ANSYS地震反应谱SRSS分析共24页

合集下载

ANSYS_地震分析算例

ANSYS_地震分析算例

ANSYS_地震分析算例地震是指地球上因地壳运动而产生的震动现象。

在地震发生后,建筑物的结构稳定性和抗震性能至关重要,因为地震可以对建筑物造成严重破坏。

因此,在建设和设计建筑物时,地震分析变得非常重要。

在此我将介绍一种用ANSYS进行地震分析的算例。

在地震分析中,我们首先需要建立一个合适的模型。

在这个算例中,我们将使用ANSYS提供的有限元分析方法。

首先,我们需要创建一个建筑物的三维模型。

在建筑物的模型中,我们需要包括所有的结构细节,例如建筑物的基础、柱子、梁和地板等。

我们可以使用ANSYS的几何建模工具来创建这个模型。

接下来,我们需要为建筑物定义材料特性。

建筑物的材料特性会对地震分析的结果产生重要影响。

例如,不同种类的混凝土、钢铁和木材等材料在地震作用下的响应是不同的。

我们需要使用ANSYS的材料库来定义这些材料的特性。

完成模型和材料定义后,我们需要定义地震荷载。

地震荷载是指地震发生时作用在建筑结构上的力量。

地震荷载可以根据地震的震级和地震波的性质来确定。

我们可以使用ANSYS的预处理工具来定义这些地震荷载。

接下来,我们需要定义边界条件。

边界条件是指建筑物与外部环境之间的约束关系。

例如,建筑物的基础是固定的,地震发生时不能移动。

我们需要使用ANSYS的加载工具来定义这些边界条件。

完成了模型、材料、地震荷载和边界条件的定义后,我们可以进行地震分析。

地震分析是指通过模拟地震发生时结构的动力响应来评估建筑物的抗震性能。

在ANSYS中,我们可以使用动力分析工具来进行这个分析。

在地震分析过程中,我们可以观察到各个部位的应力和位移等响应。

这些响应可以帮助我们评估建筑物的破坏机制和结构的安全性能。

例如,我们可以观察到柱子是否出现弯曲、梁是否发生裂缝等。

根据地震分析的结果,我们可以对建筑物的设计和结构进行优化。

例如,我们可以调整柱子和梁的尺寸、材质和布置方式,以提高建筑物的抗震能力。

综上所述,通过ANSYS进行地震分析可以帮助我们评估和优化建筑物的抗震性能。

ANSYS地震响应分析讨论

ANSYS地震响应分析讨论

地震响应分析1模态组合就是根据模态分析中的几阶振型(也可以少于这几阶,看你要求的精度)进行组合(类似于结构最不利组合),从而求出地震响应的最大值。

2组合各振型反应的最大值,求得结构地震响应的最大值。

这个问题在论坛上已经有很多人问过,也有各种各样的回答,但是至今没有令人满意的解答。

我自己试过很多种方法,加上论坛上其他人提到的方法,大致归类如下:1.先做静力恒载工况分析,打开预应力pstres开关;然后转到时程分析。

结果:恒载对后面的时程计算不起作用,时程计算依然从0开始。

2.直接在antype,trans中考虑恒载:先把timint,off加acel,,9.81,打开应力刚化,sstif,on,lswrite,1,然后timint,on开始时程计算。

结果:恒载9.81起作用了,但结果是错的,它被积分了。

3.不用什么前处理,直接把9.81加在地震波上acel,9.81+ac(i)。

结果,同2,9.81带入了积分,这个9.81相当于阶跃荷载,而不是产生恒载。

4.ansys帮助中施加初始加速度的方法(篇幅限制请自己看帮助)。

结果,同2、3,9.81还是带进时间积分。

5.这种是我受到别人的启发,通过结构受ramp荷载的特点施加的,可以近似的解决问题。

即1)求出结构的自振一阶频率w2)令tr=1/w3) 定义ramp荷载为从0到tr加到9.81,然后在整个时间积分中保持不变4)antype,trans中分几个荷载步将荷载从0加到9.815) 在随后的荷载步中acel,,9.81+ac(i)这种做法虽然也是将9.81++加到地震波中,但是因为满足TR的要求,所以这个动力效应被削弱到了静力效应,它作用在结构上就像静载一样。

对于单自由度结构理论上跟静载是完全一样的,但是多自由度会子静力效应上下很小的范围内波动,所以可以认为相当于静载的作用,这样我们就可以达到考虑恒载的目的了。

第5种是我至今为止考虑恒载的做法,我也很想知道还有没有更简单精确的方法,或者在前4种方法中就有只是我使用不正确,希望大家能一起来讨论,彻底解决这个问题。

ANSYS地震分析实例

ANSYS地震分析实例

ANSYS地震分析实例土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输进(d) 地震时程输进(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

ANSYS Example02地震分析算例 (ANSYS)

ANSYS Example02地震分析算例 (ANSYS)

02地震分析算例(ANSYS)土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常遇到的问题。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a)模态分析(b)谱分析(c)地震反应谱输入(d)地震时程输入(e)时程动力分析(1)在ANSYS窗口顶部静态菜单,进入Parameters菜单,选择Scalar Parameters选项,在输入窗口中填入DAMPRATIO=0.02,即所有振型的阻尼比为2%(2)ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3)在Element Types窗口中,选择Beam 188单元,选择Options,进入Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4)在Element Types窗口中,继续添加Mass 21集中质量单元(5)下面输入材料参数,进入ANSYS主菜单Preprocessor->Material Props-> MaterialModels菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic属性,输入材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

(6)继续给Material Model Number 1添加Density属性,输入密度为7800。

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...ANSYS中进行地震谱分析转自:这几天仔细研究了如何使用ANSYS进行地震谱分析的问题。

和大家分享下,不过有些问题我也不是太明白。

大家一起讨论。

地震谱分析的步骤:•建模•模态分析,并进行模态扩展•谱分析•查看结果这几个步骤是我结合ANSYS帮助文档中的介绍和里面的实例总结出来的,应该说是可靠的。

网上有很多文章介绍地震谱分析的,但是里面有很多出入,只能靠自己的一步一步地摸索,到底哪种方式才是正解。

首先说明一下,这里的地震谱是选自GR-63-CORE中的加速度频谱值。

所以在ANSYS中应该选用单点响应谱分析,即Single-Point Response Spectrum (SPRS)。

并不是有的地方说的PSD谱分析,因为GR-63-CORE中给出的根本就不是PSD谱。

下面把求解的代码附上,供大家参考:/SOLUANTYPE,MODALMODOPT,SUBSP,10MXPAND,10,,,YES !模态扩展,求解单元结果SOLVEFINISH/SOLUANTYPE,SPECTR ! 谱分析SPOPT,SPRS ! 单点响应谱分析,SED,,,1 ! Z轴,可对另外两个轴方向重新求解SVTYP,2 ! 加速度谱FREQ,0.3,0.6,2.0,5.0,15.0,50.0 ! 频率点SV,,0.2,2.0,5.0,5.0,1.6,1.6 ! 谱值SOLVEFINISH/POST1SET,LIST ! 固有频率*GET,MC1,MODE,1,MCOEF ! 一阶频率的模态系数MC1SET,1,1,MC1PLNSOL,U,Z,1 ! 节点位移结果ETABLE,SBYB,SMISC,33PLETAB,SBYB ! 单元应力结果,这里是对Beam188单元建的单元表,其它单元需做改变验证了几个问题:•SPOPT,SPRS这就后面加不加Element calculation key选项对结果没影响,即有的地方写成SPOPT,SPRS,,YES。

基于Ansys_的塔式起重机地震反应谱分析

基于Ansys_的塔式起重机地震反应谱分析

基于Ansys的塔式起重机地震反应谱分析秦仙蓉 赵俊陆 王玉龙 张 氢 孙远韬同济大学机械与能源工程学院 上海 201804摘 要:塔式起重机在工程建造中发挥着重要作用,但因其具有高耸大跨度的细长结构,在地震的作用下可能造成结构损伤或破坏,有必要在设计阶段即对塔式起重机进行地震反应谱分析。

文中标定了利用Ansys平台进行反应谱分析的基本流程,构建了1个单自由度和1个二自由度系统,分别利用理论计算和Ansys数值模拟完成了这2个系统的地震反应谱分析,并分析对比这2种方法所得结果,实现了对Ansys分析流程的标定。

另外,根据经过理论标定的分析流程,对某型塔式起重机进行了反应谱分析,分别在平行、垂直于该塔式起重机模型臂架的方向施加地震加速度谱,合并生成各阶模态结果,可知模型垂直于臂架方向具有更强抗震性能。

关键词:塔式起重机;反应谱;结构;有限元;地震响应;分析中图分类号:TH213.3 文献标识码:A 文章编号:1001-0785(2023)15-0018-05Abstract: Tower crane plays an important role in engineering construction. However, due to large span, it may suffer structural damage or destruction in case of an earthquake. Therefore, it is necessary to analyze the seismic response spectrum of tower crane in the design stage. In this paper, the authors calibrated the basic process of response spectrum analysis through Ansys platform, constructed a single-degree-of-freedom system and a two-degree-of-freedom system, and analyzed the seismic response spectrum of these two systems by theoretical calculation and Ansys numerical simulation respectively, and compared the results, thus realizing the calibration of Ansys analysis process. In addition, according to the theoretically calibrated analysis process, the response spectrum of a tower crane was analyzed, and the seismic acceleration spectra were applied in the directions parallel to and perpendicular to the boom of the tower crane model, and the modal results of each order were generated. The results show that the seismic performance perpendicular to the boom direction is better. Keywords:tower crane; response spectrum; structure; finite element method; seismic response; analysis0 引言地震反应谱分析由美国学者Biot M A在20世纪40年代提出的[1],描述了不同自振频率的弹性单自由度系统中相同阻尼比在地震激励下产生的最大响应与自振周期的关系[2],广泛应用于结构抗震设计过程中。

基于ANSYS的支撑框架结构地震反应谱分析

基于ANSYS的支撑框架结构地震反应谱分析

第 38 卷
图 2 支撑框架结构有限元模型 Fig. 2 Finite element modal of the braced structure
图 1 支撑框架结构平面布置 Fig. 1 The braced RC frame sturcture layout
1. 2 单元的选取与参数设定 采用梁单元 BEAM188 来模拟框架梁、框架柱、
193
基于 ANSYS 的支撑框架结构地震反应谱分析
李 坤1 ,田兴运1 ,苏 雷2 ,侯春娇1
( 1. 西北农林科技大学土木工程系,陕西 杨凌 712100; 2. 哈尔滨工业大学土木工程学院,黑龙江 哈尔滨 150090)
摘 要: 利用 ANSYS 对一斜支撑框架结构建立有限元模型并分析该结构的动力特性和地震荷载作用下的弹性响
modal on horizontal RC frame
第 3 阶振型主要是结构的横向振动。由图 6 可 知,横向支撑框架各层柱没有明显的反弯点出现,这 说明支撑布置改变了原有横向框架的受力状态,进 行结构的横向分析时应该按支撑和框架的协同工作 分析。 2. 4 第 4 阶结构频率和模态振型分析
第 4 阶结构振动频率为 3. 229 Hz,对应振动周 期为 0. 303 s。模态振型位移节点解如图 7 所示。
支撑; 采用壳单元 SHELL63 单元来模拟楼板。结构 阻尼系数为 0. 05。模型所用详细参数列于表 1。
表 1 模型参数 Table 1 Parameters of structure modal
构件
单元类型
截面尺寸 /m
框架柱 框架梁 框架支撑
楼板
BEAM188 BEAM188 BEAM188 SHELL63

ANSYS反应谱分析内幕

ANSYS反应谱分析内幕

A N S Y S反应谱分析内幕-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANANSYS反应谱分析内幕ANSYS结构振型分解反应谱分析有如下内容:1)首先要定义好加速度反应谱。

这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。

而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。

而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。

2)求振型。

一定要是相对质量矩阵进行归一化,当然modopt 命令默认的方法就可以了,为什么要这样呢,从ANSYS文档式17-110就可以看出,这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。

在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。

如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。

模态扩展其实就是相当于对将“振型位移”看作“强制位移”进行静力的分析而得到静力分析的结果。

3)求谱解。

其实在这一步中,程序只做了一件事,那就是求模态系数。

模态系数的算法在ANSYS文档里有说明,对于不同的激励谱(位移谱、加速度谱、力谱),其算法不一样,对于加速度谱,它等于模态参与数/模态频率的平方*谱值(模态频率的平方是弧度/秒,开始的时候我老是验算不过去这个式子,总是差一个40左右的系数,就是没有注意它的单位制,原来(2*3.14159)^2就约等于40),而详细的说明见ANSYS文档式17-120~17-126。

总而言之,模态系数描述的是某个模态对的结构总的响应的贡献。

顺便指出,模态参与系数是某个模态对结构发生给定单位方向位移的贡献,这个东东可查阅的资料比较多,这里就不多说了。

基于ANSYS的高层框架结构地震响应分析

基于ANSYS的高层框架结构地震响应分析

基于ANS Y S的高层框架结构地震响应分析母恩喜,陈国平(西南科技大学,四川绵阳611002) 【摘 要】 运用大型通用有限元软件ANSYS,采用其自带的APD L语言进行三维框架结构建模,对一18层框架混凝土结构进行了抗震性能的计算分析,包括模态分析,时程分析,以及结构在地震作用下的变形和随地震波的内力响应情况等。

【关键词】 框架结构; ANSYS; APD L; 地震波; 地震响应; 时程分析 【中图分类号】 T U35211+2 【文献标识码】 A 目前框架结构仍然是最常见的结构形式,对其进行研究分析还有一定的现实意义。

现在广泛应用的专业结构设计软件,采用了过多的假定,计算结果往往误差偏大。

对于一些重要的建筑,可能会有严重的危害,这已经引起了设计人员广泛的关注,有些重要的建筑会要求用有限元软件进行计算分析。

ANSY S作为大型通用有限元软件,已经在很多领域广泛应用了,但对于结构设计的一线人员用得还不多。

本文就尝试用ANSYS对常见的高层框架混凝土结构进行分析。

1 工程概况 本文计算的为一框架-筒体结构,层高3m,总18层,结构总高度54m,其平面布置如图1,结构模型参数见表1。

图1 结构平面示意表1 结构模型参数构件截面尺寸(m)混凝土强度等级弹性模量E(MPa)框架柱111×111C403125×104外环梁014×016C403125×104内框架梁015×018C403125×104次梁013×015C403125×104筒体墙肢013C403125×104楼层面板012C303100×104外围墙体012C303100×1042 有限元建模及模态分析211 单元介绍梁柱选用BE AM188,墙、板选用SHE LL63。

BE A M188:该单元是建立在Ti m oshenk o梁分析理论基础上的,计入了剪切效应和大变形效应,故可以考虑剪切变形和翘曲,同时也支持大转动和大应变等非线性,而且可以直接显示梁截面上的应力和变形,适合于从细长到中等粗短的梁结构。

ansys地震时程分析

ansys地震时程分析

在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。

首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01-0.413893E-02 -0.168195E+00 0.261523E+01-0.574753E-02 -0.157890E+00 0.809014E-01-0.731227E-02 -0.152996E+00 0.119975E+01-0.876865E-02 -0.138102E+00 0.130902E+01-0.101067E-01 -0.131582E+00 0.143611E+00 .......................然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据:0.100000E-010.200000E-010.300000E-010.400000E-010.500000E-010.600000E-01.......................编写如下的命令流文件,并命名为acce.inp*dim,ACCEXYZ,TABLE,2000,3 !01行*vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行*vread,ACCEXYZ(1,0),time,txt !04行(e16.6) !05行ACCEXYZ(0,1)=1 !06行ACCEXYZ(0,2)=2 !07行,同上ACCEXYZ(0,3)=3 !08行,同上finish/SOLUANTYPE,transbtime=0.01 !定义计算起始时间etime=15.00 !定义计算结束时间dtime=0.01 !定义计算时间步长*DO,itime,btime,etime,dtimetime,itimeAUTOTS,0NSUBST,1, , ,1KBC,1acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE*ENDDO最后,在命令窗口里输入/input,acce,inp即可对结构进行地震动力分析。

ANSYS地震反应谱SRSS分析

ANSYS地震反应谱SRSS分析
! Frequency points and Spectrum values for SV vs. freq. table FREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9) FREQ,fre(10) SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9) SV,,a(10) SOLVE FINISH
!/SOLU !ANTYPE,MODAL ! Mode-frequency analysis !EXPASS,ON !MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses !SOLVE !FINISH
/SOLU ANTYPE,SPECTR SRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination
/SOLU ANTYPE,SPECTR ! Spectrum analysis SPOPT,SPRS ! Single point spectrum SED,1,, ! Global X-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrum
! with signif=0.0 and displacement solution requested SOLVE FINISH
/POST1 SET,LIST /INPUT,,mcom !***************EARTHQUAKE X****************** ALLSEL,ALL FINISH

ANSYS软件在结构地震反应分析中所用的方法

ANSYS软件在结构地震反应分析中所用的方法

ANSYS软件在结构地震反应分析中所用的方法徐旻洋 1110109132工程体系多自由度运动方程为:[M]{x’’}+[C]{x’}+[K]{x}={F(t)}(1)式中,[M]表示质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵;{x}为结构体系的位移向量;{F(t)}表示t时刻的载荷向量。

典型的无阻尼模态分析求解的基本方程就是上式(1)的特征值问题:[K]{Φi}=ωi2[M]{Φi} (2)式中,{Φi}是第i阶模态的振型向量(特征向量),ωi是第i阶模态的固有频率。

ANSYS软件可以求解式(2),计算结构的固有频率ωi,然后计算相应的振型向量{Φi},即模态分析。

当式(1)右边{F(t)}是一个已知的谱(如地震反应谱)时,可以用ANSYS软件进行谱分析。

当{F(t)}是任意的随时间变化载荷时,ANSYS软件可进行瞬态动力分析。

ANSYS结构振型分解反应谱分析有如下内容:1)首先要定义好加速度反应谱。

这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。

而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。

而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。

2)求振型。

一定要是相对质量矩阵进行归一化,使用modopt命令默认的方法就可以了。

这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。

在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。

如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。

3)求谱解。

其实在这一步中,程序只做了一件事,那就是求模态系数。

ANSYS软件在高层建筑地震反应分析中的应用

ANSYS软件在高层建筑地震反应分析中的应用

ANSYS软件在高层建筑地震反应分析中的应用一、概要随着全球地震灾害的频发,高层建筑在地震作用下的安全性受到了广泛关注。

地震反应分析是评估高层建筑在地震作用下结构响应及损坏情况的关键技术手段。

ANSYS软件作为一款广泛应用于工程领域的有限元分析软件,在高层建筑地震反应分析中发挥着重要作用。

1. 抗震设计的重要性随着全球地震活动的增加,高层建筑在其生命周期中的抗震性能显得尤为重要。

高层建筑由于其特殊的结构形式和高度,往往成为地震作用下的关键受力构件。

如果在地震作用下发生倒塌,将造成巨大的人员伤亡和财产损失。

抗震设计的核心目标是确保建筑物在可能发生的地震中能够保持足够的稳定性和完整性,从而保护人员安全并减少财产损失。

ANSYS 软件作为一种强大的有限元分析工具,在高层建筑地震反应分析中发挥着至关重要的作用。

通过ANSYS,工程师们可以模拟和分析建筑物在地震作用下的动态行为,包括应力和变形分布、结构的失效模式以及能量耗散等。

这有助于设计师在建筑设计阶段就识别出潜在的薄弱环节,并采取相应的加固措施来提高建筑的抗震性能。

ANSYS还可以用于验证设计的合理性,通过与其他软件或实验结果的对比,确保建筑物在实际地震中的表现符合预期。

这对于保证高层建筑在地震中的安全性至关重要。

抗震设计是高层建筑安全性的重要保障。

ANSYS软件的应用使得这一过程更加高效、准确,为设计师提供了强有力的工具来应对地震带来的挑战。

2. 高层建筑地震反应分析的挑战随着城市化的加速和土地资源的紧张,高层建筑越来越多。

高层建筑在地震作用下的地震反应分析是一个复杂且具有挑战性的问题。

在地震作用下,高层建筑会受到水平、竖向和扭转等多种振动模态的影响,使得地震反应分析变得非常复杂。

高层建筑结构的耦合作用使得地震反应分析更加困难。

高层建筑结构中,各构件之间存在复杂的相互作用,如梁柱、梁墙、墙柱等。

这些相互作用使得地震力在建筑物内的传递变得复杂,难以准确模拟实际的地震反应。

ANSYS软件在结构地震反应分析中所用的方法

ANSYS软件在结构地震反应分析中所用的方法

ANSYS软件在结构地震反应分析中所用的方法徐旻洋1110109132工程体系多自由度运动方程为:[M]{x»MC]{x>[K]{x}={F(t»(D式中,[M]表示质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵:{X}为结构体系的位移向量;{F(t)}表示t时刻的载荷向疑。

典型的无阻尼模态分析求解的基本方程就是上式(1)的特征值问题:[K]{®}二(2)式中,{5}是第i阶模态的振型向量(特征向量),心是第i阶模态的固有频率。

ANSYS软件可以求解式(2), II-算结构的固有频率心,然后计算相应的振型向量{5}, 即模态分析。

当式⑴右边{F(t)}是一个已知的谱(如地震反应谱)时,可以用ANSYS软件进行谱分析。

当{F(t)}是任意的随时间变化载荷时,ANSYS软件可进行瞬态动力分析。

ANSYS结构振型分解反应谱分析有如下内容:1)首先要左义好加速度反应谱。

这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地而加速度为单位的。

而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。

而地而加速度也并不一左是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。

2)求振型。

一泄要是相对质疑矩阵进行归一化,使用modopt命令默认的方法就可以了。

这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子, 它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1 了,这就是为什么必须要对振型相对质量进行归一化的原因了。

在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求岀了周期和振型。

如果需要看某个振型的"内力/应力/反力”,就需要对其进行模态扩展。

3)求谱解。

其实在这一步中,程序只做了一件事,那就是求模态系数。

ansys谱分析实例地震位移谱分析

ansys谱分析实例地震位移谱分析

a n s y s谱分析实例地震位移谱分析The pony was revised in January 2021二.地震位移谱分析如图所示为一板梁结构,试计算在Y方向地震位移谱作用下的构件响应情况。

板梁结构相关参数见下表所示。

板梁结构几何参数和材料参数相应谱板梁结构(模型图)进行题目2的分析。

第一步是建立实体模型(如图4),并选择梁单元和壳单元模拟梁和板进行求解。

建此模型并无特别的难处,只要定义关键点正确,还有就是在建模过程当中注意对全局坐标系的运用,很容易就能做出模型。

此题的难点在于对梁和板的分析求解。

进行求解,首先进行的就是模态分析,约束好六条梁,就可以进行模态的分析求解了。

模态分析后,相应的就进行频谱分析,在输入频率和位移后开始运算求解。

此后进行模态扩展分析,最后进行模态合并分析。

分析完后,再对结果进行查看。

通过命令Main Menu>General Postproc>List Results>Nodal Solution查看节点位移结果、节点等效应力结果(图5)及反作用力结果(图6)。

通过图片我们看清晰的看到梁和板的受力情况及变形情况,在板与梁的连接处,板所受的应力最大,这些地方较容易受到破坏,故可考虑对其进行加固。

而梁主要是中间两层变形较大,所以在设计时应充分考虑材料的选用及直径的大小。

1.指定分析标题1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框。

2.在Enter new jobname (输入新文件名)文本框中输入文字“CH”,为本分析实例的数据库文件名。

单击对话框中的“OK”按钮,完成文件名的修改。

3.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框。

4.在Enter new title (输入新标题)文本框中输入文字“response analysis of a beam-shell structure”,为本分析实例的标题名。

基于ANSYS的巨型框架结构体系地震响应分析

基于ANSYS的巨型框架结构体系地震响应分析
第 34 卷 第 4 期 2011 年 4 月
合肥工业大学学报( 自然科学版) JO U RN AL O F H EFEI U N IV ERSIT Y OF T ECH N OL O GY
Vol. 34 No . 4 Apr. 2011
Doi: 10. 3969/ j. issn. 1003 5060. 2011. 04. 016
Abstract: Using t he ANSYS paramet ric design lang uag e( A PDL ) , a t hree dim ensional param et ric finit e element mo del is set up in this paper. T he aseismatic perf orm ance of t he m eg a f rame str ucture is dis cussed including t he modal analy sis, spect ral analysis, and t ime hist or y analysis. And t he dy nam ic charact er ist ic and seism ic response of the mega f rame st ruct ure w it h diff erent st iff ness rat io bet w een the m ajo r and mino r fr am es are st udied. T he result s show t hat t he displacem ent curve of reinf orced concr et e( RC) mega frame st ruct ures is a t ype of f lexure shear. T he st if f ness rat io bet ween t he major and minor fram es has a no t able influence on t he elast ic seismic response of t he st ruct ure. T he higher order fr equency of t he st ruct ure has cert ain inf luence on t he st ruct ure, and w hen it s period is close t o the eart hquake w ave pr edominant o ne, a pseudo r esonance phenom enon m ay occur. Key words: m eg a f rame st ruct ure; ANSYS par am et ric desig n lang uage( AP DL ) ; modal analysis; spec t ral analysis; t im e hist ory analy sis 钢筋混凝土巨型框架结构由主次 2 级结构组 成, 它能够充分发挥材料和结构性能, 开展巨型框 架结构体系的研究 , 有重要的理论价值和实际意 义

ANSYS_地震分析算例

ANSYS_地震分析算例

ANSYS_地震分析算例地震是地球上常见的自然灾害之一,对建筑物和结构物的破坏性非常大。

为了确保建筑物在地震中的安全性,工程师常常使用ANSYS软件进行地震分析。

地震分析是通过对建筑物进行动力学分析,计算出其在地震荷载下的响应,从而评估其结构的抗震性能。

在ANSYS中进行地震分析的主要步骤包括:建立模型、施加地震载荷、求解以及分析结果的评估。

首先,需要在ANSYS中建立建筑物的有限元模型。

通常情况下,建筑物可以被简化成一个由节点和单元组成的网格模型。

节点代表建筑物的连接点,单元则代表该连接点附近的结构元素。

节点和单元的选择要根据具体的建筑物结构进行,以保证计算结果的准确性。

接下来,需要施加地震载荷。

地震荷载可以通过指定地震力谱、地震加速度或者地震方波来进行定义。

这些地震载荷将会在计算过程中施加在建筑物的不同部位。

为了模拟真实情况,还需要考虑建筑物的质量、刚度以及其它相关参数。

然后,可以对建筑物施加地震载荷进行求解。

ANSYS的求解器可以根据所定义的地震载荷和建筑物的有限元模型,计算出整个建筑物在地震作用下的响应。

这些响应结果包括建筑物的位移、应力、应变等。

最后,对分析结果进行评估。

通过分析结果,可以评估建筑物的抗震能力,并且可以对结构进行优化设计。

如果建筑物在地震作用下的应力和应变超过了材料的承载能力,那么就需要重新考虑建筑物的结构设计,以确保其能够承受地震荷载。

在ANSYS中进行地震分析的算例很多,下面以一个简单的算例为例进行说明。

假设有一个三层楼的建筑物,使用钢筋混凝土框架结构。

首先,在ANSYS中建立该建筑物的有限元模型,包括梁、柱、地基等。

然后,根据所在地的地震条件,施加不同方向上的地震载荷。

接着,使用ANSYS的求解器进行求解,计算出建筑物在地震作用下的位移、应力、应变等响应结果。

最后,根据分析结果,对建筑物的结构进行优化设计,确保其能够在地震中保持稳固。

总之,ANSYS软件在地震分析方面具有很强的功能和应用性。

ANSYS地震分析算例

ANSYS地震分析算例

ANSYS地震分析算例地震分析是通过模拟地震波在结构体系中传播和反应的过程,来评估结构的抗震性能。

ANSYS提供了丰富的工具和功能来支持地震分析,包括地震波输入、地震响应计算和结构的抗震设计。

接下来,我们将介绍一个ANSYS地震分析的算例,来说明如何使用ANSYS进行地震分析。

首先,我们需要定义地震波的输入。

在ANSYS中,可以通过加载事先记录的地震波时程数据来模拟地震波。

这些地震波数据可以从观测站或数字模拟中获取。

通过加载地震波数据,可以将地震波的荷载施加在相应的结构上。

其次,我们需要建立地震分析的数值模型。

在ANSYS中,可以使用各种元素和材料模型来表示结构。

对于地震分析,通常会使用3D有限元模型。

在建立数值模型时,需要根据实际情况定义结构的几何形态和材料特性。

建议使用精细的网格划分来确保模型的准确性和可靠性。

然后,我们需要设置地震分析的边界条件。

这包括定义结构的支撑条件、荷载施加方式以及结构的初始条件等。

在地震分析中,结构通常会受到来自地震波的水平和垂直方向两个方向上的振动力。

因此,需要设置适当的支撑条件和加载方式来模拟地震波对结构的影响。

接着,我们可以进行地震分析计算。

在ANSYS中,可以使用不同的求解方法来进行地震分析,包括静力分析、模态分析和时程历程分析。

静力分析适用于弹性结构,可以用来评估结构在地震荷载下的变形和应力分布。

模态分析可以计算结构的固有频率和振型,并用于评估结构的抗震性能。

时程历程分析是一种更为准确的地震分析方法,可以模拟地震波在结构中的传播和反应的过程。

最后,我们可以进行地震分析结果的后处理。

在ANSYS中,可以使用各种功能来对地震分析的结果进行可视化和分析。

可以绘制结构的变形图、应力分布图和振动模态图,以评估结构的抗震性能。

此外,还可以计算结构的位移响应和应力峰值,以更详细地评估结构的动力响应。

总结起来,ANSYS提供了一个完整的地震分析解决方案,可以用于评估结构的抗震性能。

ansys反应谱

ansys反应谱

/filname,SPEC,1/PREP7!定义单元类型及材料特性ET,1,45MP,EX,1,2.8E10MP,DENS,1,2.4E3MP,NUXY,1,0.18!建立模型BLOCK,0,1,0,1,0,5!网格剖分ESIZE,0.5VMESH,all/VIEW,,-0.3,-1,1EPLOTFINISH/SOLU!施加底部约束ASEL,,LOC,Z,0DA,ALL,ALLALLSEL!施加自重荷载ACEL,0,0,10!进行模态求解ANTYPE,MODALMODOPT,LANB,30SOLVEFINISH!进行谱分析/SOLUANTYPE,SPECTRSPOPT,SPRS,30,YESSVTYP,2 !加速度反应谱SED,1,1 !X与Y向FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167SOLVEFINISH!进行模态求解(模态扩展)/SOLUANTYPE,MODALMXPAND,30,,,YES,0.005 SOLVEFINISH!进行谱分析(合并模态)/SOLUANTYPE,SPECTRSRSS,0.15,dispSOLVEFINISH/POST1SET,LIST !结果1/INP,,mcomlcwrite,11LCASE,11PRRSOL, !结果2SET,FIRSTPRRSOL, !结果3SET,NEXTPRRSOL, !结果4SET,NEXTPRRSOL, !结果5SET,NEXTPRRSOL, !结果6FINISH!静力分析/SOLUANTYPE,STATIC!施加水压荷载NSEL,,LOC,Y,0NSEL,R,LOC,Z,0,5 SFGRAD,PRES,0,Z,0,-10000 SF,ALL,PRES,50000!施加集中荷载NSEL,,LOC,Y,0NSEL,R,LOC,z,5F,ALL,FY,10000ALLSELEPLOTSOLVEFINISH/POST1set,lastlcwrite,12Lcoper,add,12Lcwrite,13LCASE,12PRRSOL, !结果7LCASE,13PRRSOL, !结果8FINISH--------------------------------------------------------------------------------------------------- 以下是计算的结果--------------------------------------------------------------------------------------------------- 结果1:(Results Summary)1 21.6472 21.6473 121.514 121.51结果2:(单独谱分析反力LCASE,11)VALUE 2467.9 2290.1 18384.结果3:(单独谱分析反力SET,FIRST)VALUE 0.13334E+06-0.15785E+07-0.18819E-06结果4:(单独谱分析反力SET,NEXT)VALUE -0.15785E+07-0.13334E+06-0.48918E-06结果5:(单独谱分析反力SET,NEXT)VALUE -0.87805E+07 0.27008E+08 0.86846E-07结果6:(单独谱分析反力SET,NEXT)VALUE 0.27008E+08 0.87805E+07 0.79325E-06结果7:(单独静力分析反力LCASE,12)VALUE 0.22901E-08-0.15500E+06 0.12000E+06结果8:(谱分析与静力分析叠加反力LCASE,13)VALUE 2467.9 -0.15271E+06 0.13838E+06。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS地震反应谱SRSS分析我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算结果,命令流如下:!进入PREP7并建模/PREP7B=15 !基本尺寸A1=1000 !第一个面积A2=1000 !第二个面积A3=1000 !第三个面积ET,1,beam4 !二维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参MP,EX,1,2.0E11 !杨氏模量mp,PRXY,1,,0.3mp,dens,1,7.8e3N,1,-B,0,0 !定义结点N,2,0,0,0N,3,-B,0,bN,4,0,0,bN,5,-B,0,2*bN,6,0,0,2*bN,7,-B,0,3*bN,8,0,0,3*bE,1,3 !定义单元E,2,4E,3,5E,4,6E,3,4E,5,6e,5,7e,6,8e,7,8D,1,ALL,0,,2FINISH!!进入求解器,定义载荷和求解/SOLUD,1,ALL,0,,2 !结点UX=UY=0sfbeam,1,1,PRES,100000,sfbeam,3,1,PRES,100000,sfbeam,7,1,PRES,100000,SOLVEFINISHallselNMODE=10/SOL!*ANTYPE,2!*MSAVE,0!*MODOPT,LANB,NMODEEQSLV,SPARMXPAND,NMODE , , ,1LUMPM,0PSTRES,0!*MODOPT,LANB,NMODE ,0,0, ,OFFSOLVE*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FORMODE I*ENDDOFINISH!地震影响系数grav=9.81tg=0.35amax=0.08c=0.05!*dim,a,,nmode*dim,t,,nmode*do,i,1,nmodet(i)=1.0/fre(i)*enddor=0.9+(0.05-c)/(0.5+5.0*c)p1=0.02+(0.05-c)/8p2=1+(0.05-c)/(0.06+1.7*c)*do,i,1,nmode*if,t(i),ge,0.0,and,t(i),lt,0.1,then a(i)=(0.45+(10.0*p2-4.5)*t(i))*amax*grav*elseif,t(i),ge,0.1,and,t(i),le,tga(i)=p2*amax*grav*elseif,t(i),gt,tg,and,t(i),le,5*tga(i)=(tg/t(i))**r*p2*amax*grav*elsea(i)=(p2*0.2**r-p1*(t(i)-5*tg))*amax*grav*endif*enddo!! X-方向谱分析 Spectrum analysis along Global X-axisdirection/SOLUANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrum SED,1,, ! Global X-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrum! Frequency points and Spectrum values for SV vs. freq.tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)FINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes,calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Modecombination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE X******************ALLSEL,ALLFINISH! Y-方向谱分析 Spectrum analysis along Global X-axisdirection!!**********************************************!/SOL!!*!ANTYPE,2!!*!MSAVE,0!!*!MODOPT,LANB,NMODE!EQSLV,SPAR!MXPAND,NMODE , , ,1!LUMPM,0!PSTRES,0!!*!MODOPT,LANB,NMODE ,0,0, ,OFF!SOLVE!FINISH!!**********************************************/SOLULSCLEAR,LSOPTANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrum SED,,1, ! Global Y-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrumFREQ! Frequency points and Spectrum values for SV vs. freq.tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)SOLVEFINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes,calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Modecombination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE Y******************ALLSEL,ALLFINISH这里在进行X方向的反应谱分析以后,进行Y方向的分析,可是他生成的*.mcom文件如下:/COM,ANSYS RELEASE 8.0 UP20030930 09:28:42 07/23/2005/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4 LCFACT,1, -0.871099E-15 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6 LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7 LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9 LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1 LCDEFI,1, 1, 10 LCFACT,1, -0.387808E-13 LCOPER,ADD,1,MULT,1LCOPER,SQRT/COM,ANSYS RELEASE 8.0 UP20030930 09:28:42 07/23/2005/COM, truss.mcomLCOPER,SQUARE !注意这里没有清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT我感觉这样好像是X和Y两个方向地震的叠加,可是如果在座Y方向的地震以前把注释掉的模态分析在做一下这样的Y方向的地震的*.mcom就是:/COM, truss.mcomLCOPER,ZERO !注意这里清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3 LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5 LCFACT,1, -0.331613E-13 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6 LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8 LCFACT,1, -0.976991E-13 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9 LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT如果在X方向后不作Y方向的地震,他的*.mcom:/COM,ANSYS RELEASE 8.0 UP20030930 08:46:23 07/23/2005/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT可是在X后作Y他不清空数据库,需要进行两次模态分析,这很耗时间对于大型结构,请大家讨论讨论如何处理呢?Re:讨论:ANSYS地震反应谱SRSS分析本人是学土木工程的,平时主要用Patran+Nastran对结构做线性分析,偶尔使用Ansys对结构做地震反应谱分析,但对Ansys的命令流不熟悉。

相关文档
最新文档