人教版高中数学《平面向量》教材分析
人教版高中数学《平面向量》教材分析
第五章《平面向量》教材分析一、平面向量在教材中的地位和作用1、地位(1)改变传统教材结构在几十年来的国内外数学教育改革中,向量进入中学是一个重要的特征。
平面向量的集中讲授,在我国高中数学教材中是首次,其目的之一是系统地学习向量知识,目的之二是以向量知识作为工具,改变传统的综合几何、平面三角等内容的讲法。
向量、向量的加法与减法在传统教材的复数中讲授,线段的定比分点、平面两点间的距离、平移在传统教材在解析几何中讲授,正弦定理、余弦定理在传统教材的三角中讲授,新教材把这些内容糅合到一章。
用向量的观点来处理,大大地改变了传统教材的编排体系。
按照新教材的编排体系,平面向量作为工具性内容在安排上尽量提前。
由于介绍向量的数量积要用到有关三角知识,因此将平面向量安排在紧随三角函数之后作为第五章。
又由于讲斜三角形解法可以用到平面向量,新教材又作了将斜三角形解法移入平面向量这一章的调整。
需要指出的是,在平面向量这章还运用向量方法解决了解析几何入门的有关知识,为学习解析几何做好了准备。
同时,在后续的第七章直线与圆的部分向量知识立刻就能应用,在学习立体几何之后安排空间向量,让向量的应用得到完善和深化。
这样的安排是科学的、合理的。
(2)改变传统教材内容用向量的观点来处理,由于向量具有几何形式与代数形式的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介。
因此,向量的引入不仅使高中数学教材采取混编体系成为一件别无选择的事,而且使它在研究其它许多问题时获得了广泛的应用。
新高中数学课程为了有利于精简教学内容,提高教学效益,有利于加强数学各部分内容的相互联系与知识的综合运用,将代数、几何等内容综合编排。
向量的引入,使高中数学各部分内容的联系加强了;使高中教学内容与大学内容衔接更加紧密。
2、作用(1)工具性和方法性向量带有基础知识的特点,是一种工具性和方法性知识。
向量有一套优秀的运算系统,由于它提供的向量法、坐标法,使其成为研究高中数学的重要方法。
高中数学_平面向量教学设计学情分析教材分析课后反思
4.2 平面向量教学设计(复习课)班级姓名使用时间编号专题审批人课题 4.2平面向量编制人审核人学习目标1.以平面图形为载体,掌握平面向量的线性运算及其几何意义2.会解决以平面向量基本定理为载体,与向量的坐标运算,数量积交汇的问题3.掌握数量积的有关坐标运算,平面向量与三角等知识交汇问题重点平面向量的线性运算,数量积的运用难点平面向量在平面几何中的综合应用以及新定义“自学质疑”阶段一、目标导学:该专题主要考查1.以平面图形为载体,借助向量考查响亮的线性运算及几何意义2.以平面向量基本定理为出发点,与向量的坐标运算,数量会计交汇3.向量的数量积的应用及向量在平面几何中的应用命题热点利用平面向量的基本运算解决数量积、夹角、模或垂直、共线等问题,与三角函数、解析几何交汇命题.二、文本自学1.平面向量的线性运算的几何意义(三角形法则)2.掌握平面向量的坐标运算公式3.掌握平面向量的几何意义及其坐标运算(夹角,垂直,等)公式4.平面向量在平面几何中的常用结论看资料知识回顾部分,记住(1)(2),1.必记公式(1)两个非零向量平行、垂直的充要条件若a=(x1,y1),b=(x2,y2),则①a∥b⇔a=λb(b≠0,λ∈R)⇔__________.②a⊥b⇔a·b=0⇔__________.重要性质及结论(1)若a与b不共线,且λa+μb=0,则________.(2)已知(λ,μ为常数),则A,B,C三点共线的充要条件是________.备考策略:1.数形结合方法,数形结合,等价转化.2.知识链接点:正余弦定理,平面几何有关知识学生活动:学生利用约5分钟的时间完成成本环节内容,要求先默写,后对照课件答案纠错.教师活动:教师展示答案;强调易错点.设计意图:明确目标和考点,回顾知识,形成知识链接。
研讨理解阶段一、真题再现演练1.(2015·课标Ⅰ,7,易)设D 为△ABC 所在平面内一点,→BC =3→CD ,则( )A.→AD =-31→AB +34→ACB.→AD =31→AB -34→ACC.→AD =34→AB +31→ACD.→AD =34→AB -31→AC2.(2015·,4,易)已知菱形ABCD 的边长为a ,∠ABC =60°,则→BD ·→CD =( )A .-23a 2B .-43a 2 C.43a 2 D.23a 23.(2013·,15)已知向量→AB 与→AC 的夹角为120°,且|→AB |=3,|→AC |=2.若→AP =λ→AB +→AC ,且→AP ⊥→BC ,则实数λ的值为________.学生活动:对照教师给出的答案,纠错,订正.(单元组内交流,互相讲解)教师活动:针对错的较多的第4题,点拨讲评.设计意图:练真题感受高考,教学具有针对性。
平面向量教材分析
第五章平面向量教材分析这一章主要介绍平面向量的基础知识,包括平面向量的概念、运算以及简单应用等本章教学时间约25课时,具体安排如下:5.1向量约1课时5.2向量的加法与减法约2课时5.4平面向量的坐标运算约2课时5.3实数与向量的积约2课时5.5线段的定比分点约l课时5.6平面向量的数量积及运算律约2课时5.7平面向量数量积的坐标表示约1课时5.8平移约1课时5.9正弦定理、余弦定理约4课时5.10解斜三角形应用举例约2课时5.11实习作业约2课时5.12研究性课题向量在物理中的应用约3课时小结与复习约2课时(一)本章内容向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法本章共分两大节第一大节是“向量及其运算”,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等第二大节是“解斜三角形”这一大节可以看成是向量知识的应用,内容包括正弦定理、余弦定理,解斜三角形应用举例,实习作业和研究性课题等正弦定理、余弦定理是关于任意三角形边角之间关系的两个重要定理,教科书通过向量的数量积把三角形的边与角联系起来,推导出了这两个定理,并运用这两个定理初步解决了测量、工业、几何等方面的实际问题为培养学生的创新意识和实践能力,激发学生学习数学的好奇心,启发学生能够发现问题和提出问题,学会分析问题和创造性地解决问题,本节中安排了一个实习作业和研究性课题教学中要加以实施为扩大学生的知识面,本章中还安排了两个阅读材料,即“向量的三种类型”和“人们早期怎样测量地球的半径”本章重点是向量的概念,向量的几何表示和坐标表示,向量的线性运算,平面向量的数量积,线段的定比分点和中点坐标公式,平移公式,解斜三角形等本章的难点是向量的概念,向量运算法则的理解和运用等(二)本章教学要求1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念2.掌握向量的加法与减法3.掌握实数与向量的积,理解两个向量共线的充要条件4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件6.掌握平面两点间的距离公式,掌握线段的定比分点公式和中点坐标公式,并且能熟练运用,掌握平移公式7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决斜三角形的计算问题,通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力通过实习作业和研究性课题,培养学生从数学角度对某些日常生活中和其他学科中出现的问题进行研究探索的能力本章一开始,从帆船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念向量的加法与减法、实数与向量的积,实际是向量的线性运算知识教科书先讲了向量的加法、加法运算律,然后用相反向量及向量的加法定义向量的减法,这样把向量的加法与减法统一了起来教科书又通过向量的加法引入了实数与向量的积的定义,接着给出了实数与向量的积的运算律,最后介绍了向量共线的充要条件和平行向量基本定理,这样为后面介绍平面向量的坐标表示奠定了理论基础在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量在“向量的线性运算”中,介绍向量加法的定义,向量加法的运算律;向量减法的定义,向量方程,向量长度的三角不等式;数乘向量的定义,单位向量,数乘向量的运算律在“向量的共线与共面”中,介绍平行向量,共线向量,共面向量,两个向量共线的充要条件,直线的向量方程,三个向量共面的充要条件在“向量的内积”中,介绍两个向量的夹角,向量内积的定义,向量内积的几何意义,向量内积的运算律,向量内积的性质通过建立直角坐标系,给出了向量的另一种表示式----坐标表示式,这样就使得向量与它的坐标建立起了一一对应的关系,然后给出了向量的加法、减法及实数与向量的积的坐标运算,这就为用“数”的运算处理“形”的问题搭起了桥梁在向量坐标运算的基础上,还导出了线段的定比分点坐标公式和线段的中点公式向量的数量积体现了向量的长度和三角函数之间的一种关系,特别用向量的数量积能有效地解决线段垂直的问题把向量的数量积应用到三角形中,还能解决三角形边角之间的有关问题平面向量数量积的概念,教科书是从学生熟知的功的概念引入的,在介绍了平面向量数量积的定义及几何意义之后,又介绍了平面向量数量积的5个重要性质、运算律及其坐标表示特别通过两个向量数量积的坐标表示,很容易推导出平面内两点间的距离公式本大节的最后,介绍了平移(这里讲的平移是指图象的平移)接着推导出了平移公式,并举例说明了平移公式的应用对这一章中概念的处理,是根据概念在教科书中的地位、作用及特点,对不同的概念采用不同的处理方式一些概念是通过例举反映概念实质的具体的对象,并充分发挥几何图形的直观的特点,使学生在感性认识的基础上建立概念,并理解概念的实质,像向量的概念等;一些概念则不仅给出严格的定义,还要分析满足定义的充要条件,要求学生理解、记忆,并通过适当的练习,让学生会用,像向量数量积的概念等这一章中的一些例题,不是先给出解法,而是先进行分析,探索出解题思路,再给出解法解题后,有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题关于向量运算,是借助于几何直观,并通过与数的对比引入,这样便于学生接受例如,关于向量的减法,在向量代数中,常有两种定义方法,第一种是将向量的减法定义为向量加法的逆运算,也就是,如果a+x=b,则x叫做向量b与a的差这样,作b-a时,可先在平面内取一点O,再作,则就是b-a第二种方法是在相反向量的基础上,通过向量的加法定义向量的减法,即已知a、b,定义b-a=b+(-a)在这种定义下,作b-a时,可先在平面内任取一点O,作则由向量加法的平行四边形法则知,由于b+(-a)=b-a,即就是b-a实验表明,对中学生来讲,用这一种定义方法,学生不易理解向量减法的定义,但很容易作b-a而用第二种定义方法,学生根容易接受b-a=b+(-a),但作b-a较繁为便于学生接受,在定义向量的减法时,先给出相反的向量(对比初中代数中的相反数),再把b-a定义为b+(-a),并告诉学生,作b-a时,只要按教科书图作出即可(三)注意培养学生的思维能力注意对学生思维能力的培养,对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力“在初中,我们已会解直角三角形,就是说,已会根据直角三角形中的边与角求出未知的边与角那么,如何来解斜三角形呢?也就是如何根据斜三角形中已知的边与角求出未知的边与角呢?”通过设问,引起学生思考(四)注意数学思想方法的渗透在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法例如,从帆船在大海中航行时的位移,渗透数学建模的思想通过介绍相等向量及有关作图的训练,渗透平移变换的思想由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题,因此这部分知识还渗透了数形结合的解析几何思想(五)突出知识的应用(1)加强向量在数学知识中的应用,注意突出向量的工具性,很多公式都用向量来推导,如线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等(2)加强向量在物理中的应用为培养学生用向量知识解决有关物理问题的能力,在这一章的最后,安排了一个研究性课题,即向量在物理中的应用对于一个物理问题,首先要把它转化成数学问题,即用数学知识建立物理量之间的关系,也就是抽象成数学模型,然后再用建立起的数学模型解释相关物理现象(3)注意联系实际在这一章中,把联系实际分成三个层次:第一层次,在知识的引入上联系实际例如,向量的概念从帆船航行的位移引入,平面向量的数量积从力作的功引入第二层次,引导学生用数学知识解决实际生活和生产中的问题量的加法之后,安排了求小船实际航行的速度的例题在解斜三角形之后,专门安排了“解斜三角形应用举例”一节等第三层次,安排实习作业安排实习作业的目的是进一步巩固学生所学知识,提高学生分析问题解决问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,从而增强学生用数学的意识。
高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思
《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
高中数学_平面向量教学设计学情分析教材分析课后反思
平面向量【高考考纲解读】1.平面向量是高考必考内容,每年每卷均有一个小题(选择题或填空题),一般出现在第3~7或第13~15题的位置上,难度较低.主要考查平面向量的模、数量积的运算、线性运算等,数量积是其考查的热点.2.有时也会以平面向量为载体,与三角函数、解析几何等其他知识相交汇综合命题,难度中等.【重点、难点剖析】1、(1)平面向量共线定理向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP → =λ1OA → +λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP → 与向量OA → ,OB → 的关系是OP → =12(OA → +OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA → +GB → +GC →=0⇔G ⎝ ⎛⎭⎪⎪⎫x A +x B +x C 3,y A +y B +y C 3.4.平面向量的三个锦囊【高考真题】2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔(2)a ⊥b ⇔a =λb ⇔x 1y 2-x 2y 1=0.a ·b =0⇔x 1x 2+y 1y 2=0.3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[练真题·考什么]1.(2018·全国卷Ⅱ)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2D .02.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC → B .14AB →-34AC →C.34AB →+14AC → D .14AB →+34AC →4.(2016·全国卷Ⅱ)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6D .836.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 43.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-15解析:解法一:设BC 的中点为D,AD 的中点为E ,则有PB →+PC →=2PD →, 则PA →·(PB →+PC →)=2PA →·PD → =2(PE →+EA →)·(PE →-EA →)=2(PE →2-EA →2).而EA →2=⎝ ⎛⎭⎪⎪⎫322=34, 当P 与E 重合时,PE →2有最小值0,故此时PA →·(PB →+PC →)取最小值, 最小值为-2EA →2=-2×34=-32.故选B.【规律方法】求数量积的最值,一般要先利用向量的线性运算,尽可能将所求向量转化为长度和夹角已知的向量,利用向量的数量积运算建立目标函数,利用函数知识求解最值.【典型例题】解法二:以AB 所在直线为x 轴,AB 的中点为原点建立平面直角坐标系,如图,则A (-1,0),B (1,0),C (0,3),设P (x ,y ),取BC 的中点D ,则D ⎝⎛⎭⎪⎪⎫12,32. PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎪⎫12-x ,32-y =2(x +1)·x -12+y ·y -32=2x +142+y -342-34. 因此,当x =-1,y =3时,PA →·(PB →+PC →)取得最小值,最小值为2×⎝ ⎛⎭⎪⎪⎫-34=-32,故选B.2232413()()44x y ⎡⎤⎢⎥+-⎢⎥⎢⎥⎣⎦+-【训练1】 (2017·衡阳二模)如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC → =λAM → +μBN →,则λ+μ=()A.2B.83C.65D.85命题角度1 平面向量的线性运算热点一解析 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM → =⎝ ⎛⎭⎪⎫1,12,BN → =⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).∵AC → =λAM → +μBN →=λ⎝ ⎛⎭⎪⎫1,12+μ⎝ ⎛⎭⎪⎫-12,1=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,∴⎩⎪⎨⎪⎧λ-12μ=1,λ2+μ=1,解之得⎩⎪⎨⎪⎧λ=65,μ=25,故λ+μ=85.法二:方程思想{}12,,1242=55245562558+=5AM AB AD AB AD AM AN BN AD AB AB AM BN AD AM BN AC AB AD AM BNλμ⎧=+⎪⎪⎨⎪=-⎪⎩⎧-⎪⎪⎨⎪=+⎪⎩=+=+uuuur uuu r uuu r uuu r uuu r uuuu r uuu r uuu r uuu r uuu r uuur uuuu r uuu r uuu r uuuu r uuu r uuu r uuu r uuu r uuuu r uuu r 以,为基底来表示则有解得所以所以规 律 方 法1.平面向量线性运算的两个技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b ≠0时,a ∥b ⇔存在唯一实数λ,使得a =λb )来判断.【例1】 (1)已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________.(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为__________;DE →·DC →的最大值为________.命题角度1 平面向量的数量积热点二(2)法一 如图,以AB ,AD 为坐标轴建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1), 设E (t ,0),t ∈[0,1],则DE → =(t ,-1),CB →=(0,-1), 所以DE → ·CB → =(t ,-1)·(0,-1)=1.因为DC → =(1,0),所以DE → ·DC → =(t ,-1)·(1,0)=t ≤1,故DE → ·DC→的最大值为1.【训练2】在平行四边形ABCD 中,M,N 分别为DC,BC 中点,若,+AC AM AN λμλμ=+u u u r u u u u r u u u r 求的值法二 如图,无论E 点在哪个位置,DE → 在CB →方向上的投影都是CB=1,所以DE → ·CB → =|CB →|·1=1,当E 运动到B 点时,DE → 在DC →方向上的投影最大,即为DC =1,所以(DE → ·DC → )max =|DC →|·1=1.4.已知向量a =(1,3),b =(3,m ),且b 在a 上的投影为3,则向量a 与b 的夹角为________.(3)解析:设向量a 与b 的夹角为θ.∵b 在a 上的投影为3,且|a |= 12+(3)2=2,a ·b =3+3m ,∴|b |cos θ=|b |×a ·b |a ||b |=3+3m 2=3,解得m = 3.∴|b |=2 3.∴cos θ=a ·b |a ||b |=3+3×32×23=32.∵θ∈[0,π],∴向量a 与b 的夹角θ为π6.规律总结:求两个向量的数量积有三种方法:1、利用定义;2、利用向量的坐标运算;3、利用数量积的几何意义.【课堂小结】 1、 本节课你有哪些收获 2、本节课运用了哪些思想方法【作业】平面向量对应的活页作业NO.15学情分析本节课是高三二轮专题复习课,学生已经在第一轮的学习中基本掌握了平面向量基本定理的基本概念及运算,本节课是在此基础上进一步加强对平面向量的综合运用。
人教A版必修四高中数学《平面向量》单元教材教学分析
第一课时:平面向量的基本概念
第二课时:平面向量的线性运算
第三课时:平面向量的坐标运算
第四课时:平面向量的数量积
第五课时:平面向量的应用
说明
单元目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2.了解平面向量基本定理.
3.理解平面向量的运算并能熟练应用平面向量的知识点解决实际问题。
重点、难点与关键
重点:平面向量的基本概念和基本解题方法
难点:知识的综合运用能力
教学方法和手段的设计
问题引导,主动探究,启发式教学.
人教A版必修四高中数学《平面向量》单元教材教学分析
学段及学科
高中数学
教材版本
人教A版必修四
单元名称
《平面向量》
单元教材主题内容与价值作用
平面向量既反映了数量关系,又体现了几何图形的位置关系,从而将数和形有机地结合起来,因此以平面向量的相关知识为载体,在知识交汇处设计创新力度较大、综合性较强的试题,有效地沟通了知识间的横向联系,有助于知识网络的构建,有力地考查了学生的综合能力.
学生思想教育和行为习惯的培养及学习方法
过程与方法:ห้องสมุดไป่ตู้
通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.
情感、态度与价值观:
通过学习体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力.进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.
人教A版(2019)高中数学必修第二册 6 1 《平面向量的概念》教材分析
6.1平面向量的概念一、本节知识结构框图二、重点、难点重点:向量的概念,向量的几何表示,相等向量和共线向量的概念.难点:向量的概念和共线向量的概念.三、教科书编写意图及教学建议本节主要通过物理中的位移、速度、力等抽象出数学中的向量,并类比实数的几何表示,以及物理学中位移的表示方法,用有向线段表示向量,进而通过向量之间的关系来认识相等向量与共线向量.6.1.1函数的概念位移是既有大小又有方向的量,是物理学中的基本量之一,位移表示的两个点之间的相对位置关系也是几何研究的重要内容.物理学中用位移表示物体(质点)的位置变化,几何中常用点表示位置,研究如何由一点的位置确定另一点的位置.位移简明地表示了两个点的位置之间的相对关系,它是向量的重要的物理模型.力和速度也是既有大小又有方向的量,是常见的物理量,也是向量的重要的物理模型.教科书以小船的位移和速度、重力、浮力作为引入向量的背景,建立学习向量的认知基础,向量的几何表示 零向量与单位向量相等向量与共线向量 向量的概念 实际背景进而类比数量的抽象过程抽象概括出向量的概念,随后,为了使学生更好地理解向量的意义,教科书釆用了与数量概念比较的方法,引导学生认识年龄、身高、长度、面积、体积、质量等量都是“只有大小,没有方向”的数量,通过比较让学生体会向量的“大小、方向”这两个基本要素,并在边空中提出问题,让学生举出物理学中向量和数量的其他一些实例,从而更好地理解向量的特征.6.1.2函数的表示法1.有向线段实数与数轴上的点一一对应,数量可用数轴上的点表示,教科书通过类比实数在数轴上的表示,以及物理学用“带有方向的线段”表示位移的方法,给出了向量的几何表示——用有向线段表示向量.有向线段是数学概念,起点、方向、长度是有向线段的三要素.由于向量的基本要素是大小和方向,因而“用有向线段的方向表示向量的方向,用有向线段的长度表示向量的大小”是自然的想法,虽然位移有起始位置,力有作用点,但是舍去了与“起点”有关的物理属性所抽象出的向量只有大小和方向.因此,用有向线段表示向量时,向量的方向与有向线段的指向有关,与起点的具体位置无关.教学中要让学生体会用有向线段表示向量这种几何直观,以利于进步学习向量.2.零向量与单位向量教科书将“向量的大小”定义为向量的模,进而分别给出了零向量、单位向量的概念,教学中应当注意引导学生将向量的模与数量进行比较,数量有大小而没有方向,其大小有正数、负数和0之分,既可进行运算,又可比较大小;向量的模是正>没有意数或0,由于向量a和b的方向不能比较大小,于是|||b|a>有意义,而a b义.零向量与单位向量都是特殊的向量.教学中可以类比实数0和1,让学生认识零向量与单位向量.随着后续内容的学习,学生会进一步认识到零向量与单位向量在向量系中的地位和作用.例如,向量的减法运算就要用到零向量,平面向量的坐标表示中以分别与x轴、y轴方向相同的两个单位向量作为基底.3.向量的两种表示教科书介绍了向量的两种表示:有向线段表示和黑体字母表示,向量的有向线段表示为用向量处理几何问题打下了基础,用黑体字母表示向量在形式上更简约,这两种表示方法都需要学生熟练掌握.教科书用黑体字母表示向量,如a,在手写时可用a表示.在用有向线段AB表示向量时,要提醒学生注意向量AB的方向是有向线段的起点A指向终点B,点A要写在点B的前面.4.例题例1是一个简单的问题.要求用向量表示位移并求两点间的距离.画出有向线段表示位移,目的在于从向量的角度认识位移,以正确理解向量概念及其几何表示;两点间的距离就是相应有向线段的长度,也就是相应向量的模.6.1.3相等向量与共线向量1.平行向量从向量的基本要素出发进一步研究向量,如果只关注向量的方向,那么可以得到平行向量这重要概念,平行向量是指方向相同或相反的非零向量.教学中要让学生全面认识平行向量,特别是方向相反的非零向量也是平行向量,要讲清楚教科书中图6.1-5的几何意义.规定零向量与任意向量平行,与一般向量空间中有关性质(向量的线性相关性)一致.2.相等向量数学中,引进新的量后,就要界定它们之间的“相等”关系,这是研究新的量的基础.如何定义“相等向量”呢?平行向量只关注向量的方向,如果既关注向量的方向,又关注向量的大小,那么把“长度相等且方向相同的向量”定义为相等向量是恰当自然的.相等向量是一类向量的集合,由相等向量的定义可以知道,对于一个向量,只要不改变它的大小和方向,将它平移后还是这个向量,这就是“向量完全由它的模和方向确定”的意义.因此,用有向线段表示向量时,可以任意选取有向线段的起点,也就是说高中数学中讨论的向量是自由向量,这为用向量处理几何问题带来方便.教学时可以借助信息技术,通过向量的平移来让学生直观认识相等的向量与表示向量的有向线段的起点无关.可以让学生思考“同一条有向线段可以表示怎样一类相等的向量”与“同一个非零向量可以用怎样一类有向线段表示”这两个问题,也可以结合例题、习题体现上述问题的应用.3.共线向量共线向量也是研究向量的基础.教科书通过对一组平行向量,,a b c直观作图的过程给出了“任一组平行向量都可以平移到同一条直线上,因此,平行向量也叫做共线向量”的陈述.从逻辑线索上看,将平行向量,,a b c平移到直线l上后,由相等向量的定义,得到的仍然是,,a b c,这表明了平行向量与共线向量是等价的,只是名称的用词具有相应的针对性.教学中,要使学生体会两个共线向量并不一定要在同一条直线上,只要两个向量是平行向量,也就是共线向量,反之也对.当然,在同一条直线上的一组向量也是平行向量.要避免向量的“平行”“共线”与平面几何中直线的平行和线段的共线相混淆,让学生认清平行向量与平行线、共线向量与共线线段的区别.4.例题例2是结合正六边形的一些几何性质,让学生巩固相等向量和共线向量的概念,正六边形的边长等于其外接圆半径,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教学时应引导学生利用正六边形的性质结合图形进行分析,还可以让学生判断向量OA与,FE OB与AF是否相等,意在通过长度相等且方向相反的两个向量不相等,让学生从反面认识相等向量的概念,也为后继引入相反向量的概念进行铺垫.。
平面向量教材分析与教学建议
《平面向量》教材分析与教学建议盐城市龙冈中学高一数学备课组一、新旧教材对比分析1、在章节编排上有了一定的调整,对原教材中的某些小节作了合并,原教材中的“向量的加法与减法”与“实数与向量的积”合并为“向量的线性运算”,原教材中的“线段的定比分点”并入“向量的坐标运算”,原教材中的“平面向量的数量积及运算律”与“平面向量数量积的坐标表示”合并为“向量的数量积”。
2、部分内容作了删减,平移及解斜三角形在新教材中均已删去。
3、部分内容的编排位置发生了改变,原材料中“平面向量基本定理”编排在“向量的线性运算”中,而新教材中却编排在“向量的坐标表示”中。
4、新教材很注重“问题情境”,如一开始引入向量概念时用了“湖面上游艇送客”之例。
引入“平面向量基本定理”时用了“火箭升空”之例,以激发学生学习数学的兴趣。
5、新教材比较注重知识的发生、发展的过程。
如对向量共线定理及其坐标形式的定理均作了比较详细的证明。
6、新教材充分体现了分层教学的要求,如课后的习题均有“感受·理解”、“思考·运用”、“探索·拓展”三个层次,满足不同层次的学生需要。
二、课时划分三、教学中应注意的问题1、向量是数学中重要的、基本的概念,它是从诸如“位移”“力”等物理概念中抽象出来的,教学中要展现并让学生经历这个抽象的过程。
2、位移的合成可以作为向量加法的原型,教学中应该以此为依托,探索向量加法的含义及其运算律,启发学生将向量的加法和数、字母、式的加法进行比较,加深对数学运算的认识和理解。
3、求两个向量的和应突出三角形法则,在使用这个法则时,要强调“首尾顺次相连”。
4、在教学中要突出数形结合思想,注意从形和数两个方面来理解、研究向量及其运算。
5、由于充要条件的概念在选修教材中才出现,所以向量共线定理的教学中,应让学生正确理解定理包含的两层意思,并在后面的运用中加深理解。
6、向量共线定理中条件≠的限制,应让学生自己先体验;若无此限制,会有什么结果?再感悟到只有用非零向量,才能表示与它共线的所有向量。
高中数学_平面向量基本定理教学设计学情分析教材分析课后反思
教课方案一、教材剖析本节课选自人教 A 版高中数学必修 4 第二章 2.3.1 平面向量基本定理。
学生在学习平面向量实质背景及基本观点、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)以后的又一要点内容,它是引入向量坐标表示,将向量的几何运算转变为代数运算的基础,是向量的工具性获得初步的表现,拥有承上启下的作用 . 二、学情剖析本节课的讲课对象是一般中学的高一学生,该年级的学生已经学习了向量的基本观点和基本运算以及平面向量共线定理;学生对向量的物理背景有了初步的认识,如:力的合成与分解、位移、速度的合成与分解等,都为学习本课作了充足准备,具备了进一步研究的能力.可是本班学生不擅长对知识进行总结归纳,所以在教课过程中,指引学生进行独立思虑,并逐渐培育他们的归纳归纳能力.三、教课重难点1.教课要点:平面向量基本定理及其意义;两个向量夹角的简单计算;2.教课难点:平面向量基本定理的研究;向量夹角的判断.四、教课目的(一)知识与技术目标:1.认识平面向量基本定理及其意义,会选择基底来表示平面中的任一直量;2.能用平面向量基本定理进行简单的应用。
(二)过程与方法目标:1.经过平面向量基本定理的研究,让学生体验数学定理的产生、形成过程,培育学生察看发现问题、由特别到一般的归纳总结问题能力;2.经过对平面向量基本定理的运用,加强学生向量的应意图识,让学生进一步领会向量是办理几何问题强有力的工具之一。
(三)感情、态度与价值观目标:1.用现实的实例,激发学生的学习兴趣,培育学生不停发现、研究新知的精神,发展学生的数学应意图识;2.经历定理的产生过程,让学生体验由特别到一般的数学思想方法,在研究活动中形成持之以恒的研究精神和科学态度。
五、教课过程七个音符谱出千支乐曲,在多样的向量中,我们可否找到它的基本音符呢?第一经过问题复习平面向量的加减法运算及向量共线定理。
(学生回答)再来思虑这么一个问题,给定平面内两个向量e1 ,e2,怎样作出量e1 2 e2 , e11e2?(学生用平行四边形法例、三角形法例等达成. 教师2进行投影显现 . )反过来,平面内任一直量a 能否都能够用形如1 12 2的向量表e e示?(师生共同达成,经过 GGB软件动向显现向量a的随意性,让学生更直观的认识 .)师生共同给出平面向量基本定理.重申:向量 a 的随意性、e1、e2不共线、系数 1 , 2 的存在性与独一性。
高中数学_《平面向量基本定理》教学设计学情分析教材分析课后反思
《平面向量基本定理》教学设计一、教材分析教材用具体例子引出了定理,意在培养学生的观察、抽象、概括能力。
在平面上任一向量都可唯一的表示为两个不共线向量的线性组合。
对于平面上的向量,任意一组不共线向量都可作为基底。
平面向量基本定理是平面向量坐标表示的依据。
对于定理的证明教材作为选学内容出现,意在降低要求。
但证明存在性、唯一性的方法,既要证明存在性,又要证明唯一性,可以介绍给学生。
作为定理的应用,教材安排了例1、例2两个例题,给出了直线的向量参数方程式,以及线段中点的向量表达式。
二、教学基本条件分析1.学生条件:学生有较好的数学基础和数学理解能力,喜欢思考,乐于探究。
2.前期内容准备:前期学生刚刚学习了平面向量的加法、减法、数乘运算,以及向量共线的条件。
3.教学媒体条件:支持幻灯片及投影展示。
三、教学内容分析本节课的主要内容是平面向量基本定理,平面向量基本定理的应用1.教学重点:平面向量基本定理的应用2.教学难点:对平面向量基本定理的理解知识与技能目标:了解平面向量基本定理的条件和结论,会用它来表示平面的任一向量,为向量坐标化打下基础;过程与方法目标:通过平面向量基本定理的学习过程,让学生体验数学定理的产生、成过程,体验定理所蕴涵的数学思想方法;情感态度与价值观目标:通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题强有力的工具之一,培养学生的精神。
3.教学媒体条件:支持幻灯片展示。
四、教学方法本节内容是在学习了平面向量先行运算的基础上,进一步学习向量的坐标运算的基础。
教学中引导学生联系已有知识,在平面向量基本定理的教学中,采用让学生观察、抽象、概括的方式,自主得出定理;在定理的运用中,引导学生分析思路,总结规律,体验解题方法。
五、教学过程设计(一)音频、图片引入,出示课题(板书课题)【设计意图】:激发学生兴趣,引出课题。
(二)逐层深化,定理形成温故而知新:平行向量基本定理: 【设计意图】:回顾平行向量基本定理内容,引导学生发现在一维线性关系中数与形的完美结合,为下一步探索和理解平面向量基本定理做铺垫。
高中数学_平面向量教学设计学情分析教材分析课后反思
平面向量【高考考纲解读】1.平面向量是高考必考内容,每年每卷均有一个小题 ( 选择题或填空题) ,一般出此刻第 3~7 或第 13~15 题的地点上,难度较低.主要观察平面向量的模、数目积的运算、线性运算等,数目积是其观察的热门.2.有时也会以平面向量为载体,与三角函数、分析几何等其余知知趣交汇综合命题,难度中等 .【要点、难点分析】1、(1)平面向量共线定理向量 a(a≠0)与b共线当且仅当存在独一一个实数λ,使b=λa.(2)平面向量基本定理假如 e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一直量 a,有且只有一对实数λ,λ,使 a=λe +λe ,此中 e ,e12112212是一组基底 .2.平面向量的两个充要条件若两个非零向量 a=(x1,y1),b=(x2,y2),则(1)a∥b?a=λb? x1y2-x2y1=0.(2)a⊥b?a·b=0? x1x2+ y1y2=0.3.平面向量的三个性质(1)若 a= (x, y),则 |a|= a·a=x2+ y2.(2)→( x2- x1)2+( y2- y1)2.若 A(x1, y1), B(x2, y2),则 |AB|=(3)若 a= (x1, y1 ), b= (x2, y2),θ为 a 与 b 的夹角,则 cos θ=a·b x1x2+ y1 y2|a||b|=x12+ y12 x22+ y22.4.平面向量的三个锦囊(1)向量共线的充要条件: O 为平面上一点,则A,B,P 三点共线→→→此中λ1+λ2=1).的充要条件是 OP=λ1+λ2OA OB ((2)三角形中线向量公式:若P 为△ OAB 的边 AB 的中点,则向量→→ →→ 1 → →OP与向量 OA,OB的关系是 OP=2(OA+OB).→ → →(3)三角形重心坐标的求法: G 为△ ABC 的重心 ? GA+GB+GC=0? G x A+x B+x C,y A+y B+y C.33【高考真题】[练真题·考什么 ]1. (2018 ·全国卷Ⅱ )已知向量a, b 知足 |a |= 1, a·b=- 1,则 a·(2a - b) = () A . 4 B . 3C . 2D . 02.(2018 ·全国卷Ⅰ )在△ ABC 中, AD 为 BC 边上的中线,→=E 为 AD 的中点,则EB()3 → 1 → 1 → 3 →A. 4AB -4AC B.4AB -4AC3 → 1 → 1 → 3 →C. 4AB +4AC D .4AB +4AC4. (2016 ·全国卷Ⅱ)已知向量 a = (1 , m ), b= (3 ,- 2) ,且 (a + b)⊥ b ,则 m = ()3A.- 8B.- 6C . 6D . 84·全国卷Ⅰ)已知向量 a ,b 的夹角为60°,|a|= 2,|b|= 1,则 |a+ 2 b |= ________.6.(201753.(2017·全国卷Ⅱ)已知△ABC 是边长为 2 的等边三角形,P 为平面ABC 内一点,→ →→()则 PA ·(PB + PC )的最小值是A.- 2 B .-3 24C.-3D.- 1→→→分析:解法一:设 BC 的中点为 D,AD 的中点为 E,则有PB+PC=2PD,→ →→→ →则PA·+PC =·(PB)2PAPD→→→→=2(PE+EA·-EA) (PE)→ 2→ 2=2(PE-EA ).→3 2=3,而EA2=24→2→ → →当 P 与 E 重合时,PE有最小值 0,故此时PA·(PB+PC)取最小值,→ 233最小值为-2EA =-2×=-.应选 B.42解法二:以 AB 所在直线为 x 轴, AB 的中点为原点成立平面直角坐标系,如图,则 A(- 1,0), B(1,0), C(0, 3),设 P(x , y),取 BC 的中点 D ,则 D1, 23 .2→ →→→ →13=2(x + 1)1 3+ PC2PA ·PD =2(- 1-x ,- y) ·2 -y ·x - +y ·y -2=PA ·(PB)=2-x ,222212 132 3 33( x))42x +4 + y -( y -444.4所以,当 x =-1,y =→ → →33时, PA +PC)获得最小值,最小值为 2×- =-3,44·(PB 42应选 B.【规律方法】求数目积的最值,一般要先利用向量的线性运算,尽可能将所求向量转变为长度和夹角已知的向量, 利用向量的数目积运算成立目标函数,利用函数知识求解最值.【典型例题】命热题点角一度1 平面向量的线性运算【训练 1】 (2017衡·阳二模)如图,正方形ABCD 中,M ,N 分别→→ →是 BC ,CD 的中点,若AC =λAM +μBN ,则 λ+μ=()868 A.2B.3C.5D.5分析法一如图以AB ,AD 为坐标轴成立平面直角坐标系,设→1→1, 1 →正方形边长为 1, AM = 1, 2 ,BN = - 2 , AC = (1, 1).→ → →1 + μ- 1 , 1 = λ- μ λ∵ AC = λAM + μBN = λ, 2 , 2+ μ,1 2 216 λ- 2μ= 1,λ= 5 , 8∴ λ解之得2 故 λ+ μ= 5.2 + μ= 1,μ= 5 ,法二:方程思想uuuuruuur1 uuuruuur uuuruuuur uuur AM ABAD以则有2 , 为基底来表示ABADAM,AN, uuur uuur 1 uuurBN AD ABuuur 4 uuuur 2uuur2AB= AMBN解得uuur5 52 uuuur 4uuurADAMBN5 5uuur uuur uuur 6 uuuur 2 uuur 所以AB AD AM BNAC 5 5所以+= 8yDNC MAB x5【训练 2】在平行四边形ABCD中, M,N分别为 DC,BC中点,若uuurACuuuurAMuuurAN ,求+ 的值规律方法1.平面向量线性运算的两个技巧(1)对于平面向量的线性运算问题,要尽可能转变到三角形或平行四边形中,灵巧运用三角形法例、平行四边形法例,密切联合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式表现的,常利用共线向量定理(当 b≠ 0 时, a∥ b? 存在独一实数λ,使得 a=λb)来判断 .热命点题角二度 1平面向量的数目积【例1】 (1)已知向量a与b的夹角为60°,且a=(-2,-6),|b| = 10,则a·b =.→ →(2)已知正方形ABCD的边长为1,点E是AB边上的动点则,DE·CB的值为;→ →DE·DC的最大值为.(2)法一如图,以AB,AD为坐标轴成立平面直角坐标系,则 A(0,0),B(1,0),C(1,1),D(0,1),设 E(t,0), t∈[0,1],→→则 DE=(t,- 1),CB=(0,- 1),→ →所以 DE·CB=(t,- 1) ·(0,-1)=1.→→ →因为 DC=(1,0),所以 DE·DC= (t,- 1) ·(1,0)= t≤1,→ →故 DE·DC的最大值为 1.法二→ →如图,不论 E 点在哪个地点, DE在CB方向上的投影都是 CB → →→=1,所以 DE·=|CB ·=,CB| 1 1→→当 E 运动到 B 点时, DE在DC方向上的投影最大,即为 DC=1,→ →→所以(DE·=|DC ·=1.DC)max| 1(43.)已知向量a=(1, 3),b=(3,m),且 b在 a 上的投影为3,则向量a 与 b 的夹角为.分析:设向量 a 与 b 的夹角为θ.∵b 在 a 上的投影为3,且|a|=12+3 2=2,a·b=3+ 3m,∴|b|cosθ=|b|×a·b=3+ 3m·==3,解得 m= 3.∴|b|=2 3.∴cosθ=a b|a||b|2|a||b|3+3×33π2×23=2 .∵θ∈[0,π],∴向量a 与 b 的夹角θ为6.规律总结:求两个向量的数目积有三种方法:1、利用定义;2、利用向量的坐标运算;3、利用数目积的几何意义.【讲堂小结】1、本节课你有哪些收获2、本节课运用了哪些思想方法【作业】平面向量对应的活页作业NO.15学情分析本节课是高三二轮专题复习课,学生已经在第一轮的学习中基本掌握了平面向量基本定理的基本观点及运算,本节课是在此基础长进一步增强对平面向量的综合运用。
《平面向量》优秀说课稿(通用3篇)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
《平面向量》教材分析
(一)本章内容向量是新教材增加的内容之一,无论是对于教师还是学生都是新的.向量是数学中的重要内容,它和数一样也能进行运算,而且利用向量的有关知识还能有效地解决数学,物理等学科中很多问题.作为学生,接触到新的内容,不仅增大了知识的容量,而且由于立足于向量这一新的视角,进一步拓宽了思维的渠道.作为教师不仅要学习新内容,而且要从思想方法上研究新内容的内涵实质,修整原有的认知,用向量的观点研究以往教材的知识结构体系,培养学生运用向量解决问题的意识向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法本章共分两大节第一大节是“向量及其运算”,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等为培养学生的创新意识和实践能力,激发学生学习数学的好奇心,启发学生能够发现问题和提出问题,学会分析问题和创造性地解决问题,本节中安排了一个实习作业和研究性课题教学中要加以实施为扩大学生的知识面,本章中还安排了两个阅读材料,即“向量的三种类型”和“人们早期怎样测量地球的半径”本章重点是向量的概念,向量的几何表示和坐标表示,向量的线性运算,平面向量的数量积,线段的定比分点和中点坐标公式,平移公式,解斜三角形等本章的难点是向量的概念,向量运算法则的理解和运用等本章一开始,从帆船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念向量的加法与减法、实数与向量的积,实际是向量的线性运算知识教科书先讲了向量的加法、加法运算律,然后用相反向量及向量的加法定义向量的减法,这样把向量的加法与减法统一了起来教科书又通过向量的加法引入了实数与向量的积的定义,接着给出了实数与向量的积的运算律,最后介绍了向量共线的充要条件和平行向量基本定理,这样为后面介绍平面向量的坐标表示奠定了理论基础在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量在“向量的线性运算”中,介绍向量加法的定义,向量加法的运算律;向量减法的定义,向量方程,向量长度的三角不等式;数乘向量的定义,单位向量,数乘向量的运算律在“向量的共线与共面”中,介绍平行向量,共线向量,共面向量,两个向量共线的充要条件,直线的向量方程,三个向量共面的充要条件在“向量的内积”中,介绍两个向量的夹角,向量内积的定义,向量内积的几何意义,向量内积的运算律,向量内积的性质通过建立直角坐标系,给出了向量的另一种表示式----坐标表示式,这样就使得向量与它的坐标建立起了一一对应的关系,然后给出了向量的加法、减法及实数与向量的积的坐标运算,这就为用“数”的运算处理“形”的问题搭起了桥梁在向量坐标运算的基础上,还导出了线段的定比分点坐标公式和线段的中点公式向量的数量积体现了向量的长度和三角函数之间的一种关系,特别用向量的数量积能有效地解决线段垂直的问题把向量的数量积应用到三角形中,还能解决三角形边角之间的有关问题平面向量数量积的概念,教科书是从学生熟知的功的概念引入的,在介绍了平面向量数量积的定义及几何意义之后,又介绍了平面向量数量积的5个重要性质、运算律及其坐标表示特别通过两个向量数量积的坐标表示,很容易推导出平面内两点间的距离公式对这一章中概念的处理,是根据概念在教科书中的地位、作用及特点,对不同的概念采用不同的处理方式一些概念是通过例举反映概念实质的具体的对象,并充分发挥几何图形的直观的特点,使学生在感性认识的基础上建立概念,并理解概念的实质,像向量的概念等;一些概念则不仅给出严格的定义,还要分析满足定义的充要条件,要求学生理解、记忆,并通过适当的练习,让学生会用,像向量数量积的概念等这一章中的一些例题,不是先给出解法,而是先进行分析,探索出解题思路,再给出解法学思想和数学方法,有的还让学生进一步考虑相关的问题(三)注意培养学生的思维能力注意对学生思维能力的培养,对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力对于解斜三角形,教科书是这样引入的:“在初中,我们已会解直角三角形,就是说,已会根据直角三角形中的边与角求出未知的边与角那么,如何来解斜三角形呢?也就是如何根据斜三角形中已知的边与角求出未知的边与角呢?”通过设问,引起学生思考(四)注意数学思想方法的渗透在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法例如,从帆船在大海中航行时的位移,渗透数学建模的思想介绍相等向量及有关作图的训练,渗透平移变换的思想由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题,因此这部分知识还渗透了数形结合的解析几何思想(五)突出知识的应用(1)加强向量在数学知识中的应用,注意突出向量的工具性,很多公式都用向量来推导,如线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等(2)加强向量在物理中的应用为培养学生用向量知识解决有关物理问题的能力,在这一章的最后,安排了一个研究性课题,即向量在物理中的应用对于一个物理问题,首先要把它转化成数学问题,即用数学知识建立物理量之间的关系,也就是抽象成数学模型,然后再用建立起的数学模型解释相关物理现象《平面向量》教材分析与教学建议一、新旧教材对比分析1、在章节编排上有了一定的调整,对原教材中的某些小节作了合并,原教材中的“向量的加法与减法”与“实数与向量的积”合并为“向量的线性运算”,原教材中的“线段的定比分点”并入“向量的坐标运算”,原教材中的“平面向量的数量积及运算律”与“平面向量数量积的坐标表示”合并为“向量的数量积”。
高中数学_平面向量基本定理教学设计学情分析教材分析课后反思
《2.2.1 平面向量基本定理》学案【教材】 人教版数学必修4(B 版)第96-99页 【课时安排】 1个课时 【教学对象】 高一学生 【目标分析】 知识与技能1. 理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表示为一组基底的线性组合;2. 了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。
过程与方法1. 通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上的向量的一维性”,培养“维数”的基本观念;2. 通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定理所蕴含的转化思想。
情感态度价值观1. 培养学生主动探求知识、合作交流的意识,感受数学思维的全过程;2. 与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。
【教学重点、难点、关键】重点:平面向量基本定理的理解与应用。
难点:对平面向量基本定理的发现和形成过程。
关键:分层次设计探究问题并让学生进行操作实践。
【教学方法】引导探究、讨论交流。
【教学手段】计算机、PPT 、几何画板。
【教学过程设计】一、【情景导入】让我们来玩游戏吧:(一)在图一中同桌两人为一组,每位同学把平面上的两个向量分别乘以一个数再相加(减)如: 1232 e e ,图一(二)在图二中现在每位同学在平面内任意画一个向量,再互相交换,另一名同学能否用形如12e e λμ+的形式表示出来所画向量?图二【合作探究】 探究一任意画出的向量是否一定可以用“一个”已知的非零向量表示? 探究二任意画出的向量是否一定可以用“两个”已知的不共线向量表示?如图1,设21e e ,,是同一平面内两个不共线的向量,a 是这一平面内的任一向量。
1e ,a2e ,请你将向量a 分解成图中所给的两个方向上的向量。
小组对照,比较分解成的两个向量的方向和长度是否一致? 探究结果【提炼升华】 平面向量基本定理:探究三探究二中的向量a 可否用其他两个不共线的向量表示出来?教师在黑板上另画出向量a 和不共线的向量34e e ,,请一位同学板演出新分解。
人教A版高中数学《平面向量》单元教材教学分析
本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容。通过本章学习实现以下目标:
1.了解向量的实际背景,会向量的几何表示。
2.通过实例,会算向量加、减、数乘、数量积的线性运算的坐标运算并理解其几何意义。
3.掌握平面向量基本定理及意义。
向量是近代数学中重要的基本概念之一,它是沟通代数几何与三角函数的一种工具。向量对学生来说是比较新的内容,学生对它的学习充满了探求的欲望,能使大部分学生在此章节的学习中体会到成功乐趣。学生在学习单元内容之前,已熟知了实数的运算体系,具备了物理知识。
学习本章知识,应让学生养成用代数和几何两种眼光分析向量问题、解决向量问题的方法,养成良好的书写习惯和思维习惯。
课时安排
第一课时:
2.1平面向量的实际背景及其概念
第二课时:
2.2向量加法和减法的线性运算
第三课时:
2.2向量数乘的线性运算
第面向量坐标表示
第六课时:
2.4平面向量的数量积
第七课时:
2.5平面向量应用举例
说明
对本单元的教学评价如下:
1.通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
4.能运用数量积表示向量的夹角,体会平面向量的数量积与向量投影的关系。
重点、难点与关键
重点是平面向量的基本概念、运算、位置关系、平面向量的数量积。
难点是平面向量基本定理极其几何意义。
教学方法和手段的设计
1.特别注意向量的物理背景与几何背景中引入向量概念,借助几何直观,并通过与数的运算的类比引入向量运算,以加强向量的几何背景。
2.注意联系实际,强调向量作为刻画力、速度、位移等现实常见现象的有力数学工具。
第二章“平面向量”教材分析及教学建议
第二章《平面向量》教材分析天津市第二十中学高一数学备课组一、地位与作用向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点。
所以向量的学习有助于学生体会数学与实际生活的联系,认识数学内容的内在联系,发展运算能力和推理能力。
二、内容与课程学习目标本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.通过本章学习,应引导学生:1.通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.2.通过实例,掌握向量加、减法的运算,并理解其几何意义.3.通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.4.了解向量的线性运算性质及其几何意义.5.了解平面向量的基本定理及其意义.6.掌握平面向量的正交分解及其坐标表示.7.会用坐标表示平面向量的加、减与数乘运算.8.理解用坐标表示的平面向量共线的条件.9.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.10.体会平面向量的数量积与向量投影的关系.11.掌握数量积的坐标表达式,会进行平面向量数量积的运算.12.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.13.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.三、教学内容与课时安排本章共安排了5个小节及2个选学内容,大约需要12个课时,具体分配如下(仅供参考):2.1 平面向量的实际背景及基本概念 2课时2.2 向量的线性运算 2课时2.3 平面向量的基本定理及坐标表示2课时2.4 平面向量的数量积2课时2.5 平面向量应用举例2课时小结 2课时本章知识结构如下:1.第一节包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量.教科书首先从位移、力等物理量出发,抽象出既有大小、又有方向的量——向量,并说明向量与数量的区别.然后介绍了向量的几何表示、有向线向量的长度(模)、零向量、单位向量、平行向量、相等向量、共线向量、相等向量、相反向量等基本概念.例1. 给出下列命题:①ba≠,则a一定不与b共线;②若DCAB=,则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形ABCD中,一定有=;④若向量与任意向量平行,则=;⑤若=,=,则=.其中所有正确命题的序号为 .例2. 根据下列各小题的条件,分别判断四边形ABCD的形状.(1)=;(2)DCAB==(3)DCAB==.2.第二节有向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义等内容.教科书先讲了向量的加法、加法的几何意义、加法运算律;再用相反向量与向量的加法定义向量的减法,把向量的减法与加法统一起来,并给出向量减法的几何意义;然后通过向量的加法引入了实数与向量的积的向量数乘运算的定义,给出了数乘运算的运算律;最后介绍了两个向量共线的条件和向量线性运算的运算法则.例3. 化简: (1)BC CD DB ++;(2)FA BC CD DF AB ++++. (3)()()---.例4. 如图,已知任意四边形ABCD ,E 为AD 的中点,F 为BC 求证:DC AB EF +=2.例5. 如图,已知△OBC 中,点A 是BC 边的中点,32=,OA 与DC 交于点E ,设=,=;(1)用和表示向量、. (2)若λ=,求实数λ的值.DCBAOE3.第三节包括平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示.平面向量基本定理是平面向量正交分解及坐标表示的基础.教科书首先通过一个具体的例子给出平面向量基本定理,同时介绍了基底、夹角、两个向量垂直的概念;然后在平面向量基本定理的基础上,给出了平面向量的正交分解及坐标表示,向量加、减、数乘的坐标运算和向量坐标的概念,最后给出平面向量共线的坐标表示.坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁.例6. 如图,在□ABCD 中,M 、N 分别为DC 、BC 的中点,已知c AM =,d AN = ,试以c ,d 为基底表示AB 和AD . 例7. 向量(,12)OA k = ,(4,5)OB =,(10,)OC k = ,当k 为何值时,A 、B 、C 三点共线.例8. (1)求点A (3,5-)关于坐标原点O 的对称点A '的坐标.(2)求点A (3,5-)关于点P (1,2-)的对称点A '的坐标.4.第四节包括平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角.教科书从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.例9. 已知a 、b 、c 是三个非零向量,则下列问题中真命题的个数为( )① ⇔=⋅∥ ;② 、反向=⋅⇔ ;③ =⇔⊥ ;④ =⇔=.A. 1B. 2C. 3D. 4例10. 54==,当a 与b 分别满足以下条件时,求a 与b 的数量积(1)a ∥b ; (2)⊥;(3)与的夹角为30º。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章《平面向量》教材分析一、平面向量在教材中的地位和作用1、地位(1)改变传统教材结构在几十年来的国内外数学教育改革中,向量进入中学是一个重要的特征。
平面向量的集中讲授,在我国高中数学教材中是首次,其目的之一是系统地学习向量知识,目的之二是以向量知识作为工具,改变传统的综合几何、平面三角等内容的讲法。
向量、向量的加法与减法在传统教材的复数中讲授,线段的定比分点、平面两点间的距离、平移在传统教材在解析几何中讲授,正弦定理、余弦定理在传统教材的三角中讲授,新教材把这些内容糅合到一章。
用向量的观点来处理,大大地改变了传统教材的编排体系。
按照新教材的编排体系,平面向量作为工具性内容在安排上尽量提前。
由于介绍向量的数量积要用到有关三角知识,因此将平面向量安排在紧随三角函数之后作为第五章。
又由于讲斜三角形解法可以用到平面向量,新教材又作了将斜三角形解法移入平面向量这一章的调整。
需要指出的是,在平面向量这章还运用向量方法解决了解析几何入门的有关知识,为学习解析几何做好了准备。
同时,在后续的第七章直线与圆的部分向量知识立刻就能应用,在学习立体几何之后安排空间向量,让向量的应用得到完善和深化。
这样的安排是科学的、合理的。
(2)改变传统教材内容用向量的观点来处理,由于向量具有几何形式与代数形式的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介。
因此,向量的引入不仅使高中数学教材采取混编体系成为一件别无选择的事,而且使它在研究其它许多问题时获得了广泛的应用。
新高中数学课程为了有利于精简教学内容,提高教学效益,有利于加强数学各部分内容的相互联系与知识的综合运用,将代数、几何等内容综合编排。
向量的引入,使高中数学各部分内容的联系加强了;使高中教学内容与大学内容衔接更加紧密。
2、作用(1)工具性和方法性向量带有基础知识的特点,是一种工具性和方法性知识。
向量有一套优秀的运算系统,由于它提供的向量法、坐标法,使其成为研究高中数学的重要方法。
纵观平面向量这一章,如果除去应用性知识,纯属向量知识约占10课时,教材上大量的篇幅是突出向量的应用,突出向量的工具性和方法性。
例如用向量方法推出线段定比分点坐标公式、平面上两点间距离公式、平移公式、正弦定理、余弦定理,而且与物理学中力学等内容的学习相互呼应。
在后续的解析几何、立体几何、复数等内容的学习中,向量仍将继续发挥其重要作用。
仅花费10课时的代价换来这么大的效益是十分合算的。
向量有一套优良的运算系统,几何中有关长度、角度的计算,平行、垂直的判定与证明,很多场合下都可以化归为向量的运算来完成,教材中正弦定理、余弦定理的证明、定比分点坐标公式的导出,就是这方面典型的例子。
这些体现了数学中化归和数形结合的思想。
向量“形”、“数”兼备,是数形结合的桥梁。
在引进向量知识时,教材充分运用几何图形直观的特点,而在解决几何问题时,又注意充分运用向量法与坐标法,处处渗透了数形结合的思想。
(2)沟通代数与几何向量是除函数外的另一条主线,使几何代数化、符号化、形式化。
向量是近代数学中重要和基础的数学概念之一,它是沟通代数、几何与三角的工具。
新教材引进向量,充分体现了新课程理念。
由于它的引入,使几何与代数变得更加紧密,一维二维和三维过度更加顺畅;有效克服了繁琐和技巧导致的“双基异化”。
它是知识、是方法、是思想。
(3)突出新教材的理念……注重应用向量的概念是从生活实践中抽象出来的,反过来又成为解决物理学和工程技术中有关问题的重要工具。
教材中十分注重理论和实际的结合,更加注重应用。
用例如从速度、位移、力、加速度等引进向量的概念,从力做功引入向量的数量积。
关于向量应用的实例课本上比比皆是,涉及到力、速度的分解与合成,各种测量问题,工程技术中的曲柄连杆机构问题等等。
课本上还安排了有关实习作业。
值得一提的是,教材在本章结束时安排了一个研究性课题——向量在物理中的应用,要求将物理问题转化为数学问题,即把物理量之间的关系抽象为数学模型,然后再通过对这个数学模型的研究来解释日常生活中相关的物理现象,这已经不是将数学知识简单地套用到实际问题中,而是充分体现了数学应用的内涵和它的深刻性,并能有力地培养同学们的应用能力和探索能力。
二、主要内容及知识体系向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分两部分。
第一部分是“向量及其运算”;内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等。
第二部分是“解斜三角形”;这一部分可以看成是向量知识的应用,内容包括正弦定理、余弦定理,解斜三角形应用举例和实习作业等。
正弦定理、余弦定理是关于任意三角形边角之间关系的两个重要定理,教科书通过向量的数量积把三角形的边与角联系起来,推导出了这两个定理,并运用这两个定理初步解决了测量、工业、几何等方面的实际问题,特别在这部分一中,还安排了一个实习作业,从而使学生进一步了解数学在实际中的应用,激发学生学习数学的兴趣,培养学生由实际问题抽象出数学问题并加以解决的能力。
为扩大学生的知识面,本章中还安排了两个阅读材料,即“向量的三种类型”和“人们早期怎样测量地球的半径”。
本章重点:向量的概念,向量的几何表示和坐标表示,向量的线性运算,平面向量的数量积,线段的定比分点和中点坐标公式,平移公式,解斜三角形等。
本章的难点:向量的概念,向量运算法则、平面向量基本定理的理解和运用、解斜三角形等。
本章的主要内容:向量的概念,运算及其坐标表示,线段的定比分点,平移、正弦定理、余弦定理及其在解斜三角形中的应用。
知识体系如下图所示:三、向量在高考中的地位1、高考必考内容每年高考都有不同程度的试题,04年广东试题占20%。
随着使用新教材的深入,必将成为一个考试的亮点或热点。
分析05年高考试题,对向量的考查开始横向发展,突出其工具性和方法性特征。
2、命题变化趋势2000年——考查向量基本概念,定比分点公式。
2001年——考查向量坐标运算,向量的数量积。
2002年——考查向量坐标运算,基本出现向量与数列的综合。
2003年——考查向量与平面几何的综合,向量与解析几何的综合。
2004年――考查向量夹角计算,求向量的长度。
2005年――考查向量的基本运算及应用向量知识解决数学问题的能力。
几年的命题体现了平面向量考查的三个层次第一层次:主要考查平面向量的性质和运算法则,以及基本运算技能,数乘要求考查掌握平面向量的和、差、数乘和内积的运算法则。
理解其直观的几何意义,并能正确地进行运算。
(2000年考题)第二层次:主要考查平面向量的坐标表示,向量的线性运算。
第三层次:和其它数学内容结合在一起,如同曲线、数列三角等知识相结合,考查逻辑推理能力和运算能力综合运用数学知识解决问题的能力。
四、几点建议(1)把握好本章教学的要求由于这一章是新内容,因此教学时,一定要把握好教学要求,按大纲的规定,我们把这一章知识点归类如下:应了解的内容:共线向量的概念,平面向量的基本定理,用平面向量的数量积处理有关长度、角度和垂直的问题。
应理解的内容:向量的概念,两个向量共线的充要条件,平面向量坐标的概念。
应掌握的内容:向量的几何表示,向量的加法与减法,实数与向量的积,平面向量的坐标运算,平面向量的数量积及几何意义,向量垂直的条件,平移公式。
会运用的内容:线段的定比分点和中点坐标公式,正弦定理,余弦定理,斜三角形的计算问题,及通过解三角形应用的教学,继续提高学生解决实际问题的能力。
教学时,一定要突出重点、抓住关键、解决难点,以保证这一章的教学顺利。
(2)重视本章的教学,充分认识它的重要性由于这一章是为以后学习解析几何和立体几何作准备的,所以教学时,一定要让学生学好这一章的知识。
而对于基本技能和能力,要遵循学生的认识规律,结合教学内容,选择合适的教学方法,有目的、有计划、分阶段地进行训练和培养。
要随着学生对基础知识的理解的不断加深,逐步提高对基本技能和能力的要求,培养学生独立获取新知识和正确运用数学语言进行数学交流的能力。
(3)重视向量的工具性和方法性特征平面向量由于具有几何形式和代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介,在高中数学教学内容中有广泛的应用。
这一章教科书注意突出向量的工具性和方法性,很多公式都用向量来推导,如线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等。
(4)注意处理好新旧思维矛盾学习向量运算与学习数的运算有类似之处:从学习顺序上看,都是先定义运算,再研究运算性质;从学习内容来看,向量运算具有与数的运算类似的良好性质。
当引入向量后,运算对象扩充了,不仅仅是数的运算了,向量运算是建立在新的运算法则上,向量的运算与实数的运算不尽相同,向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用,它有一套自己的运算法则。
但很多学生往往完全照搬数的运算法则,而不注意向量运算法则的特点,因此常常出错。
在教学中要注意新旧知识之间的矛盾冲突,及时让学生加以辨别、总结,利于正确理解向量的实质。
例如向量的加法与向量模的加法的区别,向量的数量积与实数积的区别,在坐标表示中两个向量共线与垂直的充要条件的区别等等。
(5)注意数学思想方法的渗透在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法。
例如,从帆船在大海中航行时的位移,渗透数学建模的思想。
通过介绍相等向量及有关作图的训练,渗透平移变换的思想。
由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题,因此这部分知识还渗透了数形结合的解析几何思想。
附:聚焦2005年高考数学平面向量的“交汇性”向量是新课程新增内容,具体代数与几何形式的双重身份,它有着极其丰富的实际背景,用向量证明几何中有关平行、共线和垂直的命题,用向量计算角度和距离,用向量表示点的轨迹,以及用向量处理三角恒等变形,证明不等式,求解函数的最值,较之传统方法更为简捷。