2)如果10支球队进行淘汰赛,到最后决出冠军共需要比赛多少场?9. (1分)有8名运动员进行200米赛跑,应怎样设置起跑线?(每条跑道宽1.2米,弯道部分为半圆)(1)若最内圈的弯道半径为31.7米,这个弯道的全长为________米.(2)若最内圈的弯道半径为31.7米,这个弯道的全长为________米.(3)靠内第3圈的弯道半径为________米,这个弯道的全长为________米.(4)靠内第3圈的弯道半径为________米,这个弯道的全长为________米.(5)相邻跑道的弯道长度差为________.(6)相邻跑道的弯道长度差为________.(7)最外圈起跑线的设置应比最内圈提前________米.(8)最外圈起跑线的设置应比最内圈提前________米.10. (5分)根据规律画出被挡住部分的珠子。
广东省韶关市小学数学小学奥数系列7-1加法原理(一)
广东省韶关市小学数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)由个不同的独唱节目和个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?(6级)2. (5分)找规律,数字游戏。
3. (5分)妈妈让你到楼下的小超市买一袋酱油和一袋醋,超市的货架上有:(1)你有多少种选法?(2)请你算一算:买一袋酱油和一袋醋最少要花多少钱?可以怎样付钱?4. (5分)小强是数学兴趣小组的组长,小组还有16名组员,放学的时候,数学老师让小强建立一个“电话联络网”,明天交给老师。
要求:联络网的第一个电话由老师打给小强,打一个电话平均1分钟,让16名组员在8分钟内(含8分钟)必须都接到通知。
请你帮助小强设计两种不同的“电话联络网”,并设计算出你所设计的方案中,最后一名组员接到电话所经过的最短时间。
5. (5分)我会涂出有规律的颜色。
6. (5分)甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?7. (5分)朝阳区的几个学校举行篮球比赛,每两个学校都要赛一场,共赛了场,那么有几个学校参加了比赛?8. (5分)接下来画什么?请你圈一圈。
9. (1分)张老师买来一箱桔子共64个,分成4份,要求一份比一份多2个,请你把分的结果填在下面:第1份________个,第2份________个,第3份________个,第4份________个。
10. (5分)用1角、2角、5角凑2元,一共有多少种不同的取法?11. (5分) 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?12. (5分)五个人进行象棋单循环赛,规定胜者得分,负者得分,和棋双方各得分,比赛结束后统计发现,五个人的得分和加起来一定是多少?13. (5分)食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?14. (1分)为丰富学生的课余生活,学校举行象棋比赛,采用单循环制,共进行了55场比赛,你知道有________人参与比赛。
广东省深圳市数学小学奥数系列7-1加法原理(一)
广东省深圳市数学小学奥数系列7-1加法原理(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共25题;共113分)1. (5分)连一连。
(1)请你连一连,算一算,共有几种不同的搭配?(2)哪一种搭配最贵?一共多少元钱?2. (5分)围棋的棋盘是由纵、横各19条线交叉组成的.下棋时,棋子都要放在纵线与横线的交叉点上.你能算出棋盘上一共有多少个交叉点吗?3. (5分)找规律,数字游戏。
4. (5分)电影院每排有10个座位,淘气和爸爸、妈妈去看电影,他们想买第一排3张连坐的票,可以有多少种买法?买好票他们又有多少种不同的坐法呢?5. (5分)桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度.现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?6. (5分)一个篮球队有五名队员,,,,,由于某种原因,不能做中锋,而其余个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?7. (5分)我会涂出有规律的颜色。
8. (5分)下图中,在平行线、上有6个点,以这些点为顶点,底边在上,可以画出多少个三角形?9. (1分)由5名男生和7名女生中选出男女各一名同学参加羽毛球比赛,有________种组队方案。
10. (5分) 8人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,有几种坐法?11. (5分)一只蚂蚁从长方体一个顶点A出发,沿着棱爬到B点,如果每次只能经过3条棱,共有多少种不同走法?12. (5分)二年级六个班进行拔河单循环赛,每个班要进行几场比赛?一共要进行几场比赛?13. (5分)有个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?14. (1分)在一次比赛中采用单循环,参赛的每个队都参加了5场比赛则一共进行了________场比赛.15. (5分)每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?16. (5分)如图,从点到点的最近路线有多少条?17. (5分)从北京出发有到达东京、莫斯科、巴黎和悉尼的航线,其他城市间的航线如图所示(虚线表示在地球背面的航线),则从北京出发沿航线到达其他所有城市各一次的所有不同路线有多少?18. (5分)七位数的各位数字之和为60 ,这样的七位数一共有多少个?19. (5分)一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?20. (1分)如图所示,科学家“爱因斯坦”的英文名拼写为“Einstein”,按图中箭头所示方向有________种不同的方法拼出英文单词“Einstein”.21. (5分)一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少?22. (5分)如下表,请读出“我们学习好玩的数学”这9个字,要求你选择的9个字里能连续(即相邻的字在表中也是左右相邻或上下相邻),这里共有多少种完整的“我们学习好玩的数学”的读法.23. (5分) 1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?24. (5分)图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?25. (5分)在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种?参考答案一、 (共25题;共113分)1-1、1-2、2-1、答案:略3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省湛江市小学数学小学奥数系列7-1加法原理(二)
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、 (共26题;共102分)
1. (5分) 5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?
2. (5分)七位数的各位数字之和为60 ,这样的七位数一共有多少个?
3. (1分)用6种不同的颜色来涂正方体的六个面,使得不同的面涂上不同的颜色一共有多少种涂色的方法?(将正方体任意旋转之后仍然不同的涂色方法才被认为是相同的)
4. (5分)用红、黄、蓝三种颜色对一个正方体进行染色使相邻面颜色不同一共有多少种方法?如果有红、黄、蓝、绿四种颜色对正方体进行染色使相邻面颜色不同一共有多少种方法?如果有五种颜色去染又有多少种?(注:正方体不能翻转和旋转)
5. (1分)从1至9这九个数字中挑出六个不同的数填在下图的六个圆圈内,使在任意相邻两个圆圈内数字之和都是不能被3整除的奇数,那么最多能找出________种不同的挑法来.(六个数字相同、排列次序不同的都算同一种)
6. (1分)如图,将1,2,3,4,5分别填入图中的格子中,要求填在黑格里的数比它旁边的两个数都大.共有________种不同的填法.
7. (5分) 1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种
选法?
8. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?
9. (5分)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).
10. (5分)奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由个字母、、、
、组成,并且所有的单词都有着如下的规律,⑴字母不打头,⑵单词中每个字母后边必然紧跟着字母,⑶ 和不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?
11. (5分)一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少?
12. (5分)在下图中,用水平或者垂直的线段连接相邻的字母,当沿着这些线段行走是,正好拼出“APPLE”的路线共有多少条?
13. (1分)从到这个自然数中有________个数的各位数字之和能被4整除.
14. (1分)下图中的“我爱希望杯”有________种不同的读法.
15. (1分)如图所示,科学家“爱因斯坦”的英文名拼写为“Einstein”,按图中箭头所示方向有________种不同的方法拼出英文单词“Einstein”.
16. (5分)图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?
17. (1分)国际象棋中“马”的走法如图所示,位于○位置的“马”只能走到标有×的方格中,类似于中国象棋中的“马走日”.如果“马”在的国际象棋棋盘中位于第一行第二列(图中标有△的位置),要走到第八行第五列(图中标有@的位置),最短路线有________条.
18. (5分)从北京出发有到达东京、莫斯科、巴黎和悉尼的航线,其他城市间的航线如图所示(虚线表示在地球背面的航线),则从北京出发沿航线到达其他所有城市各一次的所有不同路线有多少?
19. (5分)一个实心立方体的每个面分成了四部分.如图所示,从顶点出发,可找出沿图中相连的线段一步步到达顶点的各种路径.若要求每步沿路径的运动都更加靠近,则从到的各种路径的数目为几?
20. (5分)一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?
21. (5分)1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法.
22. (5分)直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?
23. (5分)小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由房间到达房间有
多少种方法?
24. (5分)每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?
25. (5分)树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝?
26. (5分)对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个?
参考答案
一、 (共26题;共102分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
22-1、
23-1、
24-1、
25-1、
26-1、。