正弦函数的图像课件
合集下载
新教材人教A版5.4.1正弦函数余弦函数的图象课件(44张)
【解题策略】 “五点法”画函数y=Asin x+b(A≠0)在[0,2π]上的简图的步骤 (1)列表
(2)描点:在平面直角坐标系中描出下列五个点:(0,y1),(
2
,
y 3) ,
(π,y3),(
3 2
,
y
4 ) ,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
【跟踪训练】 请补充完整下面用“五点法”作出y=-sin x(0≤x≤2π)图象的列表.
(ⅰ)画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),__2____,
(π,0),_(_32_ _, _ _1 )_,(2π,0),用光滑的曲线连接;
(ⅱ)将所得图象向左、向右平行移动(每次2π个单位长度).
(3)本质:正弦曲线是正弦函数的图形表示,是正弦函数的一种直观表示.
(4)应用:根据正弦曲线,能帮助学生更直观地认识正弦函数,进而根据正弦
5.4.1 正弦函数、余弦函数的 图象
必备知识·自主学习
(1)正弦曲线 正弦函数y=sin x,x∈R的图象叫正弦曲线.
(2)正弦函数图象的画法 ①几何法: (ⅰ)利用正弦线画出y=sin x,x∈[0,2π]的图象;
(ⅱ)将图象向左、向右平行移动(每次2π个单位长度).
②“五点法”:
( ,1 )
x∈[0,2π]与y=sin x,x∈[2π,4π]的图象 ( )
A.重合
B.形状相同,位置不同
C.关于y轴对称
D.形状不同,位置不同
【解析】选B.根据正弦曲线的作法可知函数y=sin x,x∈[0,2π]与y=
sin x,x∈[2π,4π]的图象只是位置不同,形状相同.
4.如图是下列哪个函数的图象 ( ) A.y=1+sin x,x∈[0,2π] B.y=1+2sin x,x∈[0,2π] C.y=1-sin x,x∈[0,2π] D.y=1-2sin x,x∈[0,2π] 【解析】选C.把 ( , 这0 ) 一点代入选项检验,即可排除A、B、D.
正弦函数图像课件
y=sinx
终边相同角的同一三角函数值相等
即: sin(x+2k)=sinx, kZ
x[0,2]
y=sinx
f (x 2k ) f (x) 利用图象平移
xR
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
函数y=sinx, xR的图象
2
3
4
正弦曲线
5 6 x
3)作正弦函数的简图(在精确度要求不太高时)
y 1
(0,0)o
2
-1
( 2 ,1)
2
五点画图法
( ,0)
3 2
3
( 2 ,-1)
( 2 ,0)
2
x
五点法
x
3
0
2
2
2
0
1
0
-1
0
y=sinx
4)函数的图象变换
y x2
向右平移 一个单位
y
(x
1)2
向下平移 一个单位
y (x 1)2 1
y
o1
x
-1
四. 解题示范
例1:用五点法作函数y=1+sinx, [0,2]的图象
x
0
2
y=sinx 0
1
3
2
2
0
-1
0
1
2
1
y=1+sin
0
1
x
. 2
y=1+sinx, x[0,2]
1.
.
.
.
o
/2
3/2
作函数 y sin x , x [0,2 ] 的图象
5.4正弦函数的图象与性质PPT课件(人教版)
目
录
1
三角函数图象变换
正弦型函数图象与性质
2
1、 平移和伸缩
正弦型函数: = ሺ +
ሻ +
= + + 如何通过 = 平移
变换得到
= →
=
① = 上有一点 , , = ሺሻ上有
一点 ,
若函数 = +
则的取值范围是(
A. ,
B. ,
> 在区间 − ,
单调递增,
)
C. ,
D.
, +∞
精选例题2
(202X-202X杭州第四中学高一上学期期末)
已知函数ሺሻ = ሺ + ሻ > , > , || <
D.向右平移 个单位
A.向左平移 个单位
C.向左平移 个单位
图象
补充
将函数 = +
的图象向左平移 个单位长度,再向上
平移个单位长度,得到 的图象,若 = ,则
| − |的最小值为(
A.
B.
)
C.
D.
图象如图所示,则函数ሺሻ的解析式为()
A.ሺሻ = +
B.ሺሻ = +
C.ሺሻ = +
D.ሺሻ = +
录
1
三角函数图象变换
正弦型函数图象与性质
2
1、 平移和伸缩
正弦型函数: = ሺ +
ሻ +
= + + 如何通过 = 平移
变换得到
= →
=
① = 上有一点 , , = ሺሻ上有
一点 ,
若函数 = +
则的取值范围是(
A. ,
B. ,
> 在区间 − ,
单调递增,
)
C. ,
D.
, +∞
精选例题2
(202X-202X杭州第四中学高一上学期期末)
已知函数ሺሻ = ሺ + ሻ > , > , || <
D.向右平移 个单位
A.向左平移 个单位
C.向左平移 个单位
图象
补充
将函数 = +
的图象向左平移 个单位长度,再向上
平移个单位长度,得到 的图象,若 = ,则
| − |的最小值为(
A.
B.
)
C.
D.
图象如图所示,则函数ሺሻ的解析式为()
A.ሺሻ = +
B.ሺሻ = +
C.ሺሻ = +
D.ሺሻ = +
正弦函数余弦函数的图像(公开课) 完整版课件PPT
( 2 ,1)
( ,0)
( ,0)
( ,0)
3 2
( 2 ,0)
( 2 ,0)
2
x
( 2 ,0)
(
2
,1)
( 2 ,1)
( 2 ,1)
(2 ,1)
( 2 ,1)
(
((,0((,()0,0)),0,,(003)2))(32,((-33122,(1)3(2,,)3-1(213,)21)(,(3-3)2,211),),--11)()
3 2,
1)
图象的最高点(0,1) (2 ,1)
y cos x, x 0,2
图象与x轴的交点(
2
,0)
(
3 2
,0)
图象的最低点( ,1)
8
例1:(1)画出y=1+sinx , x∈[0,2 ]的简图
x0 sinx 0
2
π
3π 2
2π
1
0 -1 0
1sinx 1
2
1
01
2 y . y 1 sinx,x [0,2π]
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
7
像作二次函数图象那样为了快速用描点法 作出正弦曲线与余弦曲线。下面我们通过观察 函数图象寻找图象上起关键作用的点:
y sin x, x 0,2
图象的最高点(
2
,1)
图象与x轴的交点(0,0) ( ,0) (2 ,0)
图象的最低点(
( 2 ,0) ( 2 ,0) ( 2 ,0)
( 2 ,0) ( 2 ,0) 2 ,0)
x
0
2
( ,0)
( ,0)
( ,0)
3 2
( 2 ,0)
( 2 ,0)
2
x
( 2 ,0)
(
2
,1)
( 2 ,1)
( 2 ,1)
(2 ,1)
( 2 ,1)
(
((,0((,()0,0)),0,,(003)2))(32,((-33122,(1)3(2,,)3-1(213,)21)(,(3-3)2,211),),--11)()
3 2,
1)
图象的最高点(0,1) (2 ,1)
y cos x, x 0,2
图象与x轴的交点(
2
,0)
(
3 2
,0)
图象的最低点( ,1)
8
例1:(1)画出y=1+sinx , x∈[0,2 ]的简图
x0 sinx 0
2
π
3π 2
2π
1
0 -1 0
1sinx 1
2
1
01
2 y . y 1 sinx,x [0,2π]
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
7
像作二次函数图象那样为了快速用描点法 作出正弦曲线与余弦曲线。下面我们通过观察 函数图象寻找图象上起关键作用的点:
y sin x, x 0,2
图象的最高点(
2
,1)
图象与x轴的交点(0,0) ( ,0) (2 ,0)
图象的最低点(
( 2 ,0) ( 2 ,0) ( 2 ,0)
( 2 ,0) ( 2 ,0) 2 ,0)
x
0
2
正弦,余弦函数的图像PPT教学课件
y= sinx,x[0, 2]
和
y=
cosx,x[
2
,
3 2
]的简图:
x
0 2
20
csionsx
10
01
3
3
2
2
22
-01
0-1
10
向左y平移 个单位长度 22
1
o
2
-1
3
2
2
y= cosx,x[ , 3 ]
22
y=sinx,x[0, 2]
2
x
正弦、余弦函数的图象
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
-4 -3
-2
(0,11)
正弦、余弦函数的图象
X
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
-1
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
O
M A(1,0) x
注意:三角 函数线是有 向线段!
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
正弦函数的图像课件
作法: (1) 12等分圆
y
(2) 作正弦线
(3) 平移正弦线
1-
P1
p1/
(4) 连线
-
-
6
M-11
o
-1 -
6
3
2 3
2
5
6
7 6
3 4
5
3
3
2
2 11
6
x
图像的最高点 ( ,1)
2
图像的最低点
(
3 2
,1)
与x轴的交点 (0,0) ( ,0) (2 ,0)
y -1
-
o
6
2
3
2
3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
y sin x, x0,2
简图作法
(1) 列表(列出对图像形状起关键作用的五点坐标)
(2) 描点(定出五个关键点)
(3) 连线(用光滑的曲线顺次连结五个点)
函数 y sin x(x R)图像
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx的图像在……,
4,2 ,2,0, 0,2 , 2,4, …与y=sinx,x∈[0,2π]的图像相同
例1.用五点法画出y=-sinx ,x∈[0, ]的简图
解:(1) 列表 x
(2) 描点 (3) 连线
sinx
-sinx
y
1
.
-1
.2
0
π 2
π
3π 2
正弦,余弦函数的图像PPT课件
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
3
3
3
3
-1
y=sinx
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
x[0,2]
f(x2k)f(x)利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1
o
2
2
-1
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何作出正弦函数的图象(在精确度要求不太高时)?
y
五点画图法
1
(2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)
汇报人:XXX 汇报日期:20XX年10月10日
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
三角函数正弦函数的图像与性质正弦函数的图像课件ppt
三角函数正弦函数的图像与性质 正弦函数的图像课件ppt
xx年xx月xx日
目录
• 正弦函数图像生成 • 正弦函数的性质 • 常见三角函数公式 • 正弦函数的应用 • 实战案例:使用正弦函数和余弦函数解决实际问
题
01
正弦函数图像生成
准备绘制正弦函数图像
选择坐标系
在直角坐标系中,选择一个周期内的图像,可选择 $y=sin(x)$或$y=sin(2x)$等。
03
常见三角函数公式
两角和与差的余弦函数和正弦函数公式
$\cos(x+y)=\cos x\cos y-\sin x\sin y$
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
倍角公式和半角公式
$\cos 2x=cos^2 x-sin^2 x$ $\cos\frac{x}{2}=\frac{\cos x+1}{2}$
$\sin 2x=2sin x cos x$ $\sin\frac{x}{2}=\frac{\sqrt{1-cos x}}{2}$
积化和差和反三角函数公式
使用正弦函数和余弦函数解决桥梁振动问题
总结词
利用正弦、余弦函数的性质,建立模型并解决实际问题。
详细描述
通过实例演示如何利用正弦、余弦函数的性质,建立模型并解决桥梁振动问题, 包括振幅、频率、相位等的求解。
使用正弦函数和余弦函数解决日常生活中的优化问题
总结词
将正弦、余弦函数应用于优化问题中,提高解决方案的效率 和精度。
xx年xx月xx日
目录
• 正弦函数图像生成 • 正弦函数的性质 • 常见三角函数公式 • 正弦函数的应用 • 实战案例:使用正弦函数和余弦函数解决实际问
题
01
正弦函数图像生成
准备绘制正弦函数图像
选择坐标系
在直角坐标系中,选择一个周期内的图像,可选择 $y=sin(x)$或$y=sin(2x)$等。
03
常见三角函数公式
两角和与差的余弦函数和正弦函数公式
$\cos(x+y)=\cos x\cos y-\sin x\sin y$
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
倍角公式和半角公式
$\cos 2x=cos^2 x-sin^2 x$ $\cos\frac{x}{2}=\frac{\cos x+1}{2}$
$\sin 2x=2sin x cos x$ $\sin\frac{x}{2}=\frac{\sqrt{1-cos x}}{2}$
积化和差和反三角函数公式
使用正弦函数和余弦函数解决桥梁振动问题
总结词
利用正弦、余弦函数的性质,建立模型并解决实际问题。
详细描述
通过实例演示如何利用正弦、余弦函数的性质,建立模型并解决桥梁振动问题, 包括振幅、频率、相位等的求解。
使用正弦函数和余弦函数解决日常生活中的优化问题
总结词
将正弦、余弦函数应用于优化问题中,提高解决方案的效率 和精度。
正弦函数的图像和性质课件
( 2 ) x k 4 k z 时 y m a n 1 , x = k 4 时 y m i n 1
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
2
3
4
7 2
5
3
2
2
2
2
3 2
5
7
x
2
2
-1
sin(x+2kπ)=sinx(k∈Z)
f( x2k) f( x), k Z) (
-4 -3
-2
y
1
- o
-1
y=sinx (xR)
2
3
4
5 6 x
职业中学 2018.3
一.正弦函数y=sinx的图像
y
2
1五点法(: ,1)
o
2
(0,0) 2
-1
( ,0)
3 2
(
3
2
(2,0)
,21) x
y
sin(x+2k)=sinx, kZ
1.y=sinx x[0,2]
y=sinx xR
1
-4 -3
-2
- o
y-1
1
2
3
4
5 6 x
-4 -3
-2
- o
-1
2
3
4
5 6 x
2.y=sinx (xR)
二.正弦函数 y=sin x(x∈R) 的性质
性质一:正弦函数 y=sinx 定义域和值域
定义域为R
值域为[-1,1]
y
1
y=1(最大值)
4
3
2
2
3
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
2
3
4
7 2
5
3
2
2
2
2
3 2
5
7
x
2
2
-1
sin(x+2kπ)=sinx(k∈Z)
f( x2k) f( x), k Z) (
-4 -3
-2
y
1
- o
-1
y=sinx (xR)
2
3
4
5 6 x
职业中学 2018.3
一.正弦函数y=sinx的图像
y
2
1五点法(: ,1)
o
2
(0,0) 2
-1
( ,0)
3 2
(
3
2
(2,0)
,21) x
y
sin(x+2k)=sinx, kZ
1.y=sinx x[0,2]
y=sinx xR
1
-4 -3
-2
- o
y-1
1
2
3
4
5 6 x
-4 -3
-2
- o
-1
2
3
4
5 6 x
2.y=sinx (xR)
二.正弦函数 y=sin x(x∈R) 的性质
性质一:正弦函数 y=sinx 定义域和值域
定义域为R
值域为[-1,1]
y
1
y=1(最大值)
4
3
2
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.五点法
y
1-
-
-1
o
6
3
2
2 3
5 6
ห้องสมุดไป่ตู้
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
在精度要求不高的情况下,我们可以利用这5个点画出函数的 简图,一般把这种画图方法叫“五点法”。
例1 用五点法作出函数
解: x
0
2
y=sinx 0
1
y=-sinx 0
-1
y
2
1
的简图。
3
2
2
0
-1
0
0
1
0
y= -sinx,x[0, 2]
o
2
-1
2
3
2
x
2
y=sinx,x[0, 2]
-2
例2 用五点法作出函数
解: x y=sinx
y=1+sinx
y 2
的简图。
1-
o
2
-1-
2
3
2
x
2
-2-
(三)巩固练习
1. 画出函数 2. 画出函数
的简图。 的简图。
(四)课堂小结
1、知识点:
(1)描点法 (2)几何法 (3)五点法 五点法画图的步骤: (1)列表:五个关键点 (2)描点:最高点、最低的、x轴的3个交点 (3)连线:光滑的曲线将五个点依次连接起来
(二)学习新知
1.描点法 (1)列表
x
y
(2)描点 (3)连线
y 1-
0
1 -
2
-
3 2
2
x
2.几何法
在直角坐标系中,利用单位圆如何作点
?
1 -1
-1
几何画板连接
y
-4 -3
-2
1
- o
-1
正弦曲线
2
3
4
5 6 x
因为正弦函数是以 为周期的周期函数,所以函数
在
区间
上的图像与区间
上
的图像 形状相同,位置不同。
1.5.1正弦函数的图像
周至县第二中学 授课教师:张卜
(一)课前复习
1.在直角坐标系的单位圆中,任意角 的正弦函数是如何定义的。
y
P(u,v)
-1
α
OM
x
2.借助单位圆学习了正弦函数 (1)定义域
(2)值域
(3)最小正周期
(4)单调性
y
P
x
-1
OM
x
的基本性质。
学习目标
1、掌握“五点法”作出正弦函数的图像; 2、培养了学生的直观想象和逻辑推理数学核心素养。
2、思想方法: 数形结合 化归转换
核心素养
直观想象 逻辑推理
(五)当堂检测
1. 画出函数 2. 画出函数
的简图。 的简图。
作业:P30 A组 第三题
在数学的领域中,提出问题的艺术比解答问题的艺术更
为重要。
——康托
谢
谢