人教版高中数学必修4 弧度制(结)

合集下载

人教版数学必修4第一章1.1.2《弧度制》课件(2课时)(共20张PPT)

人教版数学必修4第一章1.1.2《弧度制》课件(2课时)(共20张PPT)
S k 3 0 ,k 6 Z 0
用弧度数表示为
S 2 k , k Z
例2.将下列各角化成2k +(k∈Z, 0≤ <2)的形式,并确定其所在的
象限.
( 1)1 9 3
课堂练习:
(1)- 1 0
3
( 2)- 31
6
( 2)25
6
第二课时 用弧度制推导扇形的面积公式
由弧度的定义可知:
(3)零角的弧度数是零.
3、角α的弧度数的绝对值
|α| = —lr
α 其中l为以角 作为圆心角时所对圆弧的
长,r为圆的半径.
4.角度制与弧度制的换算:
360º = 2π rad, 180º = π rad
1º=
π
180
rad0.01745rad
1rad = ( 1π80) º 57.3º =57º 18′
将圆周分成360等份,每一段圆弧所 对的圆心角就是1°的角.
思考2:在半径为r的圆中,圆心角n°所
对的圆l弧长如何23计6算0r? n
思考2:在半径为r的圆中,圆心角n°所
对的扇形的面积如何计算?
s
r2
360
n
1、弧度的概念
如图,把长度等于半径长的圆弧所对的 圆心角叫做1弧度的角,记作1rad,读作 1弧度.
小 结 1.圆心角α所对弧长与半径的比是一个
仅与角α大小有关的常数,所以作为度 量角的标准.
2.角度是一个量,弧度数表示弧长与半 径的比,是一个实数,这样在角集合与实 数集之间就建立了一个一一对应关系.
正角
正实数
零角 负角
零 负实数
2、利用弧度制来推导扇形的公式:
( 1 ) S1 2r 2 ; ( 2 ) S1 2l r .

人教版数学必修4第一章1.1.2弧度制课件

人教版数学必修4第一章1.1.2弧度制课件
3.无论是以“弧度”还是以“度”为单位, 角的大小都是一个与半径大小无关的定值.
(二)弧度制的绝对值公式
完成下列表格,你能得出哪些结论?
弧AB的长 OB旋转的方向 AOB 的弧度数 AOB 的度数
r
逆时针方向
2 r 逆时针方向
r
逆时针方向
1
2r
顺时针方向
-2
顺时针方向
未旋转
0
逆时针方向
180
逆时针方向
运用新知
根据度与弧度的换算关系,下表中各特殊角对应 的弧度数分别是多少?
注意:用弧度制表示角时,“弧度”二字或 “rad”通常略去不写,而只写该角所对应的弧 度数.如α=2表示α是2rad的角.
随堂练习: 1.根据条件完成下列度和弧度的转化;
(1)把 - 35 化成弧度;
(2)把 - 弧度化成度; 2.把下列角化成 0 到 2 的角加上 2 k 的形式;
4.在半径为r的圆中,n°的圆心角所对的圆弧长 如何计算?
l 2r n nr
360 180
5. 圆心角的大小是否与圆半径的大小有关?
探究新知
(一)弧度制的概念
讨论:角除了以度为单位,还有分和秒,他们 是六十进制的,计算不方便,角的度量是否也 能用不同的单位制?(类比长度的度量单位)
新知1:弧度制的定义
3.正角的弧度数是一个正数,负角的弧度数是一 个负数,零角的弧度数是0.
4.如果半径为R的圆的圆心角 所对弧的长为l,
那么,角的弧度数的绝对值是 l.
r
5.角度制与弧度制换算 :180°=π rad
运用新知
例1按照下列要求,把67°30′化成弧度:
(1)精确值;
(2)精确到0.001的近似值.

最新人教版高中数学必修4第一章《弧度制和弧度制与角度制的换算》示范教案

最新人教版高中数学必修4第一章《弧度制和弧度制与角度制的换算》示范教案

示范教案整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的1360,记作1°.通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式,使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.有条件的学校可进行计算机练习,学习电子表格和Scilab中的公式计算功能.以后学生可使用这一功能检查自己的计算结果.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.通过弧度制的学习,培养学生理性思维的良好习惯.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.推进新课新知探究提出问题(1)在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?(2)我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便,那么角的度量是否也能用不同单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r ,AB 所对的圆心角∠AOB 就是1弧度的角,即lr=1.图1讨论结果: (1)1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.(2)能,用弧度制. 提出问题 (1)作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?(2)如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调,为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:(1)完全重合,因为都是1弧度的角.(2)α=l r ;将角度化为弧度:360°=2π rad ,1°=π180 rad ≈0.017 45 rad ;将弧度化为角度:2π rad =360°,1 rad =(180π)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad =(180απ)°,n°=n π180(rad).在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应地,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.提出问题 (1)引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?(2)填写下列的表格,找出某种规律. 的长 OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 2πr 逆时针方向r 1 2r -2 -π 0 180°360°(3)你能写出把角度值n 换算为弧度值的一个算法吗?活动:设置这个表格的意图是让学生对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数的绝对值是lα.这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师指出,角的概念推广以后,无论用角度制还是用弧度制,都能在角的集合与实数集R 之间建立一种一一对应的关系:每一个角都有唯一的一个实数(角度数或弧度数)与它对应;反过来,每一个实数也都有唯一的一个角和它对应.在理解以上的对应关系时,应该注意角度制是60进位制,遇到35°6′这样的角,应该把它化为10进制的数值35.1°,但是弧度数不存在这个问题,因为弧度数是十进制的实数.这是角度制与弧度制的一个重要区别.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两种单位不能混用,绝对不能出现k·360°+π3或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:(1)与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.弧度制下关于扇形的公式为l =αR ,S =12αR 2,S =12lR.(2)的长 OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 π 180° 2πr 逆时针方向 2π 360° r 逆时针方向 1 57.3° 2r 顺时针方向 -2 -114.6° πr 顺时针方向 -π -180° 0 未旋转 0 0° πr 逆时针方向 π 180° 2πr逆时针方向2π360°(3)把角度值n 换算为弧度值的一个“算法”如下:①给变量n 和圆周率π的近似值赋值;②如果角度值n 是以“度、分、秒”形式给出,先把n 化为以“度”为单位的10进制表示;③计算π180(把1°换算为弧度值),得出的结果赋给变量a ;④计算na ,赋值给变量α. α就是这个角的弧度值. 应用示例思路1例 1下列命题中,真命题是( ) A .一弧度是一度的圆心角所对的弧 B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位 活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,熟练掌握定义.根据弧度制的定义,对照各项,可知D 为真命题.变式训练例 2(1)把112°30′化成弧度(精确到0.001); (2)把112°30′化成弧度(用π表示).解:(1)按照上面写出的算法步骤,依次计算: ①n =112°30′,π=3.141 6; ②n =1123060=112.5;③a =π180≈0.017 5;④α=na =1.968 75. 因此α≈1.969 rad.(2)112°30′=(2252)°=2252×π180=5π8.例 3将下列用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:(1)-15π4;(2)32π3;(3)-20;(4)-2 3. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律,即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k ∈Z },{β|β=π2+kπ,k ∈Z }.第一、二、三、四象限角的集合分别为:{β|2kπ<β<2kπ+π2,k ∈Z },{β|2kπ+π2<β<2kπ+π,k ∈Z },{β|2kπ+π<β<2kπ+3π2,k ∈Z },{β|2kπ+3π2<β<2kπ+2π,k ∈Z }.解:(1)-15π4=-4π+π4,是第一象限角.(2)32π3=10π+2π3,是第二象限角.(3)-20=-3×6.28-1.16,是第四象限角.(4)-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k ×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与π2,π,3π2比较大小,估计出角所在的象限.(2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解:(1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=2(-5)π+16π9.(2)∵β与α终边相同,∴β=2kπ+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-20π9.例 4如图3,(1)扇 形AOB 中,所对的圆心角是60°,半径为50米,求A B 的长l(精确到0.1米).图3(2)利用弧度制推导扇形面积公式:S =12lr ,其中l 是扇形的弧长,r 是扇形的半径.活动:本例目的是让学生在教师的指导下以扇形为背景,进一步理解弧度制的优越性.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:(1)如图3,因为60°=π3,所以l =α·r =π3×50≈1.05×50=52.5.答:的长约为52.5米.(2)如图4,因为圆心角为1 rad 的扇形的面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角的大小为l r rad ,所以它的面积S =l r ·r 22=12lr ,即S =12lr.图4例 5已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这道应用题考查了函数思想.教师提示学生回顾一下用函数法求最值的思路与步骤,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l ,半径为r ,圆心角为α,面积为S.由已知,2r +l =a ,即l =a -2r.∴S =12l·r =12(a -2r)·r =-r 2+a 2r =-(r -a 4)2+a 216.∵r>0,l =a -2r>0,∴0<r<a 2.∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a 2,∴α=lr=2.故当扇形的圆心角为2 rad 时,扇形的面积取最大值a 216.由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad 这一关系式,由此可以很方便地进行角度与弧度的换算.作业课本本节练习A 组 3,4;练习B 组 3,4,5.设计感想 本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的16 000所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以1°=6 000密位360≈16.7密位,1密位=360°6 000=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”.二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.π3B.π6 C .1 D .π 2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍3.下列表示的为终边相同的角的是( )A .kπ+π4与2kπ+π4(k ∈Z ) B.kπ2与kπ+π2(k ∈Z )C .kπ-2π3与kπ+π3(k ∈Z ) D .(2k +1)π与3kπ(k ∈Z )4.已知0<θ<2π,7θ角的终边与θ角的终边重合,则θ=__________.5.已知扇形的周长为6 cm ,面积为2 cm 2,求扇形的中心角的弧度数.6.若α∈(-π2,0),β∈(0,π2),求α+β,α-β的范围,并指出它们各自所在的象限.7.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图5所示).图58.(1)角α,β的终边关于直线y =x 对称,写出α与β的关系式; (2)角α,β的终边关于直线y =-x 对称,写出α与β的关系式. 参考答案:1.A 2.B 3.C 4.π3,2π3,π,4π3,5π35.解:设扇形所在圆的半径为R ,扇形的中心角为α,依题意有 αR +2R =6,且12αR 2=2,∴R =1,α=4或R =2,α=1. ∴α=4或1.6.解:-π2<α+β<π2,∴α+β在第一象限或第四象限,或α+β的终边在x 轴的非负半轴上.-π<α-β<0,∴α-β在第三象限或第四象限,或α-β的终边在y 轴的非正半轴上. 7.解:(1){θ|2kπ-π6<θ<2kπ+5π12,k ∈Z };(2){θ|2kπ-3π4<θ<2kπ+3π4,k ∈Z }; (3){θ|2kπ+π6<θ<2kπ+π2,k ∈Z }∪{θ|2kπ+7π6<θ<2kπ+3π2,k ∈Z }={θ|nπ+π6<θ<nπ+π2,n ∈Z }.8.解:(1)β=π2-α+2kπ,k ∈Z ;(2)β=3π2-α+2kπ,k ∈Z .三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π(rad),π30(rad),π1 800(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过6π h =360π min ,分针走1弧度相当于经过30π min ,故有360πx =30π(2π+x),得x =2π11,∴到分针与时针再一次重合时,分针转过的弧度数是2π11+2π=24π11(rad). 乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=24π11,∴到分针与时针再一次重合时,分针转过的弧度数是24π11(rad). 点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。

新人教版必修四第一章第一节弧度制课件

新人教版必修四第一章第一节弧度制课件



2
(k Z )
6)已知0 2 , 且与7终边相同,求
7).已知P x|2k x (2k 1) , k Z , Q x | 5 x 5 求P Q
例3:利用弧度制推导扇形的公式:
1 1 S lr r 2 2 2
变式1: 已知扇形的周长为10cm, 面积为4cm² , 求扇形的中心角.
变式2:当扇形的中心角为600,半径为10cm,求扇 形的弧长及该弧所在的弓形面积
变式3 :已知一扇形的周长20cm,当扇形的中心角为 多大时, 它有最大的面积 ? 并求出这个最大值.
解: 设扇形的中心角为 , 半径为r, 则 20 2r 2r r 20, r 1 2 1 20 2r 2 r (10 r )r 10r r 2 S扇形 r 2 r 2 10 当r 5时, S扇形 25, 此时 2 max 2 (1) 答 : 扇形的半径为5cm,圆心角为2rad时, 扇形面积最大
小结:
1、弧度制的意义——角与实数一一对应;
2、换算公式及方法; 3、弧度制下的弧长公式、扇形面积公式及应用 作业:课本P9题A 、B组 思考作业:扇形的周长L为定值,问它的圆心 角θ取和值时,扇形的面积最大?最大值是多 少? θ =2,S大=1/16· L2
一、复习回顾
1、1弧度的角 规定:长度等于半径长的弧所对的圆心角叫做1 弧度的角; l
R
2、弧长公式、
l R
3、换算公式
1

180
rad 0.01745 rad
1rad 1)用弧度制写出与300同终边的角的集合; S { | 2k k z} 6 2)用弧度制写出终边在第一象限角的集合;

高中数学人教必修四课件弧度制

高中数学人教必修四课件弧度制

由此可知,任意一个0°~ 360°的角的弧度数x,
必然适合不等式:0 x 2
2020/2/8
9
角的集合与实数集之间的一一对应关系:
正角 零角 负角
正实数 零
负实数
2020/2/8
10
弧长公式: l r
即弧长等于弧所对的圆心角的弧度数的绝对 值与半径的乘积。
例3利用弧度制证明下列关于扇形的公式
(1) l
R2
其中R是2半径,l是弧长, 0 2
为圆心角,S是扇形的面积.
2020/2/8
11
例4. 将下列各角化成0到2 的角加上2k
(k Z)的形式:
(1) 19
(2) 315
3
解:119 3 2
33
(2) 315 45 -360 1 2
4
注意:用弧度制表示角时,不能与角度混用,比如
× × 2020/2/8 2k 45

360
4
12
课堂小结
1. 什么叫1弧度角? 2. 任意角的弧度公式. 3. “角度制”与“弧度制”的相互转化.
2020/2/8
r
6
弧度与角度的换算:
1. 把角度换成弧度
2. 把弧度换成角度
360o 2 rad
2rad 360
180 rad
rad 180
1o rad 0.01745rad
180
1rad


180
o



57.30o

57o18 '
2020/2/8
我们把长度等于半径长的圆弧所对的圆心角叫做

最新人教版高中数学必修4第一章弧度制1

最新人教版高中数学必修4第一章弧度制1

HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
【做一做 1】 下列表述中正确的是( A.1 弧度是 1 度的圆心角所对的弧 B.1 弧度是长度为半径的弧 C.1 弧度是 1 度的弧与 1 度的角之和
)
D.1 弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种 度量单位 答案:D
-4-
1.1 DNA重组技术的基本工具
1 2 3
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2.弧度数 一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧 度数是 0. 如果半径为 r 的圆的圆心角 α 所对弧的长为 l,那么角 α 的弧度数的绝 对值是|α|= . (1)弧长公式:l=|α|r. (2)扇形面积公式:S= lr= |α|r2. 【做一做 2】 已知半径为 10 cm 的圆上,有一条弧的长是 40 cm,则该 弧所对的圆心角的弧度数的绝对值是 答案:4
1.1.2 弧度制
-1-
目标引航 1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
1.了解弧度制,明确 1 弧度的含义. 2.能进行弧度与角度的换算. 3.了解弧长公式,能进行简单应用.
-2-
第四象限
-9-
1.1 DNA重组技术的基本工具
首 页
基础知识 J课堂互动 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN

高二数学必修4知识点:任意角和弧度制

高二数学必修4知识点:任意角和弧度制

高二数学必修 4 知识点:随意角和弧度制在中国古代把数学叫算术,又称算学,最后才改为数学。

小编准备了高二数学必修 4 知识点,希望你喜爱。

1.随意角(1)角的分类:①按旋转方向不一样分为正角、负角、零角.②按终边地点不一样分为象限角和轴线角.(2)终边同样的角:终边与角同样的角可写成+k360(kZ).(3)弧度制:① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角 .②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=, l 是以角作为圆心角时所对圆弧的长,r 为半径 .③用弧度做单位来胸怀角的制度叫做弧度制.比值与所取的r 的大小没关,仅与角的大小相关.④弧度与角度的换算:360 弧度 ;180 弧度 .⑤弧长公式: l=||r ,扇形面积公式:S 扇形 =lr=||r2.2.随意角的三角函数(1)随意角的三角函数定义:设是一个随意角,角的终边与单位圆交于点P(x, y) ,那么角的正弦、余弦、正切分别是:sin =y ,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数 .(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 .3.三角函数线察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。

随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。

我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获得,看得清。

看得清才能说得正确。

在察看过程中指导。

我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
(2)将下列各弧度角化为角度:①-51π2 rad;②139π.
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,

12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

高中数学必修4《弧度制》

高中数学必修4《弧度制》

R2
10 R

(R

5)2

25.
10
1

R

10 当R

5时,即L

10


R

5
2时,Smax 25
练习1.化下列各角为度数或弧度:
1)-225°
2)

12
2.已知扇形OAB的圆心角为120°,
半径为6,求扇形弧长及所含弓形的面积。
思考:钟表分针和时针在3点到5点40分 这段时间里 分针转过_______弧度的角, 时针转过___弧度的角。
4
4
S 1 LR 1 R2 1 15 25 75
2
2
24
8
2) 已知扇形的周长为20cm,当扇形的
中心角为多大时,它有最大面积?这是?
解:2) 设圆半径为R, 则
(弧长,扇
L

20

2R

R, S

1
LR

1
(20

2R)R

形面积)
(10R R)R
22
若时针转过3cm,则时针转过的弧长是
_________
作业: P习题1. (1) 2.(1),(3) 4. 6. 7 (3) (4). 8.
小结:
角的度量形式(角度制,弧度制),弧度的单 位.弧度的意义,角度制与弧度制间的互 换.会用弧度研究有关问题(弧长,扇形面 积等)
小宝结:剑锋从磨砺出 本节课重点学习了圆的标准方程和一
3°在半径为R的圆中,任一角α的弧度数的
绝对值都满足|α|= L R
其中L是圆心角α所对圆弧的长,R是圆的半径.

人教A版必修四第一章.2 弧度制

人教A版必修四第一章.2 弧度制

弧 度
0
6
43
2 3 23 4
5 6
3
2
2
角 度
0 -3 0 -4 5
-6 0 -9 0 -1 2 0 -1 3 5 -1 5 0 -180 -2 7 0 -360
弧 度
0
-
6
- 4
- 3
- 2
- 2 3
- 3 4
- 5 6
-
-
3 2
-2
人教A版必修四第一章.2 弧度制
人教A版必修四第一章.2 弧度制
S扇=S圆 2
=r2 = 1 R2 = 1l R
2 2
2
人教A版必修四第一章.2 弧度制
人教A版必修四第一章.2 弧度制
例5 计算:
(1)sin ;(2) t a n
4
6
(3)c o s 3
人教A版必修四第一章.2 弧度制
人教A版必修四第一章.2 弧度制
小结
(1) 180 = 弧度;
人教A版必修四第一章.2 弧度制
[例3]
把下列各角化成 2 k0 2 , k Ζ
的形式:
16 (1) 3
;(2)315 ;(3) 11 .
7
人教A版必修四第一章.2 弧度制
人教A版必修四第一章.2 弧度制
例4、证明:扇形的面积:S扇=12R2
=1l 2
R
nR nR2
l = ,S= 180 360

2对教育来说,阅读是最基础的教学 手段, 教育里 最关键 、最重 要的基 石就是 阅读。

3但是现在,我们的教育在一定程度 上,还 不够重 视阅读 ,尤其 是延伸 阅读和 课外阅 读。

人教高中数学必修四第一章1.1弧度制课件(共19张PPT)

人教高中数学必修四第一章1.1弧度制课件(共19张PPT)


E { 小于 90 的角}
M 小于 90 但不小于
o
F { 锐角},
0 的角
0
G = { 第一象限的角}

0
,那么有( ). D
A .F G E B .F E G C .M E G D . G M


F
2、 若 角 、 满 足 下 列 条 件 , 求它们的关系式?
16 3
;(2) 315 ;(3)
B

11 7

2.下列角的终边相同的是(
A. k
4
).
与 2 k 与
2
4
,k Ζ
B. 2 k C.
k 2
2 3
3
,k Ζ
与 k
,k Ζ
D. 2 k 1 与 3 k , k Ζ

2k , k, k ZZ 2 k
3 2 2k k ,, k k Z Z 22
1.把下列各角化成 2 k 0 2 , k Ζ 的形式: ( 1)
4
B B
2
单位符号是 rad,读作弧度
-10 -5
1弧度
O A A
拖 动A改 拖
-2
弧度把角度单位与长度单位统一起来.
-4
OA 3.10 厘米
长度 AB 3.10 厘米
m Ð AO B 1.00 000 弧度
-6
OA 4.23 厘米
-8
长度 AB 4.23 厘米
m Ð AO B 1.00 000 弧度
弧度制

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

新人教A版高一数学必修四第一章 三角函数1.1.2弧度制

[归纳升华] 角度与弧度互化技巧
在进行角度与弧度的换算时,抓住关系式π rad=180°是关键,由它可以得 到:度数×1π80=弧度数,弧度数×1π80°=度数.
1.将下列角度与弧度进行互化: (1)5611π;(2)-71π2 rad;(3)10°;(4)-855°.
解析: (1)5611π=5611×180°=15 330°;
2.5 弧度的角的终边所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: 因为32π<5<2π,因此 5 弧度的角的终边在第四象限.
答案: D
3.扇形圆心角为 216°,弧长为 30π,则扇形半径为________.
解析: 216°=216×1π80=6π5 ,l=α·r=6π5 r=30π,∴r=25. 答案: 25
(3)如图所示,扇形 AOB 的面积是 4 cm2,它的周长是 10 cm,求扇形的圆心 角 α 的弧度数及弦 AB 的长.
[边听边记] (1)由公式|α|=rl,可知圆的半径变为原来的 2 倍,弧长也变为原 来的 2 倍时,圆心角大小不变;但扇形面积 S=12lr,故面积变为原来的 4 倍.
(2)设扇形的弧长为 l,半径为 r,则 l+2r=40,则 S=12lr=12(40-2r)r=20r -r2,所以 r=10 时,扇形面积最大,此时 l=40-2r=20,圆心角的弧度数 α=rl =2100=2.
π (2)如图,330°角的终边与-30°角的终边相同,将-30°化为弧度,即- 6 ,
而 75°=75×1π80=51π2 ,
∴终边落在阴影部分内(不包括边界)的角的集合为
θ|
2kπ-π6 <θ<2kπ+51π2 ,k∈Z.

最新人教版高中数学必修4第一章“弧度制”教案3

最新人教版高中数学必修4第一章“弧度制”教案3

1.1.2弧度制一教学目标(一)知识目标1.使学生理解弧度制的意义。

2.掌握弧度制下表示的弧长公式、扇形面积公式.3.了解角的集合与实数集R之间建立的一一对应关系.(二)能力目标1.熟练地进行角度制与弧度制的换算.2.运用弧度制下表示的弧长公式、扇形面积公式解题。

3.熟记特殊角的弧度数。

(三)德育目标使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辩证统一的,进一步加强对辩证统一思想的理解。

二、教学重点、难点1.教学重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制的互化换算;弧度制的运用.2.教学难点:理解弧度制的定义,弧度制的运用.三、教学方法讲授法1.讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.2.通过多媒体手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.3.通过周角的两种单位制的度量,得到角度与弧度的换算公式.四、教与学过程(一)复习引入教学内容:复习初中的角度制师生互动:师:我们在初中几何中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的?师:这位同学答得完全正确,我们把用度做单位来度量角的制度叫做角度制.设计意图:温故知新。

在数学和其它许多科学研究中还要经常用到另一种度量角的制度——弧度制,它是如何定义的呢?(板书课题)。

(二)弧度制的定义师:弧度制的单位符号是rad,读作弧度.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角(板书).即用弧度制度量时,这样的圆心角等于1 rad. 如图师生互动:师提问:若弧是一个半圆,则其圆心角的弧度数是多少?若弧是一个整圆呢?探究:如图半径为r的圆的圆心与圆点重合,角α的始边与x轴的正半轴重合,交圆与点A,终边与圆交与点B.青在下列表格中填空,并思考:如果一个半径为r的圆的圆心角α所对的弧长是l,那么弧度数是多少?(设计意图:运用已学知识弧长公式,探究角度与弧度之间的关系。

高中人教A版数学必修4:第2课时 弧度制 Word版含解析

高中人教A版数学必修4:第2课时 弧度制 Word版含解析

第2课时 弧度制1.2.理解弧度制的定义,能够对弧度和角度进行正确的换算.1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1 rad.2.弧长计算公式:l =|α|·r (α是圆心角的弧度数);扇形面积公式S =12l ·r 或S =12|α|·r 2(α是弧度数且0<α<2π).3一、选择题 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π答案:C解析:-315°×π180=-7π42.在半径为2 cm 的圆中,有一条弧长为π3cm ,它所对的圆心角为( )A.π6B.π3C.π2D.2π3 答案:A解析:设圆心角为θ,则θ=π32=π6.3.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3 答案:C解析:与角-π6终边相同的角的集合为αα=-π6+2k π,k ∈Z ,当k =1时,α=-π6+2π=11π6,故选C. 4.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案:D解析:由弧度的定义,知D 正确.5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 为( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π}∪{α|0≤α≤π} 答案:D解析:求出集合A 在[-4,4]附近区域内的x 的数值,k =0时,0≤x ≤π;k =1时,4<2π≤x ≤3π;在k =-1时,-2π≤x ≤-π,而-2π<-4,-π>-4,从而求出A ∩B .6.下列终边相同的一组角是( )A .k π+π2与k ·90°,(k ∈Z )B .(2k +1)π与(4k ±1)π,(k ∈Z )C .k π+π6与2k π±π6,(k ∈Z )D.k π3与k π+π3,(k ∈Z ) 答案:B解析:(2k +1)π与(4k ±1)π,k ∈Z ,都表示π的奇数倍. 二、填空题7.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. 答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad.8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2,∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.9.时钟从6时50分走到10时40分,这时分针旋转了________弧度.答案:-23π3解析:时钟共走了3小时50分钟,分针旋转了-⎝⎛⎭⎫3×2π+56·2π=-23π3三、解答题10.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车以30 km/h 的速度通过,求火车经过10 s 后转过的弧度数.解:∵圆弧半径R =2 km =2 000 m ,火车速度v =30 km/h =253m/s ,∴经过10 s 后火车转过的弧长l=253×10=2503(m),∴火车经过10 s 后转过的弧度数|α|=l R =25032 000=124.11.已知角α=2010°.(1)将α改写成θ+2k π(k ∈Z,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角.解:(1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为r =7π6+2k π(k ∈Z ).又-5π≤r <0,∴k =-3,-2,-1.∴与α终边相同的角为-296π,-176π,-56π.(3)令0≤r =76π+2k π<5π,∴k =0,1,∴与α终边相同的角为76π,196π.能力提升12.如下图所示,在某机械装置中,小正六边形沿着大正六边形的边顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,射线OA 围绕点O 旋转了θ角,其中O 为小正六边形的中心,则θ等于( )A .-4πB .-6πC .-8πD .-10π 答案:B解析:小正六边形沿着大正六边形滚动一条边并且到下一条边上时,射线OA 旋转了π3+2π3=π,则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置时,共旋转了π×6=6π.又射线OA 按顺时针方向旋转,则θ=-6π,故选B.13.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m π+π6,m ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n π2-π3,n ∈Z , P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π2+π6,k ∈Z ,试确定M 、N 、P 之间满足的关系.解:解法一:集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z ; N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =2m π2-π3或x =2m +12π-π3,m ∈Z=⎩⎨⎧ x ⎪⎪⎭⎬⎫x =m π-π3或x =m π+π6,m ∈Z ; P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2m 2π+π6或x =2m -12π+π6,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6或x =m π-π3,m ∈Z . 所以M N =P .解法二:M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =6m +16π,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3·(2m )+16π,m ∈Z ;N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z ;P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =3k +16π,k ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z =N .所以M ⊆N =P .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 弧度制
重点:用弧度制表示各种角以及弧度制与角度制之间的换算.
难点:对弧度制的引入.
一、角度制与弧度制的转化
同一个角,除零角之外,用“度”表示与用“弧度”表示是不同的数量.“度”不可省略,“弧度”即“rad”可省略.其换算关系以π=180°为转化点.
例1 (1)把112°30′化为弧度;(2)把-5π12化为度. 【分析】 先把“分”、“秒”化为“度”,再利用1°=π180 rad ,1 rad =(180π
)°进行相应地转化. 【解】 (1)112°30′=112.5°=112.5×π180=2252×π180=5π8
; (2)-5π12=-(5π12×180π
)°=-75°. 【点评】以弧度为单位表示角时,常把弧度写成多少π的形式.如无特殊要求,不必把π写成小数.
二、用弧度表示角的集合
角度制中的度、分、秒是六十进制,弧度制是十进制,因此弧度制使用起来比角度制方便. 例2(1)用弧度表示顶点在原点,始边与x 轴的非负半轴重合,终边落在阴影部分内的角的集合(不包括边界,如下图).
(2)把-1480°写成α+2kπ(k ∈Z )的形式,其中0≤α<2π.
【思路点拨】先用弧度制表示这个角(临界角),然后结合图形或者范围写出该角.
【解】 (1)135°=135×π180=3π4,225°可以看成是与-135°终边相同的角,而-135°=-3π4
, ∴阴影部分角的集合为:
{θ|2k π-3π4<θ<2k π+3π4
,k ∈Z}. (2)∵-1480°=-1480π180=-74π9=-10π+16π9
, 又0≤16π9
<2π, ∴-1480°=16π9-2×5π=16π9
-10π. 【思维总结】在表示角的集合时,一定使用统一制度,只能用角度或弧度制中的一种,不能混用.
三、 弧度制下的弧长公式和扇形面积公式
在弧度制下,当圆心角为弧度时,弧长公式、扇形面积公式有更简单的形式,更利于计算. 例3 已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积和弧长.
【思维流程】 化为弧度→代入公式
【解】 ∵72°=72×π180=2π5
(rad), ∴l =αr =2π5
×20=8π(cm). ∴S =12lr =12
×8π×20=80π(cm 2). 【思维总结】弧度制下与角度制下的弧长公式、扇形面积公式是等价的.。

相关文档
最新文档